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INCLUSION THEOREMS FOR THE SPACES 7,
Stojan Duborija

Abstract. We give a new proof of one known inclusion theorem for the space F; that
enables us to extend this theorem from the unit disc in C to the unit ball in C*, n > 1. We also
improve an inclusion relation between Bergman spaces and the spaces F,, o > 0.

1. Introduction

Let A denote the unit disc in C with boundary T. We denote by m the
Lebesgue measure on A and by o the normalized Lebesgue measure on 7T'.

Let M denote the set of complex valued Borel measures on T'. For each oo > 0
let 7, = F,(A) denote the family of functions on A having the property that there
exists a measure p € M such that

ﬂa:iékauadmo, ceA, (11)

where for a > 0, Ko(w) = (1—w)™, w € A, and Ko(w) =1+log —, w € A. In
(1.1) and throughout this paper each logarithm means the principal branch. The
family F, is a Banach space with respect to the norm defined by || f|| £, = inf ||u||,
where p varies over all measures in M for which (1.1) holds and where ||| denotes
the total variation norm of .

A function f holomorphic in A (abbreviated f € H(A)) is said to belong to
the Hardy space H?, 0 < p < oo, if ||fl|g» = supy., .1 Mp(r, f) < oo and to the
weighted Bergman space AP*, 0 < p < 00, @ > —1, if

1
IW&WIAQ—MMQMﬂW<w

Here M,(r, f) is the LP({z € A : |z| =r}) “norm” of f.
Let g(z) = Y po, axz® be holomorphic in A. We define the multiplier trans-
formation DPg of g, where 3 is a real number, by

DFg(z) = i (k+1)Payz*.
k=0
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A function f € H(A) is said to belong to the space HP if |D?®f||g» < oo and
to the space AP if || D* f|| gp.a < 00.

For an arc I C T and a function g € H" let MO(g,I) denote the mean
oscilation of g over I, i.e.

M0(97I)=$/I

and let, as usual, BMOA = BMOA(A) be the space of functions g € H' such that
llgllBrmoa = sup MO(g,I) < oo, where the supremum runs over all arcs I C T.

1
9 -~ [[otw da(m\ do(6),

We are now ready to state our first result
THEOREM 1. Fo(A) C BMOA(A).

Theorem is known (see [5]). The argument given in [5] is limited to the one
dimensional case. Our proof is different and may be easily extended to the cor-
responding spaces Fo(B™) and BMOA(B™) of holomorphic functions on the unit
ball B™ in C", n > 1. Thus we have

THEOREM 2. Fo(B™) C BMOA(B™).

In [6] it is shown that if & > 0, then A;*™' C F,, (Lemma 1 and Lemma 2,
pp. 159-160). Since A;"* ' c H}__ and HL__\ A} is a non-empty set, the
following theorem is an improvement of this inclusion.

THEOREM 3. Let a > 0. Then H} _, C Fa.

2. Proof of Theorem 1.

Let f € Fy. Then there exists u € M such that
1
£ = 5O+ [ tog
r 1-2§
To show that f € BMOA it suffices to show that

sup AP
zEA |1 - ZlU|2

d(©). (21)

I (w)*(1 = Jw]*) dm(w) < oo,

(see [4], p- 240). Using (2.1) we find that

| i wra-tep) nt) < ¢ [ aue [ SRR

Since |p|(T") < o0, it is sufficient to show that

(1 = [w]?) dm(w) C
< , forall z €A T. 9.9
/All—zwlﬁll—ww T rAlpefmdie (22)
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In this note we follow the custom of using letters C, Cy, Cs, ..., to stand for
positive constants which change their values from one occurence to another while
remaining independent of the important variables.

Given z € A and £ € T we consider the following partition of A:
Y ={weA:|l-zw <31-2{},
Q= {wed:1—wf < 21—},
Q={weA: 11—z <|l-z20| <[1-wél},
QU ={weA:j1-2{<|l-w <|l-wzl}

With this notation we have

|1 —wz| < C1|1 — 2€] < Ca|1 — W], w € Q,
|1 —wé| < C1|1 — 2€| < Co|l — 2z, w € Qo,
1 — 2§ < Ci]1 — 20| < Co|1 —wE|, w € Qs
|1 —2¢| < C1]1 — wé| < Co|l — w2, w € Q4.

