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GENERALIZED FRACTIONAL CALCULUS
WITH APPLICATIONS IN MECHANICS

Ljubica Oparnica

Abstract. In the studies concerned with the stability of the viscoelastic rod of fractional
type it is shown that many problems are described by stability of coupled systems of differential
equations with fractional derivatives. Here, we are dealing with analysis of such systems in the
space of distributions. The main result of this work is stated in Theorem 5.

1. Introduction

Fractional calculus is the field of mathematical analysis which deals with in-
vestigation and application of integrals and derivatives of real order. Fractional
calculus may be considered as an old and yet novel topic. It is an old topic since
its developing started from G.W. Leibniz and L. Euler. Afterwards there is a list
of mathematicians who have provided important contribution to the theory. It is
a novel topic since it has become an object of specialized conferences and treatises
only about 25 years ago. First conference was “The First Conference on Fractional
Calculus and its Applications” in 1974, first monograph was written by K.B. Old-
ham and Spanier who after a joint collaboration starting in 1968 published a book
devoted to fractional calculus in 1974.

Nowadays, the list of texts and proceedings devoted solely or partly to frac-
tional calculus and its applications includes about a dozen of titles, among which
the encyclopedic treatise by Samko, Kilbas and Marichev [5] is the most prominent.

In recent years the interest for fractional calculus has been stimulated by its
wide survey of applications which includes viscoelasticity, fractional capacitor the-
ory, electrical circuits, electroanalytical chemistry, biology, physics, etc.

Viscoelasticity seems to be the field with the most extensive application of frac-
tional operators. Using fractional derivatives for modeling viscoelastic materials is
quite natural. Our aim in this note is to formulate and analyse a mathematical
model for a viscoelastic rod described by a constitutive equation containing frac-
tional derivatives that impacts against a rigid wall.
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2. The model

We consider light viscoelastic rod with a body B of mass m which is atached
to its end. At the moment ¢y the rod is about to impact a rigid wall. Rod is moving
at the speed vg and its length in undeformed state is L. At the moment t > tg
the rod impacts the wall, its length gets reduced to /(t), and at the contact point
contact force (stress) f appears.

Strain of the rod z(t) is given as
L—1(t)
= > 0.
x(t) 7 t>0

The theory of constitutive equations gives relation between f and z through the
generalized Zener model 7y f (@ 4 f = 7,2(® + z, where 77 and T, are constants
called time of relaxation of stress and strain, and f(® and z(®) denote the Riemann-
Liouville fractional derivative of stress and strain. The Riemann-Liouville fractional
derivative for 0 < a < 1 is defined as )

u@ (1) = ﬁ/o (t—1)Cu(r)dr, t30. (1)
Differential equation of motion or the second Newton’s law for the body B is ex-
pressed by mz(?) = — f, where m is the mass of body B, and z(® is its acceleration.

Initial conditions are z(tg) = 0, =z (ty) = vo. Without loss of generality we
take m =1, v9 =1, to = 0. Also we take 74 = a and 7, = b and we get the system

2@ () = —£(2)
af® (&) + f () = bz () + z (2)
z(0) =0
7 0)=1

We denote by T™ the moment of separation. This is the time instant when contact
force between rod and wall is equal to zero, f(T*) = 0.

(2)

The second law of thermodynamics requires that b > a > 0 (see [1]).

Our main goal is to estimate |z'(T*)|. We claim that b > a implies |2/ (T™*)| < 1,
for otherwise the rod would represent a perpetuum mobile of the first kind.

3. Mathematical preliminaries: Spaces D!, and S;. Operator f,*

Denote by D and S Schwartz test function spaces of compactly supported
and rapidly decreasing smooth functions on the real line R. Their duals are well
known spaces of distributions D' and tempered distributions S'. The space of
Schwartz’s distributions vanishing on interval (—o0,0) is denoted by D/, i.e. D’+ =
{f €D (R) :supp f C [0,00) }.

If f € D!, and g € D', then convolution' f % g exists in D’,. Recall that the
operation of convolution is associative and commutative in D, so that D!, is a
convolution algebra with Dirac delta function as the unit element, since § x f = f.

!For localy integrable functions on R vanishing on (—00,0), f * g(t) = [y g(t — 7)f(7) dr,
teR For f e S_"_, the convolution is (f x g, o(z + ¥)), ¢ € S4.
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Space S;r is the intersection of D’+ and &'. It is a convolution algebra, a
subalgebra, of ’D'+.

We consider the equation in D',
axu=f, (3)

where a and f are specified elements of D/, and u is a unknown generalized func-
tion in D', . The solution of (3) for f = § is called the fundamental solution of
convolution operator a * .

