EXTREMAL PROPERTIES OF THE CHROMATIC POLYNOMIALS OF CONNECTED 3-CHROMATIC GRAPHS

Ioan Tomescu

Abstract. In this paper the greatest $\lceil n/2 \rceil$ values of P(G;3) in the class of connected 3-chromatic graphs G of order n are found, where $P(G;\lambda)$ denotes the chromatic polynomial of G.

1. Preliminary definitions and results

Let G be a graph of order n and let $P(G; \lambda)$ be its chromatic polynomial [1]. A k-color partition of G is a partition of the vertex set V(G) into k classes where each class is an independent set of vertices. The number of k-color partitions of G and the chromatic number of G will be denoted by $\operatorname{Col}_k(G)$ and by $\chi(G)$, respectively. It is well known that $P(G; \lambda)$ can be expressed in terms of the number of k-color partitions as follows

$$P(G; \lambda) = \sum_{k=1}^{n} (\lambda)_k \operatorname{Col}_k(G),$$

where $(\lambda)_k = \lambda(\lambda - 1) \cdots (\lambda - k + 1)$.

It follows that if $\chi(G) = k$, then $\operatorname{Col}_k(G) = P(G; \lambda)/k!$. Let xy be an edge of G. By G - xy we mean the graph obtained from G by deleting edge xy. Also G/xy denotes the graph obtained from G by identifying vertices x and y, i.e., (i) by deleting both x and y and all the edges incident to them, and (ii) by introducing a new vertex z and joining z to both all the neighbors of x different from y and all the neighbors of y different from x in x.

The following lemma describes some properties of $P(G; \lambda)$, which we will use later [2].

Lemma 1.1. The following properties hold:

(i) Reduction Formula. Let a and b be two adjacent vertices of G. Then $P(G; \lambda) = P(G - ab; \lambda) - P(G/ab; \lambda)$.

AMS Subject Classification: 05 C 15

Keywords and phrases: Chromatic polynomial, connected 3-chromatic graph, 3-color partition, skeleton of a graph.

112 I. Tomescu

(ii) Let G and H be two graphs that overlap in a complete graph K_r on r vertices. Then the chromatic polynomial of this overlap graph is

$$P(G; \lambda)P(H; \lambda)/P(K_r; \lambda)$$
.

Let G be a graph and H an induced subgraph of G. The graph obtained from G by the contraction of H is the graph G_1 derived from G by the following operations: suppress all vertices of H and the edges incident with them, and replace them with a new vertex $w \notin V(G)$ and edges wx such that $wx \in E(G_1)$ if and only if there exists $y \in V(G)$ such that $xy \in E(G)$ and $x \in V(G) - V(H)$.

The cycle with n vertices will be denoted by C_n and C_n^1 will denote the graph consisting of C_n and one more vertex adjacent to only one vertex of C_n . The following theorem was proved in [4].

THEOREM 1.2. The maximum number of 3-color partitions of a connected graph G having n vertices and chromatic number $\chi(G) = 3$ is $(2^{n-1} - 1)/3$ for odd n, and $(2^{n-1} - 2)/3$ for even n. Moreover, if n is odd, the unique connected graph that achieves the maximum number of 3-color partitions is C_n , while if n is even, the unique graph is C_{n-1}^1 .

By H(n, 2r+1) we denote the class of connected graphs G of order n containing n edges and a unique cycle C_{2r+1} , where $3 \leq 2r+1 \leq n$. It is clear that the graph deduced from $G \in H(n, 2r+1)$ by contracting C_{2r+1} is a tree on n-2r vertices. By Rényi's formula [3], the number of labeled graphs in H(n, 2r+1) is equal to $(n-1)_{2r}n^{n-2r-1}/2$.

Let D_n $(n \ge 5)$ be the graph consisting of a 4-cycle in which two nonadjacent vertices are connected by a newly added path of length n-3. Note that $\chi(D_n)=3$ for even n and $\chi(D_n)=2$ for odd n. If "nonadjacent" is replaced by "adjacent", the resulting graph is denoted by F_n . Hence, F_n consists of two cycles C_4 and C_{n-2} having a common edge. Also, $\chi(F_n)=3$ for odd n and $\chi(F_n)=2$ for even n.

The following two properties were deduced in [5].

LEMMA 1.3. For every $n \ge 5$, the following equalities hold: $P(D_n; 3) = 2^n - 2^{n-2} + (-1)^{n-1}6$ and $P(F_n; 3) = 2^n - 2^{n-2} + (-1)^n6$.

Theorem 1.4. (a) If G is a 2-connected graph of order $n, n \ge 5$, such that P(G;3) is maximum in the class $\mathcal{F}_n \setminus \{C_n, K_{2,n-2}, D_n\}$, where \mathcal{F}_n denotes the class of all 2-connected graphs of order n, then $G \cong \mathcal{F}_n$ for odd n.

