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MULTIPLICITY OF SOLUTIONS FOR ANISOTROPIC DISCRETE
BOUNDARY VALUE PROBLEMS

Abdelrachid El Amrouss and Omar Hammouti

Abstract. In this paper, we study the existence and multiplicity of nontrivial solutions
for an anisotropic discrete nonlinear problem with variable exponent. The analysis makes
use of variational methods and critical point theory.

1. Introduction

Let N ≥ 2 be an integer, [1, N ]Z be the discrete interval given by {1, 2, 3, . . . , N}
and Z = {. . . ,−1, 0, 1, . . .}. Define the forward difference operator ∆ by ∆u(t) =
u(t + 1) − u(t), t ∈ Z. This paper is concerned with the existence and multiplicity
of nontrivial solutions for the following discrete anisotropic problem{

−∆(|∆u(t− 1)|p(t−1)−2∆u(t− 1)) = f(t, u(t)), t ∈ [1, N ]Z,

u(0) = u(N + 1) = 0,
(P)

where f : [1, N ]Z × R −→ R is a continuous function in the second variable. For the
function p : [0, N ]Z −→ [2,∞[ denote p+ = maxt∈[0,N ]Zp(t) and p− = mint∈[0,N ]Zp(t).
As usual, a solution of (P) is a function u : [0, N + 1]Z −→ R which satisfies both
equations of (P).

In the case when p(t) = p (a constant), the problem has been studied by A.R.
El Amrouss and O. Hammouti in [7]. They obtained the existence of at least two
nontrivial solutions, by using the critical point theory and Mountain Pass Theorem.
Here, we will generalize this result.

We want to notice that problem (P) could be regarded as a discrete analogue of
the variable exponent anisotropic problem−

N∑
i=1

∂

∂xi

(
| ∂u
∂xi

|pi(x)−2 ∂u

∂xi

)
= f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
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2 Multiplicity of solutions for anisotropic discrete boundary value problems

where Ω ⊂ RN , N ≥ 3, is a bounded domain with smooth boundary, f ∈ C
(
Ω× R,R

)
is a given function that satisfy certain properties, pi(x) are continuous functions on
Ω, with pi(x) ≥ 2 for (i, x) ∈ [1, N ]Z × Ω.

In the previous decades, the nonlinear difference equations have been intensively
used for the mathematical modelling of various problems in different disciplines of sci-
ence, such as mechanical engineering, statistics, computing, ecology, optimal control,
neural network, electrical circuit analysis, population dynamics, economics, biology
and other fields; (see, for example [2, 17]). In this context, anisotropic discrete non-
linear problems seem to have attracted a great deal of attention due to its usefulness of
modelling some more complicated phenomenon such us fluid dynamics and nonlinear
elasticity. We refer the reader to [1, 5, 6, 8, 11, 12] and references therein, where they
can find the detailed background as well as many different approaches and techniques
applied in the related area.

As is well known, critical point theory, variational methods and also monotonicity
methods are powerful tools to investigate the existence and multiplicity of solutions
of various problems, see the monographs [4, 9, 10,15–17].

In this paper, we shall study the existence and multiplicity of nontrivial solutions
of (P), via min-max methods and Mountain Pass Theorem.

Let F (t, x) =
∫ x

0
f(t, s) ds for (t, x) ∈ [1, N ]Z × R. To state our main results, we

consider the following conditions:

(H1) There exists δ >
2p

+

p−
(N + 1)

p+

2 such that lim inf
|x|→∞

F (t, x)

|x|p+ ≥ δ, ∀t ∈ [1, N ]Z.

(H2) lim
|x|→∞

(
F (t, x)− p+

(p−)2
γN |x|p+

)
= +∞, ∀t ∈ [1, N ]Z where

γN =sup


N+1∑
t=1

|∆u(t− 1)|p(t−1)

N∑
t=1

|u(t)|p+

| u ∈ EN : ∥u∥ ≥ 1

 , (1)

with EN ={u : [0, N + 1]Z −→ R | u(0) = u(N + 1) = 0}, (2)

and ∥u∥ =

(
N+1∑
t=1

|∆u(t− 1)|2
) 1

2

.

