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EXTREMAL PROPERTIES OF THE CHROMATIC POLYNOMIALS
OF CONNECTED 3-CHROMATIC GRAPHS

Toan Tomescu

Abstract. In this paper the greatest [n/2] values of P(G;3) in the class of connected
3-chromatic graphs G of order n are found, where P(G;\) denotes the chromatic polynomial
of G.

1. Preliminary definitions and results

Let G be a graph of order n and let P(G; ) be its chromatic polynomial [1]. A
k-color partition of G is a partition of the vertex set V(G) into k classes where each
class is an independent set of vertices. The number of k-color partitions of G and
the chromatic number of G will be denoted by Colx(G) and by x(G), respectively.
It is well known that P(G;)\) can be expressed in terms of the number of k-color
partitions as follows

P(G;)\) =
k
where (A)k = A(A=1)--- (A =k +1).

It follows that if x(G) = k, then Coly(G) = P(G;A)/k!. Let zy be an edge
of G. By G — xy we mean the graph obtained from G by deleting edge zy. Also
G/zy denotes the graph obtained from G by identifying vertices z and y, i.e., (i) by
deleting both x and y and all the edges incident to them, and (ii) by introducing
a new vertex z and joining z to both all the neighbors of z different from y and all
the neighbors of y different from z in G.

()\)k CO]k(G),

1

n

The following lemma describes some properties of P(G; A), which we will use
later [2].

LEMMA 1.1. The following properties hold:

(i) Reduction Formula. Let a and b be two adjacent vertices of G. Then
P(G;\) = P(G — ab; \) — P(G/ab; \).
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(i) Let G and H be two graphs that overlap in a complete graph K, on r
vertices. Then the chromatic polynomial of this overlap graph is

P(G; N P(H; A)/P(Ky; A).

Let G be a graph and H an induced subgraph of G. The graph obtained
from G by the contraction of H is the graph G; derived from G by the following
operations: suppress all vertices of H and the edges incident with them, and replace
them with a new vertex w ¢ V(G) and edges wz such that wzx € E(G1) if and only
if there exists y € V(G) such that zy € E(G) and z € V(G) — V(H).

The cycle with n vertices will be denoted by C, and C® will denote the graph
consisting of C, and one more vertex adjacent to only one vertex of C,. The
following theorem was proved in [4].

THEOREM 1.2. The mazimum number of 3-color partitions of a connected
graph G having n vertices and chromatic number x(G) = 3 is (2"~ —1)/3 for odd
n, and (2"~ — 2)/3 for even n. Moreover, if n is odd, the unique connected graph
that achieves the mazimum number of 3-color partitions is C,, while if n is even,
the unique graph is C:_,.

By H(n,2r+1) we denote the class of connected graphs G of order n containing
n edges and a unique cycle Ca,41, where 3 < 2r +1 < n. It is clear that the graph
deduced from G € H(n,2r + 1) by contracting Ca,41 is a tree on n — 2r vertices.
By Rényi’s formula [3], the number of labeled graphs in H(n,2r + 1) is equal to
(n—1)g,nm=2r=1/2,

Let D,, (n > 5) be the graph consisting of a 4-cycle in which two nonadjacent
vertices are connected by a newly added path of length n — 3. Note that x(D,) = 3
for even n and x(D,) = 2 for odd n. If “nonadjacent” is replaced by “adjacent”,
the resulting graph is denoted by F;,. Hence, F;, consists of two cycles Cy and C\,—_2
having a common edge. Also, x(F,) = 3 for odd n and x(F,) = 2 for even n.

The following two properties were deduced in [5].

LEMMA 1.3. For every m > 5, the following equalities hold: P(D,;3) =
2n — 972 4 (~1)716 and P(F,;3) = 2" — 272 + (—1)"6.

THEOREM 1.4. (a) If G is a 2-connected graph of order m, n > 5, such that
P(G; 3) is mazimum in the class Fo\{Cn, Ko n—_2, Dn}, where F,, denotes the class
of all 2-connected graphs of order n, then G 2 F,, for odd n.

(b) If G is a 2-connected graph of order 6 such that P(G;3) is maximum in
the class f(j \ {067K2’47F6,K’3’3 - 6}, then G = K3’3 or D6.

(c) If G is a 2-connected graph of order n, n > 8, such that P(G; 3) is mazimum
in the class Fn \ {Cn, Kan_2,F,}, then G = D,, for even n; for n = 8 there exists
another extremal graph, Eg 3.