Using this we find
/ (1 = [wl*) dm(w) /(1—Iw|2)dm(w)
<C -
o, [1— 20?1 — {w]? A 1—zo
1 1
|dn] / (1-p)dp 9
< 1-p)dp | —————<C < , (2.3
oo [ s <e [ G <o @9
/ (1 —wl*) dm(w) <C/ (1 - |w]*) dm(w)
o [1—20P[1 =€ = 7 Jg, (11— 2] + |1 — wé)?|1 — wé|?

(1 = ) dm(w) L
<[ momru e <O, ooy

C C
<—2 <——=< , (24
=zt Jy (raE STi—zg STopp Y
_ 2 _ 2
[ AzlePntn) o p Aobain C
=zl <€ o, -zt ST=[P

(L~ [w]2) dm(w) (1~ fw]?) dm(w)
/94 [ za P~ Ewp <C/ (11— 2] + 11 - wé]?[1 - w]?

(1 — w[*) dm(w) c c
C/ (1 — 2z€ + (1 — |w|)?|1 — w¢|? < 11— z¢| < -7 (2.6)

Now (2.2) follows from (2.3), (2.4), (2.5) and (2.6). This finishes the proof of
Theorem 1. m
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3. Proof of Theorem 3.

Let a be a positive real numbers. Define the function H, by
Huy(2)= Y (n+1)*12m, for z € A.
n=0

Let H, denote the family of functions f(z) = Y poqarz®, 2 € A, having the
property that there exists p € M such that

an = (n+1)0‘*1/T§7"d,u(§), n=0,1,2,... (3.1)

Let || f||#. = inf||u||, where p varies over all members of M for which (3.1) holds.
Then H, is a Banach space.

For the proof of Theorem 3 the following lemma is needed.

LEMMA 3.1. If a > 0 then f € F, if and only if f € Hy. There is a positive
constant C depending only on o such that if f € F, then

CUF. < Ufln. < Clf 7

Proof. Suppose that f € F, and f(z) = Y .7 janz" for z € A. Then there
exists p € M such that

an = An(a) /TE" dp(€), n=0,1,2,..., (3.2)

T(n+ a)

where A, (a) = T+ 1)’

n=0,1,2,... . From this it follows that

Ap(a) = (n+1)>71 < + Bn(a)) ,  forn=1,2,..., (3.3)

1
I(a)
and there is a positive constant B(«) such that |B,(a)| < B(a)/n,forn=1,2,... .
Forn=1,2,... let

en(@) = Bn(a) /T & du(€)

and define the function g by g(z) = >, cn(@)2™, for z € A. Since |cp(a)| <
| Br ()| ||p]l < ﬂnﬂHuH, g € H?. Therefore g € F; (see [2]) and hence there exists

v € M such that ()
v
9(z) = /T [
This implies that

en(a) :/Téndu(g), for n=1,2, ...
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Thus
1 _ _
an,=(n+1 a_1<—/§"du§ +/§"dv§>7 forn=1,2,...
1 (s [ Eaue) + [ € vt
Let A\ = ﬁu%— v+ bo, where b = M(T)(% +1) —v(T). Then

an:(n+1)°‘*1/€"d)\(§), n=01,2, .
T

Since A € M, f € H,.
The argument given above shows that

1
[FAIZAES mllull + Il + o] < Clull + llgll72) < Cllpl-

Here we have used again that H> C H' C F;. This inequality holds for every
w € M for which (3.2) holds. Hence ||f||x, < C|fllx.-

The same argument shows that if f € H, then f € 7, and ||f||x, < C||f||x..-
Instead of (3.3) it should use the relation

(n+1)*! = 4, (a)[T(a) + Dp(a)], forn=1,2,..., (3.4)

and |D,(a)| < D(no‘), for some positive constant D(«). For (3.3) and (3.4), see [3]
and [7]. m

Proof of Theorem 3. Let f € H{_, and f(2) = > ;_,arz®, 2 € A. Then
D'-=f € H'. Since H' € F; we have D'~ € F;. Hence there exists a measure
1 € M such that

(n+1)1*°‘an:/ Emdu(f), n=0,1,2,...,
T

or equivalently
an = (n + 1)“*1/ Edu(€), n=01,2,...
T
Therefore, f € H, and by Lemma 3.1 we have f € F,. Thus, Hi , C F,.m
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