It is easy to see that γN > 0 and we will see later that γN is finite.

(H3) lim
|x|→0

F (t, x)

|x|p+ = 0, ∀t ∈ [1, N ]Z.

Example 1.1. Let us consider a continuous function f : [1, N ]Z × R −→ R given by
the formula

f(t, x) =

{
| sin t|(1 + p+ ln |x|)|x|p+−2x, |x| > 1, t ∈ [1, N ]Z,

| sin t||x|p+−1x, |x| ≤ 1, t ∈ [1, N ]Z.
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Clearly, we have

F (t, x) =

{
| sin t|(|x|p+

ln |x|+ 1
p++1 ), |x| > 1, t ∈ [1, N ]Z,

1
p++1 | sin t||x|

p++1, |x| ≤ 1, t ∈ [1, N ]Z.

After a simple calculation, we get

lim inf
|x|→∞

F (t, x)

|x|p+ = +∞, lim
|x|→∞

(
F (t, x)− p+

(p−)2
γN |x|p

+

)
= +∞

and lim
|x|→0

F (t, x)

|x|p+ = 0, for any t ∈ [1, N ]Z.

Then F satisfies the conditions (H1), (H2) and (H3), but f does not satisfy the
conditions of the article [12].

Example 1.2. Put f : [1, N ]Z × R −→ R by the formula

f(t, x) =


2p

++1 p
+

p−
(N + 1)

p+

2 t|x|p+−2x, |x| > 1, t ∈ [1, N ]Z,

2p
++1 p

+

p−
(N + 1)

p+

2 t|x|p+

x, |x| ≤ 1, t ∈ [1, N ]Z.

By the expression of f we have

F (t, x) =


2p

++1

p−
(N + 1)

p+

2 t|x|p+ − 2p
++2

p−(p+ + 2)
(N + 1)

p+

2 t, |x| > 1, t ∈ [1, N ]Z,

2p
++1 p+

p−(p+ + 2)
(N + 1)

p+

2 t|x|p++2, |x| ≤ 1, t ∈ [1, N ]Z.

Direct calculations give lim inf
|x|→∞

F (t, x)

|x|p+ =
2p

++1

p−
(N + 1)

p+

2 t ≥ 2p
++1

p−
(N + 1)

p+

2

and lim
|x|→0

F (t, x)

|x|p+ = 0. Thus F satisfies the conditions (H1) with δ =
2p

++1

p−
(N + 1)

p+

2

and (H3).

The main results in this paper are the following theorems.

Theorem 1.3. Suppose that (H1) and (H3) hold. Then the problem (P) has at least
two nontrivial solutions, in which one is non-negative and one is non-positive.

Theorem 1.4. Suppose that (H2) and (H3) hold. Then the problem (P) has at least
two nontrivial solutions.

The rest of this paper is organized as follows. Section 2 contains some preliminary
lemmas. The main results will be proved in Section 3.

2. Preliminary lemmas

The vector space EN defined in (2) is an N -dimensional Hilbert space with the inner
product
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⟨u, v⟩ =
N∑
t=1

∆u(t− 1)∆v(t− 1), ∀u, v ∈ EN ,

while the corresponding norm is given by

∥u∥ =

(
N+1∑
t=1

|∆u(t− 1)|2
) 1

2

.

We list also some inequalities that will be used later.

Lemma 2.1 ([12]). For every u ∈ EN , we have:

(A1)
N+1∑
t=1

|∆u(t− 1)|p(t−1) ≥ N
p+−2

2 ∥u∥p+

, with ∥u∥ ≤ 1.

(A2)
N+1∑
t=1

|∆u(t− 1)|p(t−1) ≥ N
2−p−

2 ||u||p− − (N + 1), with ∥u∥ > 1.

(A3)
N∑
t=1

|u(t)|m ≤ N(N + 1)m−1
N+1∑
t=1

|∆u(t− 1)|m, ∀m > 1.

(A4) max
t∈[1,N ]Z

|u(t)| < (N + 1)
1
q

(
N+1∑
t=1

|∆u(t− 1)|p
) 1

p

, ∀p, q > 1 with
1

p
+

1

q
= 1.

