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BEST A-APPROXIMATIONS FOR ANALYTIC FUNCTIONS
OF MEDIUM GROWTH ON THE UNIT DISC

Slavko Simié

Abstract. In this paper we investigate the asymptotic relation between maximum moduli of
a class of functions analytic on the unit disc and their partial sums, i.e. we formulate the problem
of best A-approximations. We also give an application of our results to Karamata’s Tauberian
Theorem for series.

1. Preliminaries

The problem of maximum moduli of the partial sums of an analytic function
defined inside the unit disc is a classical one and has been investigated in many
ways. For example, it is well known that the maximum moduli of partial sums of
a bounded function need not be bounded, but on the contrary, this is always true
(with the same bound) inside the circle |z| < 1/2 (see [6], pp. 236-238).

In general, for a given analytic function f(z) := Y 0, a:z", |2| < 1, the moduli
of its partial sums S, (z) = Zign a;%2* depend on z and n.

Define, as usual, My(r) := max, =, |f(2)| = |f(re’®)| = [f(20)]; Ms(r) in-
creases with r and we suppose that My(r) — oo, 7 — 17. We want to compare
f(2) with the partial sums at the point 2y of maximal growth in the following way:

Determine a real-valued function n := n(r,A) — oo, r — 17; monotone in-
creasing in both variables, such that
Sn(r 1), 0<A<1
Sntr(20) _ { o) (r—17). (1)
f(z0) 14+0(1), A>1

In this sense we are going to find the “shortest” partial sum which is well ap-
proximating f(zp) for r sufficiently close to 1. We call such partial sums best
A-approximating (BLAS). It is evident from (I) that an analogous relation is valid
between moduli of BLAS and My(r).

Some other questions are related to this one; for a given n(r, \) what can be
said about My (r) or, how does the ratio S,(,x)(20)/f(20) behave when A T| 1,
r—177
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Apart from self-evident role in numerical calculus, the notion of BLAS appears
to be very useful in the theory of Hadamard-type convolutions ([7, 8, 9]).

Here we are going to solve the problem of finding n(r, \) for a class of analytic
functions of medium growth inside the unit disc. In this case the form of n(r, \)
is very simple but we also show that slight changes of parameters have a drastic
influence on it.

A particularly important role in this paper is played by Karamata’s regularly
varying functions K,(x) which are positive, defined for sufficiently large positive
x and can be written in the form K,(z) := z?L(x), p € R. Here, p is the index
of regular variation and L(z) is a so-called slowly varying function, i.e. positive,

measurable and satisfying: V¢ € R, ﬁ((t;)) ~ 1,2 — oo.

Some examples of slowly varying functions are

Inzx

In®z, In(lnz), exp ( ) , exp(In®x), a,beR, 0<ec<1.

Inlnz

The theory of regular variation is very well developed (cf. [4, 5]) but we quote here
some facts we are going to use afterwards:

K,(Az) ~ ¥ K,(z), VA€ER; L(z) = o(z®), &>0;
InL(z) =o(lnz) (z— o0).

If a(z) ~ b(xz) — oo (z — o00) then K,(a(z)) ~ K,(b(z)) (x — o).
If Li(z), Lo(z) are slowly varying functions, then L;(x)L2(z); (L1(z))%,
a € R; LioLy(x) (La(x) — 00, z — 00), are also slowly varying.

2. Result
Let f(2), Sn(2), Ms(r), n(r,X), K,(z), 2o be defined as above. Then we have

PROPOSITION 1. If InMy(r) ~ K,(In(:=)), p > 0, (r — 17) then we can
take

n(r,A) ~ (1 ! )A (r 1),

-7
independent of K,(-).
Proof. We start with a simple implementation of the Cauchy integral formula:
n+1 .
1 2 —Sn(20), Zo ¢ int C;
2mi Jo w— 2o f(z0) = Sn(20), 20 €intC.

Let the contour C be a circle w = Re'®, where R := R(r,\) =1 — (1 —7)*. Since
[zl =7 >R, 0< A< 1;7r <R, A>1, from (1) we obtain

(1)

. 1 2 f(Rei‘ﬁ)(%eiWO_‘ﬁ))n _ _Sf"((zzo))7 0<A<T, @)
C2mdo fla) (@) —1) T | 1o Sl s
N
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Since |f(z0)| = My(r), by estimating the integral on the left-hand side of (2), we

get

1= 00T exp(utn(r/m) [ %M_—ﬂo)_”dqb. 3)

M;(r)
K, (m (1 L T)A)u + 0(1))]

= exp [Kp (,\1n - r) 1+ 0(1))] = exp [/\PK,, <1n 1—ir> (1+ 0(1))] )

In==(1- = (=) +o(1) (r—17);

27 1 1 _
/0 —|§ei(¢—¢0)—1|d¢_0(1)1n7|£—1|7 (r—17).

