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MEASURES OF NON-STRICT-SINGULARITY
AND NON-STRICT-COSINGULARITY

Snezana Zivkovié

Abstract. In this paper we investigate a new measure of non-strict-singularity and a
new measure of non-strict-cosingularity. Measures of non-strict-singularity and of non-strict-
cosingularity have been investigated in [11], [8], [12], [7], [9], [15].

1. Introduction and preliminaries

In this paper X, Y and Z are complex Banach spaces, B(X,Y) (K(X,Y)) the
set of all bounded (compact) linear operators from X into Y. We shall write B(X)
(K(X)) instead of B(X,X) (K(X,X)).

An operator T € B(X,Y) is in ®4(X,Y) (®_(X,Y)) if the range R(T) is
closed in Y and the dimension «(7T) of the null space N(T') of T is finite (the
codimension §(T) of R(T') in Y is finite). Operators in &, (X,Y)U ®_(X,Y) are
called semi-Fredholm operators. We set ®(X,Y) = &, (X,Y)Nn®_(X,Y). The
operators in ®(X,Y") are called Fredholm operators. We shall write &, (X) (resp.
®_(X), &(X)) instead of &4 (X, X) (resp. 2_(X,X), &(X)).

Let Bx denote the closed unit ball of X. Let T € B(X,Y) and

m(T) =inf{ |Tz|| : [|lzf| =1}
be the minimum modulus of T, and let
g(T)=sup{e>0:eBy CTBx}

be the surjection modulus of T'.

If M is a subspace of X, then Jj; will denote the embedding map of M into
X, and if V is a subspace of Y, then @ will denote the canonical map of ¥ onto
the quotient space Y/V.

An operator T € B(X,Y) is strictly singular (T € S(X,Y)) if, for every infinite
dimensional (closed) subspace M of X, the restriction of T to M, T'|a, is not a
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homeomorphism, i.e., m(T|y) = 0. An operator T' € B(X,Y) is strictly cosingular
(T € SC(X,Y)) if, for every infinite codimensional closed subspace V' of Y the
composition Qv T is not surjective. It is well known that

K(X,Y)C S(X,Y) and K(X,Y)C SC(X,Y). (1.1)

If Q is a non-empty bounded subset of X, then the Hausdorff measure of
noncompactness of  is denoted by x(€2), and defined as follows

x() =inf{e > 0: Q has a finite e-net in X }.

For A € B(X,Y) the Hausdorff measure of noncompactness of A, denoted by ||A||,,
is defined by

|Ally =1inf{k > 0: xv(AQ) < ky, (), Q C X is bounded }.
Recall that ([2])
|A|ly = inf{ |QvA| : V is a subspace of Y, dimV < o0 }.

For A € B(X,Y), set (see [6])
|All, = inf{ ||AJz| : L closed subspace of X, codim L < oo }.

Recall that
l[Ally, =0 <= ||A]|l, =0 <= A€ K(X,Y). (1.2)

For A € B(X,Y), set
Gu(A) = ngu AN, G(A)=Gx(A),
Ap(A) = sup Gn(4), A(A)=Ax(A),

NCM

where M, N denote closed infinite dimensional subspaces of X (see [11]). A is a
measure of non-strict-singularity of operators, i.e.,

A(A)=0 <= Ae S(X,Y). (1.3)
Weis [8] introduced for A € B(X,Y) the following functions

Ky(4) = int [QwAl, K(4)=Ko(4),

Vv(4) = VSVl;pVKw(A), V(4) = V3(4),

where V', W denote closed infinite codimensional subspaces of Y.
V is a measure of non-strict-cosingularity, i.e.,
V(A) =0 < A€ SC(X.Y). (1.4)

Recall that
V(A+T)=V(4) forall T € SC(X,Y), (1.5)
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and
Kv(4) = jinf | QuwAlL, (16)

where V', W denote closed infinite codimensional subspaces of Y (see [12, Summary
and discussion, Remark 2] or [7, Example 5.3] or [15, Lemma 2.21).

Recall that ([11], [13])

GA)>0 <<= Aed, (X)Y),
K(A)>0 < Ae€d_(X\Y).

2. Results
Schechter [11] proved the next theorem.

THEOREM 2.1. A € &, (X,Y) if and only if for each Banach space Z there is
a constant ¢, 0 < ¢ < 00, such that

A(T) < cA(AT), T € B(Z,X).