(A5)
N+1∑
t=1

|∆u(t− 1)|m ≤ 2m
N∑
t=1

|u(t)|m, ∀m ≥ 2.

(A6)
N+1∑
t=1

|∆u(t− 1)|p(t−1) ≤ (N + 1)||u||p+

+ (N + 1).

(A7)
N+1∑
t=1

|∆u(t− 1)|m ≤ (N + 1)||u||m, ∀m ≥ 1.

(A8)
N+1∑
t=1

|∆u(t− 1)|m ≥ (N + 1)
2−m

2 ||u||m, ∀m ≥ 2.

Remark 2.2. From (A6), it is easy to see that γN defined in (1) is finite.

Let u ∈ EN , we consider the functional as follows

Φ(u) =

N+1∑
t=1

1

p(t− 1)
|∆u(t− 1)|p(t−1) −

N∑
t=1

F (t, u(t)).

It is easy to see that Φ ∈ C1(EN ,R) and its derivative Φ′(u) at u ∈ EN is given by

Φ′(u).v =

N+1∑
t=1

|∆u(t− 1)|p(t−1)−2∆u(t− 1)∆v(t− 1)−
N∑
t=1

f(t, u(t))v(t),

for any v ∈ EN . By the summation by parts formula, Φ′ can be written as

Φ′(u).v =

N∑
t=1

[
−∆(|∆u(t− 1)|p(t−1)−2∆u(t− 1))− f(t, u(t))

]
v(t),
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for any v ∈ EN . Thus, if u ∈ EN is a critical point of Φ, then u is a solution of (P).

Now, we consider the truncated problem{
−∆(|∆u(t− 1)|p(t−1)−2∆u(t− 1)) = f±(t, u(t)), t ∈ [1, N ]Z,

u(0) = u(N + 1) = 0,
(P±)

where

f±(t, x) =

{
f(t, x), if ± x ≥ 0,

0, otherwise.
(3)

For u ∈ EN , we denote by u+ = max(u, 0) and u− = max(−u, 0) the positive and
negative parts of u. It is clear to see that u+ ≥ 0, u− ≥ 0, u = u+ − u−, u+ · u− = 0,

u± =
1

2
(|u| ± u) and u± ≤ |u|.

Lemma 2.3. All solutions of (P+) (resp. (P−)) are non-negative (resp. non positive)
solutions of (P).

Proof. Define Φ± : EN −→ R,

Φ±(u) =

N+1∑
t=1

1

p(t− 1)
|∆u(t− 1)|p(t−1) −

N∑
t=1

F±(t, u(t))

=

N+1∑
t=1

1

p(t− 1)
|∆u(t− 1)|p(t−1) −

N∑
t=1

F (t, u±(t)),

where F±(t, x) =
∫ x

0
f±(t, s) ds. It is easy to see that ∆u+(t − 1)∆u−(t − 1) ≤ 0,

∀t ∈ [1, N + 1]Z. Now, we show that |∆u−(t − 1)| ≤ |∆u(t − 1)|, ∀t ∈ [1, N + 1]Z.
Indeed,

|∆u−(t− 1)| = |u−(t)− u−(t− 1)| = |1
2
(|u(t)| − u(t))− 1

2
(|u(t− 1)| − u(t− 1))|

≤ 1

2
[|u(t)− u(t− 1)||+ |u(t)− u(t− 1)|] ≤ |∆u(t− 1)|.

Let u be a solution of (P+), or equivalently let u be a critical point of Φ+. Taking

v = u− in ⟨Φ′
+(u), v⟩ =

N+1∑
t=1

|∆u(t−1)|p(t−1)−2∆u(t−1)∆v(t−1)−
N∑
t=1

f+(t, u(t))v(t),

we have

⟨Φ′
+(u), u

−⟩ =
N+1∑
t=1

|∆u(t− 1)|p(t−1)−2∆u(t− 1)∆u−(t− 1)

=

N+1∑
t=1

|∆u(t− 1)|p(t−1)−2∆(u+(t− 1)− u−(t− 1))∆u−(t− 1)

=

N+1∑
t=1

|∆u(t− 1)|p(t−1)−2∆u+(t− 1)∆u−(t− 1)− |∆u(t− 1)|p(t−1)−2(∆u−(t− 1))2.
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Therefore, we deduce that
N+1∑
t=1

|∆u(t− 1)|p(t−1)−2
[
−∆u+(t− 1)∆u−(t− 1)

]
+

N+1∑
t=1

|∆u(t− 1)|p(t−1)−2(∆u−(t− 1))2 = 0.