T

But

1

M(R) = exp [Kp (m ﬁ%) 1+ 0(1))] = exp

Putting this in (3) with n = n(r,\) = (==)*(1 + o(1)) (r — 17), we get

1—r
1 1
— p_ ¢ —(1 =) -
[I| = O(1) exp [()\ 1)K, <1n<1_r>> (1-r1) +1n1n<1_r>+1] X
x (1+0o(1)) (r—17). (4)
Since K,(In 1) = o(In(:X>))**¢, £ > 0, it follows from (4) that
p 1
|I| 0(1)6_(1_A )Kﬂ(ln 177-)(1‘{‘0(1))7 0< pY < 17 ( 17)
= 1 i r —
0(1)(;(1_T)A (1+o(1)) A> 1,
i.e., according to (2),
o o1 °
Sn(r,)\)(zo) 0(1)6_(1_)\ )Kp(l 1,7.)(14‘ (1))7 0 < /\ < 17 ( 17) (5)
_— "~ = 1 . r— .
f(z0) 14+ 0(1)e T="710ke) 0y oy

Thus we have proved our Proposition 1 with good approximation of the o’s from

(I).m
3. Comments

Especially interesting applications can be found if we suppose that the coeffi-
cients of f(z) are non-negative, since in that case

<3 anle” = £(J2));

n=

1F(2)l =

ie. for z = re'®, zo =1, Ms(r) = f(r).
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Now, denoting by U(z) := an an, we find that U( ) is non-decreasing and

its Laplace-Stieltjes transform is U =s [, e tU(t)dt = f(e®), s> 0. In our
case, we have

mﬁ@zmﬂ€ﬂ=MMﬂf””m«mF%7)

A (sfa()) oo

The function on the right L;(1/s) := In®(1/s)L(In(1/s)) is clearly slowly vary-
ing at 07 (see Prelimimaries). Therefore, a variant of the Tauberian theorem for
Kohlbacker transforms (cf. [3]) gives InU(z) ~ 1/L;(z) (x — o0), where L7 is the
so-called De Bruijn’s conjugate of L.

A slowly varying function [* is called De Bruijn’s conjugare of [ if it satisfies
(@)l (2l(z)) = 1, I"(z)(2l"(2)) =1, I"(z) ~l(z)  (z— 00).
It always exists and it is asymptotically unique (cf. [4], p. 29).

Since, in our case,

Li(xzLy(x) <1nx(1 +o(1))>p L(nz(1 + o(1)))
Li(z) Inz L(lnz)

-1 (z— o0),

we have
Li (eI (@) ~ 1/Ly(2) ~ 1/Ly(2Ly(2), (@ — o).

Hence, because of the asymptotic uniqueness, Lj(z) ~ 1/L;(z) and we finally get

InU(z)=1n Y an ~In’(z)L(nz) (z— o0).
nge

We can get much better information in the case 0 < p < 1, using a variant of
Karamata’s Tauberian theorem for power series (cf. [2]), i.e.,

If a, > 0 and the power series f(r) := Y o~ anr™ converges for r € [0,1),
then for ¢ > 0, [ slowly varying and a,, ultimately monotone,

fr) ~11/(A=r))/(L=r)°  (r—17),

is equivalent to either of asymptotic relations
an ~ 1 (n)/T(c); > ar ~nl(n)/T(1+¢), (n— o0).
k=0

For [ slowly varying and a,, > 0, we put in K,(-):

4 <logl(1/(1 -\’

Llog(1/(1 - ) =e+ (EHE=I) s 00<p<

and obtain
() ~ { (/1 —=mr))/d—r), p=1,
exp(clog”(1/(1 —r)))exp(log”I(1/(1 —1))), 0<p<L1.
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Therefore, combining in the first case (5) and Karamata’s theorem we get

PROPOSITION 2. Under the conditions of Karamata’s theorem

S ac(n)rm

ng(1=r)=>
L(c)f(r)
_ { O(1)(f(r))~ =M e), 0<A<;
Sl 1+00)exp(—(1 =)t (1 +0(1)), A>1

(r—17).

Or, in a weaker but simpler form

PROPOSITION 2°. Under the conditions of Karamata’s Tauberian theorem for
power series
0, 0< A<,

(1—7)° - . )
AT o ™ 00 = { T 51 o> 0 =t

The second case 0 < p < 1 can be treated similarly because in that case f(r)
is a product of two slowly varying functions.

Although the case ¢ = 0 is included in the full version of Karamata’s theorem,
the form of n(r, A) is drastically changed here, as the next example shows.

It is not difficult to check that for

1 > rk
log<1_r>zzf, r € [0,1),

k=1

the considered function n(r, \) is

n(r,\) = exp [log(l/(l — r))e—(log log(l/(l—T)))l'A] )
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