We can prove the dual theorem.

THEOREM 2.2. A € ®_(X,Y) if and only if for each Banach space Z there is
a constant ¢, 0 < ¢ < 00, such that

V(T) < ¢V(TA), T e B(Y,2). (2.2.1)

Proof. Let A € ®_(X,Y). By [6, Theorem 5.5 and Theorem 3.1] it follows
that there is a constant ¢, 0 < ¢ < o0, such that for each Banach space Z

1Tl < clTAlly, T € B(Y,2). (22:2)

Let V be a closed subspace of Z with codimV = oo and € > 0. From (1.6) it
follows that there is a closed subspace W of Z such that W D V, codim W = oo

and
1QwTA|, < Kyv(TA)+e. (2.2.3)

From (1.6), (2.2.2) and (2.2.3) it follows that

Kv(T) < 1QwTly < cllQwTAlly < c(Ky(TA) +¢)
<c(V(TA) +e).

Hence V(T) < ¢(V(TA) +¢).

Assume A ¢ ® (X,Y). By [1, Theorem 4.4.10] it follows that there is an
operator C' € K(X,Y) such that codim R(A — C) = co. Let V = R(A — C). Since
Qv(A—C) =0, from (1.1) and (1.5) we get V(QvA) = V(Qv(A—C)) =0. Let M
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and N be closed subspaces of Y/V with codim M = 0o, N D M and codim N = .
Since ||@NQv || =1 we get

V(Qv)=  sup inf QnQv| = 1.
@)= s nt lQvavi
codim M =co

Thus, there is no constant ¢, 0 < ¢ < 00, such that (2.2.1) holds. m

Let S be a subset of a Banach space A. The perturbation class associated with
S is denoted by P(S) and

P(S)={a€A:a+seSforalseS}.

The perturbation class associated with ®,(X,Y) (®_(X,Y)) is denoted by
P(®,(X,Y)) (P(2_(X,Y))).
For T € B(X,Y), set (see [10], [14])
npe, = |Tllpe, =inf{||T - P||: P € P(®+(X,Y))},
nps_ = |T|pe_ =inf{||T - P||: P € P(® (X,Y))},
The next theorem is inspired by [3, Example 1].

codim N=o0

—

THEOREM 2.3. Let T € B(X,Y). Then

m(T) < ||T|[pe, < |7, (2.3.1)
o(T) < |IT|[pe_ < |IT]|- (2.3.2)

Proof. (2.3.1) Assume P € P(®,(X,Y)). It implies P ¢ ®,(X,Y). By
[1, Theorem 4.4.7] it follows that there is K € K(X,Y) such that dim N(P - K) =
00. Set M = N(P — K) and € > 0. By (1.2) we get ||PJy|, = [|[KJu]|l, = 0.
Hence there is a closed subspace V' C M such that dim M/V < co and ||[PJy|| < e.
For z € V we have

Tz - Pa|| > |Tx|| - |Pz]| > m(T)[lz]| - elj].
It implies ||T = P|| > |[(T — P)Jv|| 2 m(T) — . Hence ||T — P|| > m(T). Thus
ITlpe, = m(T).

(2.3.2) Let P € P(®_(X,Y)). Then P ¢ ® (X,Y). From [1, Theorem
4.4.10] it follows that there is K € K(X,Y') such that codim R(P — K) = co. Set
U =R(P - K). From Qu(P — K) = 0 and (1.2) it follows [|QuP|ly = |QuK|ly =
0. Hence for ¢ > 0 there is a finite dimensional subspace W C Y/U such that
|QwQuP| < e. Thereis a closed subspace V' C Y suchthat V O U and W = V/U.
It is not difficult to see that the operator A: (Y/U)/(V/U) — Y/V defined by

A+ U)+V/U)=y+V, yev,

is an isometric isomorphism and AQv,yQu = Qv. Hence || Qv P| = [|Qv,yQuP||.
It follows that ||Qv P|| < e. Hence