Since,

−∆u+(t− 1)∆u−(t− 1) ≥ 0, ∀t ∈ [1, N + 1]Z,

then, we get |∆u(t− 1)|p(t−1)−2(∆u−(t− 1))2 = 0, ∀t ∈ [1, N + 1]Z.

On the other hand

|∆u−(t− 1)|p(t−1) = |∆u−(t− 1)|p(t−1)−2
(
∆u−(t− 1)

)2
≤ |∆u(t− 1)|p(t−1)−2

(
∆u−(t− 1)

)2
= 0,

for any t ∈ [1, N +1]Z. So u− = 0 and u = u+ is also a critical point of Φ with critical
value Φ(u) = Φ+(u).

Similarly, nontrivial critical points of Φ− are non-positive solutions of (P). □

Definition 2.4. Let H be a real Banach space and Φ : H −→ R be a C1-functional.
We say that a functional Φ satisfies the Palais-Smale (PS) condition, if every sequence
(un) ⊂ H such that (Φ(un)) is bounded and Φ′(un) → 0 as n → ∞, contains a
convergent subsequence. The sequence (un) is called a (PS) sequence.

Let Bρ denote the open ball in H about 0 of radius ρ and let ∂Bρ the denote its
boundary.

Lemma 2.5 ( [3, Mountain Pass Lemma]). Let Φ be a C1-functional on a Banach
space H that satisfies the (PS) condition and Φ(0) = 0. Suppose that:

(σ1) there exist ρ, α > 0 such that Φ(u) ≥ α for all u ∈ H with ∥u∥H = ρ,

(σ2) there exists e ∈ H, with ∥e∥H > ρ such that Φ(e) ≤ 0.

Then, c = infh∈Γmaxs∈[0,1]Φ(h(s)) ≥ α, where Γ = {h ∈ C([0, 1] , H) | h(0) =
0, h(1) = e}, is a critical value of Φ.

3. Proofs of the main results

3.1 Proof of Theorem 1.3

To apply the Mountain Pass Theorem, we will do separate studies of the (PS) con-
dition compactness of Φ± and its geometry.

Lemma 3.1. Assume that (H1) holds; then the functional Φ+ satisfies the (PS) con-
dition.
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Proof. Let (un) ⊂ EN be a (PS) sequence for the functional Φ+, i.e., |Φ+(un)| ≤ C
and Φ′

+(un) −→ 0 as n → ∞, where C is a constant. Let us show that (un) is
bounded in EN . Since un = u+

n −u−
n , we will prove that (u+

n ) and (u−
n ) are bounded.

Suppose that (u−
n ) is unbounded. Then there exists an integer n0 > 0 such that

∥u−
n ∥ ≥ N + 1 for n ≥ n0. (4)

Since ∆u+
n (t− 1)∆u−

n (t− 1) ≤ 0 and |∆u−
n (t− 1)| ≤ |∆un(t− 1)|, ∀t ∈ [1, N + 1]Z.

Then, we have

⟨Φ′
+(un), u

−
n ⟩ =

N+1∑
t=1

|∆un(t− 1)|p(t−1)−2∆un(t− 1)∆u−
n (t− 1)−

N∑
t=1

f+(t, un(t))u
−
n (t)

=

N+1∑
t=1

|∆un(t− 1)|p(t−1)−2∆u+
n (t− 1)∆u−

n (t− 1)− |∆un(t− 1)|p(t−1)−2(∆u−
n (t− 1))2

≤ −
N+1∑
t=1

|∆u−
n (t− 1)|p(t−1).

Using the above inequality and (A2), we obtain for any n ≥ n0

⟨Φ′
+(un), u

−
n ⟩ ≤ −N

2−p−
2 ∥u−

n ∥p
−
+ (N + 1).