Note that the graph Fjg 3, described in [5], has x(Es 3) = 2; also x(K2,n—2) =
X(Ks3 —€) = x(Ksz3) = 2.
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LeMMA 1.5. Let G be a graph of order n > 5 consisting of two cycles Cory1
and Cy,—2, having exactly one vertex in common. Then P(G;3) < 2™ — 2n—2 _ ¢,

Proof. By Lemma 1.1(ii) we get
P(G;A) = (A=D1 = (A= 1))(A =1)"7>" + (=1)""*"(A = 2))/A
since P(Cp;A) = (A = 1)" + (=1)"(A — 1). It follows that
P(G;3) = (271 = 2)(2" 7 4 (—1)"7¥ + (-1)"2)/3
< (27T —2)(2m72 4 2)/3 = 2(2™ 4 22T — o T2T _9)/3,
Since n — 2r > 3, we shall consider two subcases: Case I. 2r < n — 4, and Case II.
2r=n-23.

Case I. If 2r < n — 4 we deduce 2(2" + 227+1 — 2n=27 _ 2)/3 L 2(2" + 23 —
24 -2)/3=2"—-2""2_12<2"—-2""2 6.

Case II. In this case n — 2r = 3 and P(G;3) = (272 —2)(2% - 2)/3 < 2" —
2"=2 _6.m

We define the skeleton S(G) of a connected graph G as follows:

(a) If G has no vertex of degree one, then S(G) = G.

(B) Otherwise, let x be a vertex of degree one of G; then G is replaced by
G — z. Repeat ().

For example, S(T') consists of a unique vertex if T is a tree, and S(G) = Cary1
for any graph G € H(n,2r +1).

LEMMA 1.6. Let G be a graph of order n such that its skeleton S(G) has
order r. Then P(G;\) = P(S(G); \)(A—1)""".

Proof. One applies Lemma 1.1(ii) since P(K2;A) =A(A —1). =
COROLLARY 1.7. For every G € H(n,2r + 1), where 3 < 2r +1 < n, we have
P(G;AN)=A—1)" =\ =12,
LEMMA 1.8. Let G be a connected graph of order n consisting of two vertex
disjoint cycles C,. and Cs, joined by a path of lengtht (r +s+t=mn+1). Then
P(G;\) = P(H; ) (X = 1),

where H is the graph of order r + s — 1 consisting of cycles C, and Cs having a
unique common vertezr.

Proof. This equality is a consequence of Lemma, 1.1(ii). m

LEMMA 1.9. Let G be a graph of order 2r + s+ p consisting of two cycles—one
cycle with s > 3 vertices and another odd cycle with 2r + 1 > 3 vertices, having in
common a path of length p > 1. Then

P(G;3) < P(H;3) =22"+s7p — 22rts—p=2 (1)
where H € H(2r + s — p, 3).
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Proof. Suppose that the common path with p+ 1 vertices of the two cycles of
G has extremities ¢ and b. It follows that 1 < p<2r—land p<s—2. Ifp>2
then vertices ¢ and b are not adjacent and by Lemma 1.1 we deduce

P(G;A) = P(G1;A) + P(Ga;A) =
=((A=1)""7+ (1) PA-1))((A - 1P+ (-1)"(A —1))x
X (A= 1)2=PH 4 (—1)2PH (A = 1))/ A%+
+ (A =1)7PH 4 (=1)PH A= )N = )PF + (=17 (A = 1))x
X (A= 1)*7PF2 4 (=1)7P(A = 1))/ (A*(A = 1)?),

where GG; consists of three cycles with p, s — p and 2r — p + 1 vertices having a

common vertex and Gy of three cycles with p+ 1, s —p+ 1 and 2r — p + 2 vertices
having a common edge. Hence (1) is equivalent to

22r+sfp > (_1)5227'7]2-{—4 _ 2sfp+3 + (_1)s+12p+3 + (_1)57p+18. (2)

For s = 3 we deduce p = 1 which contradicts our hypothesis. If s > 4 we can

write 227‘+s—p + (_1)s+122r—p+4 2 22'r+s—p _ 227—p+4 — 227‘—p+4(23—4 _ 1)

25(257% — 1) = 28+1 — 25 gince p < 2r — 1. Since p < s — 2, 257PF3 4 (—1)%27+3

257P+3 _gp+3 =95 _2stl for p=s5—2and 2Pt —2P+3 > 26 _ 25 forp < s—3
and (2) is verified.

If p = 1 then cycles Cs and Cs,y; have an edge in common and P(G;\)

P(Carys—1;A)— P(G3; \), where G3 consists of two cycles with s —1 and 27 vertices
having a common vertex. It follows that

P(G;3) =27+~ 4 (—1)* 12— (257 4+ (—1)*712) (2% +2)/3

and (1) is equivalent to 227t573 > (—1)*227+! — 25 4 (—1)*~12. But this inequality
can be deduced from (2) for p = 1 and it is also true for s = 3. m

>
>

7

2. Main result

We shall denote by C, 3 the class of connected 3-chromatic graphs of order n.
The following theorem is an extension of Theorem 1.2.