- (b) If G is a 2-connected graph of order 6 such that P(G;3) is maximum in the class $\mathcal{F}_6 \setminus \{C_6, K_{2,4}, F_6, K_{3,3} e\}$, then $G \cong K_{3,3}$ or D_6 .
- (c) If G is a 2-connected graph of order $n, n \ge 8$, such that P(G; 3) is maximum in the class $\mathcal{F}_n \setminus \{C_n, K_{2,n-2}, F_n\}$, then $G \cong D_n$ for even n; for n = 8 there exists another extremal graph, $E_{8,3}$.

Note that the graph $E_{8,3}$, described in [5], has $\chi(E_{8,3}) = 2$; also $\chi(K_{2,n-2}) = \chi(K_{3,3} - e) = \chi(K_{3,3}) = 2$.

LEMMA 1.5. Let G be a graph of order $n \ge 5$ consisting of two cycles C_{2r+1} and C_{n-2r} having exactly one vertex in common. Then $P(G;3) < 2^n - 2^{n-2} - 6$.

Proof. By Lemma 1.1(ii) we get

$$P(G;\lambda) = ((\lambda - 1)^{2r+1} - (\lambda - 1))((\lambda - 1)^{n-2r} + (-1)^{n-2r}(\lambda - 2))/\lambda$$

since $P(C_n; \lambda) = (\lambda - 1)^n + (-1)^n (\lambda - 1)$. It follows that

$$P(G;3) = (2^{2r+1} - 2)(2^{n-2r} + (-1)^{n-2r} + (-1)^{n-2r}2)/3$$

$$\leq (2^{2r+1} - 2)(2^{n-2r} + 2)/3 = 2(2^n + 2^{2r+1} - 2^{n-2r} - 2)/3.$$

Since $n-2r \geqslant 3$, we shall consider two subcases: Case I. $2r \leqslant n-4$, and Case II. 2r = n-3.

Case I. If $2r \le n-4$ we deduce $2(2^n+2^{2r+1}-2^{n-2r}-2)/3 \le 2(2^n+2^{n-3}-2^4-2)/3=2^n-2^{n-2}-12<2^n-2^{n-2}-6$.

Case II. In this case n-2r=3 and $P(G;3)=(2^{n-2}-2)(2^3-2)/3<2^n-2^{n-2}-6.$

We define the skeleton S(G) of a connected graph G as follows:

- (a) If G has no vertex of degree one, then S(G) = G.
- (β) Otherwise, let x be a vertex of degree one of G; then G is replaced by G-x. Repeat (α) .

For example, S(T) consists of a unique vertex if T is a tree, and $S(G) = C_{2r+1}$ for any graph $G \in H(n, 2r+1)$.

Lemma 1.6. Let G be a graph of order n such that its skeleton S(G) has order r. Then $P(G; \lambda) = P(S(G); \lambda)(\lambda - 1)^{n-r}$.

Proof. One applies Lemma 1.1(ii) since $P(K_2; \lambda) = \lambda(\lambda - 1)$.

Corollary 1.7. For every $G \in H(n,2r+1)$, where $3 \leq 2r+1 \leq n$, we have $P(G;\lambda) = (\lambda-1)^n - (\lambda-1)^{n-2r}$.

Lemma 1.8. Let G be a connected graph of order n consisting of two vertex disjoint cycles C_r and C_s , joined by a path of length t (r + s + t = n + 1). Then

$$P(G; \lambda) = P(H; \lambda)(\lambda - 1)^t,$$

where H is the graph of order r + s - 1 consisting of cycles C_r and C_s having a unique common vertex.

Proof. This equality is a consequence of Lemma 1.1(ii). ■

Lemma 1.9. Let G be a graph of order 2r + s + p consisting of two cycles—one cycle with $s \ge 3$ vertices and another odd cycle with $2r + 1 \ge 3$ vertices, having in common a path of length $p \ge 1$. Then

$$P(G;3) < P(H;3) = 2^{2r+s-p} - 2^{2r+s-p-2},$$
(1)

where $H \in H(2r + s - p, 3)$.