This implies that

N
2−p−

2 ∥u−
n ∥p

−
− (N + 1) ≤⟨Φ′

+(un),−u−
n ⟩ ≤ ∥Φ′

+(un)∥∥u−
n ∥.

Therefore,

N
2−p−

2 ∥u−
n ∥p

−
≤∥Φ′

+(un)∥∥u−
n ∥+N + 1,

and

N
2−p−

2 ∥u−
n ∥p

−−1 ≤∥Φ′
+(un)∥+ 1. (5)

Since Φ′
+(un) −→ 0 as n → ∞, then for any ε > 0, there exists an integer n1

with n1 ≥ n0 such that ∥Φ′
+(un)∥ < ε, ∀n ≥ n1. Combining the preceding inequality

and (5), we get ∥u−
n ∥p

−−1 ≤ (ε+ 1)N
p−−2

2 for any n ≥ n1. Which means that (u−
n )

is bounded. Thus we obtain a contradiction.

Now, we will prove that (u+
n ) is bounded. According to (H1), there exists R > 0

such that
F (t, x)

|x|p+ ≥ δ − ε, ∀(t, |x|) ∈ [1, N ]Z × ]R,+∞[ ,

where 0 < ε < δ − 2p
+

p−
(N + 1)

p+

2 . (6)

On the other hand, by continuity of x 7→ F (t, x)− (δ−ε)|x|p+

, there exists d > 0 such

that F (t, x)− (δ − ε)|x|p+ ≥ −d, ∀(t, |x|) ∈ [1, N ]Z × [0, R]. Thus, we deduce that

F (t, x) ≥ (δ − ε)|x|p
+

− d, ∀(t, x) ∈ [1, N ]Z × R. (7)
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According to (A5), (A8) and (7), we obtain
N∑
t=1

F (t, u+
n (t)) ≥ (δ − ε)

N∑
t=1

|u+
n (t)|p

+

− dN

≥ 2−p+

(N + 1)
2−p+

2 (δ − ε)∥u+
n ∥p

+

− dN. (8)

If ∥u+
n ∥ = 0 for any integer n ≥ 0, then (u+

n ) is bounded. Otherwise, by (A6) we have

Φ+(un) =

N+1∑
t=1

1

p(t−1)
|∆un(t−1)|p(t−1)−

N∑
t=1

F (t, u+
n (t))

≤ N+1

p−

[
∥u+

n−u−
n ∥p

+

+1
]
−2−p+

(N+1)
2−p+

2 (δ−ε)∥u+
n ∥p

+

+dN

≤ N+1

p−

[(
∥u+

n ∥+∥u−
n ∥
)p+

+1
]
−2−p+

(N+1)
2−p+

2 (δ−ε)∥u+
n ∥p

+

+dN

≤ 2−p+

(N+1)
2−p+

2

[
2p

+

p−
(N+1)

p+

2

(
1+

∥u−
n ∥

∥u+
n ∥

)p+

−(δ−ε)

]
∥u+

n ∥p
+

+
N+1

p−
+dN.

So, we deduce that

−C ≤ 2−p+

(N+1)
2−p+

2

[
2p

+

p−
(N+1)

p+

2

(
1+

∥u−
n ∥

∥u+
n ∥

)p+

−(δ−ε)

]
∥u+

n ∥p
+

+
N+1

p−
+dN.

If (u+
n ) is unbounded, up to a subsequence we may assume that ∥u+

n ∥ → ∞. Then in
view of (6) and the fact that (u−

n ) is bounded, we get

2−p+

(N+1)
2−p+

2

[
2p

+

p−
(N+1)

p+

2

(
1+

∥u−
n ∥

∥u+
n ∥

)p+

−(δ−ε)

]
∥u+

n ∥p
+

+
N+1

p−
+dN −→ −∞

as n → ∞, what is a contradiction, hence (u+
n ) is bounded. It follows that (un) is

bounded. □

Lemma 3.2. Assume that (H3) holds; then there exist r > 0 and α > 0 such that
Φ+(u) ≥ α, for all u ∈ EN with ∥u∥ = r.

Proof. Using the condition (H3), for any ε > 0 there exists R > 0 such that |F (t, x)| ≤
ε|x|p+

, ∀(t, |x|) ∈ [1, N ]Z × [0, R].