THEOREM 2.1. Letn 2 5. Then:

(a) For every r = [n/2] — 1, r = [n/2] =2, ..., 1, if G is a connected
3-chromatic graph of order n, such that P(G;3) is mazimum in the class of graphs
Cns \ U H(n,2s + 1),

s2r+1
then G € H(n,2r + 1) and P(G;3) = 2" — 2n~2",
(b) If P(G;3) is mazimum in the class of graphs
Cns\ U H(n,2s+1),
s>1

then G 2 F, for odd n, G = D,, for even n and in this case P(G;3)—2"—2""2 —6.
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Proof. (a) Let G € C, 3. It follows that G contains an odd cycle Cory1.
If for every edge e € E(G) \ E(Car41) the graph G — e is not connected then
G € H(n,2r + 1). Otherwise, by Lemma 1.1(ii) we have

P(G — ¢;3) = P(G;3) + P(G/e; 3). (3)

But x(G/e) = 3 since G/e contains an odd cycle even if e is a chord of Capy;.
It follows that P(G/e;3) > 0 and (3) implies that P(G — e;3) > P(G;3). By
applying several times this operation of deleting edges not belonging to Cary1
without disconnecting the resulting graph, one obtains a graph H € H(n,2r + 1)
such that P(H;3) > P(G;3). By Corollary 1.7if 3 < 2j +1 < 2i + 1 < n then
G1 € H(n,2i+ 1) and G» € H(n,2j + 1) imply

P(Gy;3) = 2" —2"7% > 2" — 2" % = P(Gy; 3)

and (a) is proved for r = [n/2] —1 (this is the property expressed by Theorem 1.2).

Let G € ;5 H(n,25+1) and a, b be two nonadjacent vertices of G. We shall
prove that if e = ab then

P(G +¢;3) <2" —2"% = P(H;3), (4)

where H € H(n,3).

It is clear that the skeleton S(G + e) consists of: I. Two vertex disjoint cycles
joined by a path of length ¢ > 1; II. Two cycles having exactly one common vertex;
ITI. Two cycles having in common a path of length p > 1. In all cases at least one
cycle is odd. Suppose that |S(G + €)| = m.

Case I. In this case by Lemmas 1.6 and 1.8 one deduces
P(G+¢0) = P(S(G +e); A)(A = 1)"™™ = P(H; )(A = 1)* 7™,

where H has order m — t and consists of two cycles (one is odd) having one vertex
in common. By Lemma 1.5 we get

P(G +e;3) = P(H;3)2™ ™t < (2™t —2m 72 _g)an—mtt < 9n _ on—2,

Cases IT, III. We have P(G +e¢;3) < (2™ —2m~=2)2n—™ = 27 —27~2 by Lemmas
1.5, 1.6 and 1.9. Let now r be such that 1 < r < [n/2] — 2 and G be such that
P(G;3) is maximum in the class Cn 3\U, 5,y H(n,25+1). If G € U _, H(n,2s5+1)
it follows that G € H(n,2r +1) and the property is proved. Otherwise, there exists
an edge e € E(G) such that G — e € Cp 3. Since P(G;3) is maximum in the class
Cn3 \ Ussppr H(n, 25+ 1), it follows that G —e € U5, H(n,2s+ 1), ie., there
exists a graph H in |, H(n,2s+1) such that G = H +e. By (4) this leads to
a contradiction.

(b) Let G € Cn,3\U,5, H(n,2s+1) be such that P(g;3) is maximum. We have
seen that the greatest values of P(G;3) in the class C, 3 are obtained for graphs in
U521 H(n,2s+ 1), and for graphs not belonging to this class the greatest values of
P(G; 3) are obtained for graphs of the form H+e, where H € |, H(n,2s+1) and
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e ¢ E(H). It follows that G = H + e, where H € {J,5, H(n,2s+1) and e ¢ E(H).
Suppose that |S(H + e)| = m. As for the case (a) we may distinguish cases I-III
concerning the structure of S(H + e). Using the same notation, in the case I one
obtains P(H+e;3) < (2m~t—2m=ti=2_g)2n—m+t < 27_27=2_Gsince n—m+t > 1.
In the case I by Lemma 1.5, P(H +¢;3) < (2™ —2m~2 —6)2""™ L 2" —2""2 — 6.

In the case III the skeleton S(H + e) is 2-connected and by Lemmas 1.3, 1.6
and Theorem 1.4 one deduces

PH+¢3)<(2m—2m"2 _6)2" ™2 —2""2 _6

and equality holds if and only if m = n and G = F,, for odd n» and G = D,, for
even n. m

Note that Cols(F,) for odd n, resp. Colz(D,,) for even n is equal to Colsz(H) —
1=2""3—1 for any H € H(n,3).
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