114 I. Tomescu

Proof. Suppose that the common path with p+1 vertices of the two cycles of G has extremities a and b. It follows that $1 \le p \le 2r-1$ and $p \le s-2$. If $p \ge 2$ then vertices a and b are not adjacent and by Lemma 1.1 we deduce

$$\begin{split} P(G;\lambda) &= P(G_1;\lambda) + P(G_2;\lambda) = \\ &= ((\lambda-1)^{s-p} + (-1)^{s-p}(\lambda-1))((\lambda-1)^p + (-1)^p(\lambda-1)) \times \\ &\quad \times ((\lambda-1)^{2r-p+1} + (-1)^{2r-p+1}(\lambda-1))/\lambda^2 + \\ &\quad + ((\lambda-1)^{s-p+1} + (-1)^{s-p+1}(\lambda-1))((\lambda-1)^{p+1} + (-1)^{p+1}(\lambda-1)) \times \\ &\quad \times ((\lambda-1)^{2r-p+2} + (-1)^{2r-p}(\lambda-1))/(\lambda^2(\lambda-1)^2), \end{split}$$

where G_1 consists of three cycles with p, s-p and 2r-p+1 vertices having a common vertex and G_2 of three cycles with p+1, s-p+1 and 2r-p+2 vertices having a common edge. Hence (1) is equivalent to

$$2^{2r+s-p} > (-1)^{s} 2^{2r-p+4} - 2^{s-p+3} + (-1)^{s+1} 2^{p+3} + (-1)^{s-p+1} 8.$$
 (2)

For s=3 we deduce p=1 which contradicts our hypothesis. If $s\geqslant 4$ we can write $2^{2r+s-p}+(-1)^{s+1}2^{2r-p+4}\geqslant 2^{2r+s-p}-2^{2r-p+4}=2^{2r-p+4}(2^{s-4}-1)\geqslant 2^5(2^{s-4}-1)=2^{s+1}-2^5$ since $p\leqslant 2r-1$. Since $p\leqslant s-2$, $2^{s-p+3}+(-1)^s2^{p+3}\geqslant 2^{s-p+3}-2^{p+3}=2^5-2^{s+1}$ for p=s-2 and $2^{s-p+3}-2^{p+3}\geqslant 2^6-2^s$ for $p\leqslant s-3$, and (2) is verified.

If p=1 then cycles C_s and C_{2r+1} have an edge in common and $P(G;\lambda)=P(C_{2r+s-1};\lambda)-P(G_3;\lambda)$, where G_3 consists of two cycles with s-1 and 2r vertices having a common vertex. It follows that

$$P(G;3) = 2^{2r+s-1} + (-1)^{s-1}2 - (2^{s-1} + (-1)^{s-1}2)(2^{2r} + 2)/3$$

and (1) is equivalent to $2^{2r+s-3} > (-1)^s 2^{2r+1} - 2^s + (-1)^{s-1} 2$. But this inequality can be deduced from (2) for p = 1 and it is also true for s = 3.

2. Main result

We shall denote by $C_{n,3}$ the class of connected 3-chromatic graphs of order n. The following theorem is an extension of Theorem 1.2.

Theorem 2.1. Let $n \ge 5$. Then:

(a) For every $r = \lceil n/2 \rceil - 1$, $r = \lceil n/2 \rceil - 2$, ..., 1, if G is a connected 3-chromatic graph of order n, such that P(G;3) is maximum in the class of graphs

$$C_{n,3} \setminus \bigcup_{s>r+1} H(n,2s+1),$$

then $G \in H(n, 2r + 1)$ and $P(G; 3) = 2^{n} - 2^{n-2r}$.

(b) If P(G;3) is maximum in the class of graphs

$$C_{n,3}\setminus\bigcup_{s\geqslant 1}H(n,2s+1),$$

then $G \cong F_n$ for odd n, $G \cong D_n$ for even n and in this case $P(G;3) - 2^n - 2^{n-2} - 6$.

Proof. (a) Let $G \in \mathcal{C}_{n,3}$. It follows that G contains an odd cycle C_{2r+1} . If for every edge $e \in E(G) \setminus E(C_{2r+1})$ the graph G - e is not connected then $G \in H(n, 2r+1)$. Otherwise, by Lemma 1.1(ii) we have

$$P(G - e; 3) = P(G; 3) + P(G/e; 3).$$
(3)

But $\chi(G/e)=3$ since G/e contains an odd cycle even if e is a chord of C_{2r+1} . It follows that P(G/e;3)>0 and (3) implies that P(G-e;3)>P(G;3). By applying several times this operation of deleting edges not belonging to C_{2r+1} without disconnecting the resulting graph, one obtains a graph $H\in H(n,2r+1)$ such that P(H;3)>P(G;3). By Corollary 1.7 if $3\leqslant 2j+1<2i+1\leqslant n$ then $G_1\in H(n,2i+1)$ and $G_2\in H(n,2j+1)$ imply

$$P(G_1;3) = 2^n - 2^{n-2i} > 2^n - 2^{n-2j} = P(G_2;3)$$

and (a) is proved for $r = \lceil n/2 \rceil - 1$ (this is the property expressed by Theorem 1.2).

Let $G \in \bigcup_{s \geqslant 2} H(n, 2s+1)$ and a, b be two nonadjacent vertices of G. We shall prove that if e = ab then

$$P(G+e;3) < 2^n - 2^{n-2} = P(H;3), \tag{4}$$

where $H \in H(n,3)$.