Let u ∈ EN , ∥u∥ ≤ r with r = min

{
R√

N + 1
, 1

}
. From (A4) it follows |u+(t)| ≤

|u(t)| ≤ maxt∈[1,N ]Z |u(t)| ≤ R, ∀t ∈ [1, N ]Z. Therefore, we deduce that |F (t, u+(t))| ≤
ε|u+(t)|p+ ≤ ε|u(t)|p+

, ∀t ∈ [1, N ]Z. Using the preceding inequality and (A1), (A3),
(A7), we obtain

Φ+(u)=

N+1∑
t=1

1

p(t−1)
|∆u(t−1)|p(t−1)−

N∑
t=1

F (t, u+(t)) ≥

[
N

p+−2
2

p+
−εN(N+1)p

+

]
∥u∥p

+

.

Let us choose ε > 0 such that ε <
N

p+−4
2 (N + 1)−p+

p+
. It follows that there exist
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r > 0 and α > 0 such that Φ+(u) ≥ α, ∀u ∈ EN : ∥u∥ = r. □

Proof (of Theorem 1.3). In order to apply the Mountain Pass Theorem, we must
prove that Φ+(su) −→ −∞ as s → ∞, for certain u ∈ EN . Let u ∈ EN , u > 0 and
s > 1. From (A6) and (8), we have

Φ+(su) ≤
N + 1

p−

[
sp

+

∥u∥p
+

+ 1
]
− 2−p+

(N + 1)
2−p+

2 (δ − ε)sp
+

∥u∥p
+

+ dN

≤ 2−p+

(N + 1)
2−p+

2 sp
+

(
2p

+

p−
(N + 1)

p+

2 − (δ − ε)

)
∥u∥p

+

+
N + 1

p−
+ dN,

where 0 < ε < δ − 2p
+

p−
(N + 1)

p+

2 . Therefore Φ+(su) −→ −∞ as s → ∞. It follows

that there exists u∗ ∈ EN such that ∥u∗∥ > r and Φ+(u
∗) < 0.

According to the Mountain Pass Theorem, Φ+ admits a critical value c ≥ α which
is characterized by c = infg∈Γmaxs∈[0,1]Φ+(g(s)), where Γ = {g ∈ C([0, 1] , EN ) |
g(0) = 0, g(1) = u∗}. Then, the functional Φ+ has a critical point u+ with Φ+(u+) ≥
α. But, Φ+(0) = 0, that is u+ ̸= 0. Therefore, the problem (P+) has a nontrivial
solution which by Lemma 2.3, is a non-negative solution of the problem (P).

Similarly, using Φ−, we show that there furthermore exists a non-positive solution.
□

3.2 Proof of Theorem 1.4

Proof. From the condition (H3), for ε =
N

p+−2
2

2p+N(N + 1)p+ there exists R > 0 such

that |F (t, x)| ≤ ε|x|p+

, ∀(t, |x|) ∈ [1, N ]Z × [0, R].

Let u ∈ EN , ∥u∥ ≤ ρ with ρ = min

{
R√

N + 1
, 1

}
. By (A4) it follows that |u(t)| ≤

maxt∈[1,N ]Z |u(t)| ≤ R, ∀t ∈ [1, N ]Z. So, we deduce that |F (t, u(t))| ≤ ε|u(t)|p+

,
∀t ∈ [1, N ]Z. By (A1), (A3) and (A7), we have

Φ(u) ≥ N
p+−2

2

p+
∥u∥p

+

− εN(N + 1)p
+

∥u∥p
+

≥

[
N

p+−2
2

p+
− εN(N + 1)p

+

]
∥u∥p

+

≥ N
p+−2

2

2p+
∥u∥p

+

.