IT =PIl > 1Qv(T = P)l| > |QvTll - Qv Pl > ¢(QuT) — £ > ¢(T) — <.
Thus ||T = P|| > ¢(T), and ||T|pe_ > o(T). »
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Now we use the notation of [7]: let, for T € B(X,Y),
snpg, (T) = S}\l4pnpq>+ (TJTum),
isnpg_ (T) = i}\}f snpa, (T Jn),
where M denotes a closed infinite dimensional subspace of X and
snpg (T) = SUpnPe_ (QuT),
ist'pg_(T) = infsnpg_(QuT),

where U denotes a closed infinite codimensional subspace of Y.
Zemanek [13] considered the following functions

uw(A) = sup{m(AJw) : W is a closed subspace of X with dim W = o0},
v(A) = sup{¢(QvA) : V is a closed subspace of ¥ with codimV = oo }.

From the definition of the strictly singular and strictly cosingular operators it is

obvious that
u(d)=0 <= A e SX,Y),

24
v(A) =0 <= A€ SC(X,Y). (2:4)
For A € B(X,Y) set (see [4], [5])
Gyu(A) = inf{u(AJy) : M is a closed subspace of X, dim M = o0 },
K,(A) =inf{v(QuA) : U is a closed subspace of Y, codim U = o0 }.
Recall that
Gu(A) >0 < A€ d,(X)Y), 05
K,(A) >0 < Aed_(X,Y). (2:5)
From (2.3.1) and (2.3.2) it follows
G.(T) <isnps, (T) < G(T), 06
K(T) <isnlpg._(T) < K(T). (20
By (2.6), (1.7) and (2.5) we get
isnpg, (T) >0 < T € ®,(X,Y),
P<I>+( ) +( ) (27)

isnpy (T)>0 <= T € d_(X,Y).

(2.7) follows also from [7, Theorem 2.3(2) and Theorem 3.3(2)].
For T € B(X,Y), set

Ape, (T) = Sup Jnf T nllpa.,

Vpe_(T) = sup Jnf 1QwTlpe_,
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where M, N denote closed infinite dimensional subspaces of X and V', W denote
closed infinite codimensional subspaces of Y.
Analogously as in [11] it can be proved that Apg, (Vps_) is a seminorm.
From (2.3.1) and (2.3.2) it follows
A,
V.

u < Aps, <
<

2.
v < Vps_ (28)

By (2.8), (1.3), (1.4) and (2.4) we get that Apg, is a measure of non-strict-
singularity and V pg_ is a measure of non-strict-cosingularity, i.e.,
AP<1>+(T):0 — T e SX,)Y), (2.9)
Vpepe_(T)=0 <= T € SC(X,Y). (2.10)

(2.9) and (2.10) follow also from [7, Theorem 2.4(2) and Theorem 3.3(2)].
It is well known that

S(X,Y) C P(®4(X,Y)) and SC(X,Y)C P(®_(X,Y)).

THEOREM 2.4. Let X andY be Banach spaces. Then:
(2.11.1) S(X,Y) = P(®,(X,Y)) if and only if from P € P(®,.(X,Y)) it follows
PJy € P(®4(M,Y)) for each closed infinite dimensional subspace M
of X;
(2.11.2) SC(X,Y) = P(®_(X,Y)) if and only if from P € P(®_(X,Y)) it follows
QvP e P(®_(X,Y/V)) for each closed infinite codimensional subspace V
of Y.

Proof. (2.11.1). Let S(X,Y) = P(®4(X,Y)). Suppose M is a closed infinite
dimensional subspace of X and P € P(®,(X,Y)). Then P € S(X,Y). It implies
PJy € S(M,Y) C P(®,(M,Y)).

Assume that for each closed infinite dimensional subspace M of X from P €
P(®,(X,Y)) it follows PJy € P(®4(M,Y)). Hence for T € B(X,Y) we get
ITJmllpe, = inf{||TJy — Prl| : Pr € P(®4(M,Y)) }
Linf{||TJy — PJyl| : P € P(®+(X,Y))}
<inf{[|T - P||: P € P(2(X,Y))} < [Tl pa,.
Therefore
Ape, (T) < |ITlpe. - (2.11.3)

If T € P(®,(X,Y)), then ||T||pe, = 0. By (2.11.3) it follows that Apg, (T') = 0.
From (2.9) we get T € S(X,Y). Thus S(X,Y) = P(®,(X,Y)).
(2.11.2). Analogously to (2.11.1). m
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