It is clear that the skeleton S(G+e) consists of: I. Two vertex disjoint cycles joined by a path of length $t \ge 1$; II. Two cycles having exactly one common vertex; III. Two cycles having in common a path of length $p \ge 1$. In all cases at least one cycle is odd. Suppose that |S(G+e)| = m.

Case I. In this case by Lemmas 1.6 and 1.8 one deduces

$$P(G+e;\lambda) = P(S(G+e);\lambda)(\lambda-1)^{n-m} = P(H;\lambda)(\lambda-1)^{n-m+t}.$$

where H has order m-t and consists of two cycles (one is odd) having one vertex in common. By Lemma 1.5 we get

$$P(G+e;3) = P(H;3)2^{n-m+t} < (2^{m-t} - 2^{m-t-2} - 6)2^{n-m+t} < 2^n - 2^{n-2}.$$

Cases II, III. We have $P(G+e;3) < (2^m-2^{m-2})2^{n-m} = 2^n-2^{n-2}$ by Lemmas 1.5, 1.6 and 1.9. Let now r be such that $1 \leqslant r \leqslant \lceil n/2 \rceil - 2$ and G be such that P(G;3) is maximum in the class $\mathcal{C}_{n,3} \setminus \bigcup_{s \geqslant r+1} H(n,2s+1)$. If $G \in \bigcup_{s=1}^r H(n,2s+1)$ it follows that $G \in H(n,2r+1)$ and the property is proved. Otherwise, there exists an edge $e \in E(G)$ such that $G - e \in \mathcal{C}_{n,3}$. Since P(G;3) is maximum in the class $\mathcal{C}_{n,3} \setminus \bigcup_{s \geqslant r+1} H(n,2s+1)$, it follows that $G - e \in \bigcup_{s \geqslant r+1} H(n,2s+1)$, i.e., there exists a graph H in $\bigcup_{s \geqslant r+1} H(n,2s+1)$ such that $G \cong H + e$. By (4) this leads to a contradiction.

(b) Let $G \in \mathcal{C}_{n,3} \setminus \bigcup_{s \geqslant 1} H(n,2s+1)$ be such that P(g;3) is maximum. We have seen that the greatest values of P(G;3) in the class $\mathcal{C}_{n,3}$ are obtained for graphs in $\bigcup_{s \geqslant 1} H(n,2s+1)$, and for graphs not belonging to this class the greatest values of P(G;3) are obtained for graphs of the form H+e, where $H \in \bigcup_{s \geqslant 1} H(n,2s+1)$ and

116 I. Tomescu

 $e \notin E(H)$. It follows that $G \cong H + e$, where $H \in \bigcup_{s \geqslant 1} H(n, 2s+1)$ and $e \notin E(H)$. Suppose that |S(H+e)| = m. As for the case (a) we may distinguish cases I–III concerning the structure of S(H+e). Using the same notation, in the case I one obtains $P(H+e;3) < (2^{m-t}-2^{m-t-2}-6)2^{n-m+t} < 2^n-2^{n-2}-6$ since $n-m+t \geqslant 1$. In the case II by Lemma 1.5, $P(H+e;3) < (2^m-2^{m-2}-6)2^{n-m} \leqslant 2^n-2^{n-2}-6$.

In the case III the skeleton S(H+e) is 2-connected and by Lemmas 1.3, 1.6 and Theorem 1.4 one deduces

$$P(H+e;3) \le (2^m - 2^{m-2} - 6)2^{n-m} \le 2^n - 2^{n-2} - 6$$

and equality holds if and only if m=n and $G\cong F_n$ for odd n and $G\cong D_n$ for even n.

Note that $\operatorname{Col}_3(F_n)$ for odd n, resp. $\operatorname{Col}_3(D_n)$ for even n is equal to $\operatorname{Col}_3(H) - 1 = 2^{n-3} - 1$ for any $H \in H(n,3)$.

REFERENCES

- [1] G.D. Birkhoff, A determinantal formula for the number of ways of coloring a map, Ann. Math. (2) 14 (1912), 42-46.
- [2] R.C. Read, An introduction to chromatic polynomials, J. Combinatorial Theory 4 (1968), 52-71.
- [3] A. Rényi, On connected graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl 4 (1959), 385–388.
- [4] I. Tomescu, Le nombre maximal de 3-coloration d'un graphe connexe, Discrete Math. 1 (1972), 351-356.
- [5] I. Tomescu, Maximum chromatic polynomial of 3-chromatic blocks, Discrete Math. 172 (1997), 131-139.

(received 25.01.2001)

University of Bucharest, Faculty of Mathematics, Str. Academiei 14, 70109 Bucuresti, Romania E-mail: ioan@math.math.unibuc.ro