Take α =
N

p+−2
2

2p+
ρp

+

> 0. Then,

Φ(u) ≥ α > 0, ∀u ∈ EN with ∥u∥ = ρ. (9)

Now, by contradiction we prove that Φ is anti-coercive. Let K ∈ R and (un) ⊂ EN

such that ∥un∥ −→ ∞ and Φ(un) ≥ K. Putting vn =
un

||un||
, one has ∥vn∥ = 1. Since

dimEN < ∞, there exists v ∈ EN such that ∥vn − v∥ −→ 0, as n → ∞ and ∥v∥ = 1.
In particular v ̸= 0, we pose Θ = {t ∈ [1, N ]Z/ v(t) ̸= 0}.
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For t ∈ Θ, |un(t)| −→ ∞. Using (1), we have

K ≤ 1

p−
γN

N∑
t=1

|un(t)|p
+

−
N∑
t=1

[
F (t, un(t))−

p+

(p−)2
γN |un(t)|p

+

]
− p+

(p−)2
γN

N∑
t=1

|un(t)|p
+

≤ 1

p−

(
1−p+

p−

)
γN

N∑
t=1

|un(t)|p
+

−
N∑
t=1

[
F (t, un(t))−

p+

(p−)2
γN |un(t)|p

+

]
≤ −

∑
t∈Θ

[
F (t, un(t))−

p+

(p−)2
γN |un(t)|p

+

]
−

∑
t∈[1,N ]Z⧹Θ

[
F (t, un(t))−

p+

(p−)2
γN |un(t)|p

+

]
.

From the condition (H2), we deduce that

−
∑
t∈Θ

[
F (t, un(t))−

p+

(p−)2
γN |un(t)|p

+

]
−→ −∞, as n → ∞.

The sequence (un(t)) is bounded for any t ∈ [1, N ]Z⧹Θ and F is continuous. Hence,
there exists a constant M ∈ R such that

−
∑

t∈[1,N ]Z⧹Θ

[
F (t, un(t))−

p+

(p−)2
γN |un(t)|p

+

]
≤ M.

Therefore, we get

K ≤−
∑
t∈Θ

[
F (t, un(t))−

p+

(p−)2
γN |un(t)|p

+

]
+M −→ −∞, as n → ∞.

This a contradiction. Hence Φ is anti-coercive on EN . So, we can choose e large
enough to ensure that Φ(e) < 0, and that any (PS) sequence (un) is bounded. In
view of the fact that the dimension of EN is finite, we see that Φ satisfies the (PS) con-
dition. Since Φ(0) = 0, then all the conditions of Lemma 2.5 are satisfied. Thus Φ pos-

sesses a critical value c ≥ α =
1

2p+
N

p+−2
2 ρp

+

> 0, where c = infh∈Γmaxs∈[0,1]Φ(h(s)),

and Γ = {h ∈ C([0, 1] , EN )/ h(0) = 0, h(1) = e}. Let u1 ∈ EN such that Φ(u1) = c.
Clearly, u1 is a nontrivial solution of the problem (P).

On the other hand, since Φ is bounded from above and anti-coercive, then there
is a maximum point of Φ at some u2 ∈ EN i.e., Φ(u2) = supu∈EN

Φ(u). Using (9), we
obtain Φ(u2) = supu∈EN

Φ(u) ≥ supu∈∂Bρ
Φ(u) > 0. Hence u2 is a nontrivial solution

of the problem (P).

If u1 ̸= u2, then we have two nontrivial solutions u1 and u2. Otherwise, sim-
ilarly to the proof of [7, Theorem 1.3], since u1 = u2, we deduce that Φ(u1) =
maxs∈[0,1]Φ(g(s)) = Φ(u2), ∀g ∈ Γ.

By the continuity of Φ(g(s)) with respect to s, Φ(0) = 0 and Φ(u) < 0 imply
that there exists s1 ∈ ]0, 1[ such that Φ(u1) = Φ(g(s1)). Choose g2, g3 ∈ Γ such that
{g2(s) | s ∈ ]0, 1[} ∩ {g3(s) |; s ∈ [0, 1]} = ∅; then there exists s2, s3 ∈ ]0, 1[ such that
Φ(g2(s2)) = Φ(g3(s3)) = Φ(u1) = maxs∈[0,1]Φ(g(s)). We get two different critical
points of Φ on EN .

Consequently, the problem (P) has at least two nontrivial solutions. □
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[16] M. Mihăilescu, V. Rădulescu, S. Tersian, Eigenvalue problems for anisotropic discrete bound-
ary value problems, J. Difference Equ. Appl., 15 (2009), 557–567.
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