The Laplace transform (or Fourier-Laplace transform) of an f € S;r is defined
as

Lf(s) = (f(t),nt)e™™),  se€Dy, (4)
where 7 is a smooth function on R equal to one on (—a, o) and zero on (—oo, —a)

and Dy = {z: Rz > 0}. Note, L is an analytic function on D, not depending on
the cutoff function 7.

The space S;r is isomorphic, via Laplace transform, to the corresponding space
of holomorphic functions in Dy [6]. This is the claim of the following theorem.

THEOREM 1. [6] Let h(p) be holomorphic in half-plane Rp > o¢. Then there
exists a distribution T € D'+ the Laplace transform of which is h(p) if and only if
there exist numbers o1 € R, 09 < 01, C and k > 0, such that

lh(p) < C(L+p)*, peC, Rp>oar

Let a € S;_ be given. Then by Theorem 1, equation (3) is uniquely solvable
in S;r if and only if there exist p,q € R, C' > 0 such that

/4
ST

= iy € D 5
|La(z)| = 24 > z=z+wye Dy (5)
Next we define a generalized function f,, for arbitrary a € R,
f(z)Z=, a>0
fa(@) = { e (6)
Jorno a<0,a+N>0,NeN

where (-)(N) is the N-th derivative in the sense of distributions and 6(z) is the
Heaviside’s function. Then f, € D!, and the group property

fa*fﬂzfa+ﬂ a,B €R (7)
is valid.

Let us consider the convolution operator f,* in algebra D', . Since fo =6’ =4,
(7) implies that a fundamental solution to equation f, * u = § exists and is equal
to f_q. Let n € Z. For n < 0, f, = 6™, so that f, xu = 6 xu = u(™, i.e. the
operator f,* is the operator of n-folding differentiation. Finally, for n > 0, we have
(fo *u)™ = f_. % (fn *u) = u, which implies that f, is the operator of n-folding
integration.
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For a < 0 the operator f,* is the operator of fractional differentiation, and
the operator of fractional integration for a > 0. This is the Riemann-Liouville
operator.

REMARK 1. For a € (0,1) we have

1 ¢ o
f_a*u:f{_a*u:(fl_a*u)':m/o (t—T) U(T)d’r.
This is (1).
Let a € R. Then the Laplace transform of f, is given by
1
Lifa®](s) = 5, Rs>0. (8)

3.1. Special functions of Mittag-LefHler type

Functions of Mittag Lefler’s type have very important role in the theory of
differential equations where fractional derivative appears. Here we will recall from
[4] some facts concerning this class of functions. One-parameter generalization of
exponential function e? is given by

0 2k
E, = - ) )
(2) kgo T(ak + 1) z€eC a>0 (9)

and was introduced by G.M. Mittag-Leffler.

More interesting for us is eq(t,A) = Eu(—At%), t > 0,a > 0 with Laplace

transform
Sa—l

i : )
S R (10)

Llea(t, N)](s) =

4. Analysis of system (2)

Let u € Sy (R), a> 0, a € (0,1). We define the operator T, ,
Toau=au®*+u=af o*xu+t+u uES;_.
Th,q is a linear and continuous operator from S;r to S;. We have
L[Ty,of](s) = (as® + 1)L[f](s), Rs > 0.
The following proposition is valid.
PROPOSITION 1. Let a >0 and v € S;. Then
Toou =0 (11)
has a unique solution u € S;_.
Proof. Applying the Laplace transform to (11), we get (1+as®)Lu(s) = Lv(s),
Rs > 0. Let h(s) = 1£:(:3a, Rs > 0. Since Rs > 0 and a € (0,1) it follows that
Rs* > 0. Further

11+ as®| = R*(1 + as®) + S*(1 + as*) > R*(1 + as®) > 1
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and this implies that A is holomorphic for s > 0. Also,

|Lv(s)|

h(s)| = ——
h)] = e
Thus by (5) it follows that there exists u* € S;(R) such that h(s) = Lu*(s).

Let us show that u* is the unique solution to (11). Indeed, we know that
Lf =01if and only if f = 0. So L(Tg,ou* —v) = 0 implies Ty ou* = v and u* is
unique since if we had two solutions u; and us, then from T}, qu1 = T5, qu2 we would
have Ty o(u1 —u2) = 0, i.e. (14+as®)Lur —us](s) = 0 which yields Lus —us](s) =0
and u; —uy = 0. m

< |Lw(s)| £ C, Rs > 0, (12)

Now, we formulate

THEOREM 2. Leta,b € R, a > 0,b >0, a € R. Let f and x be solution to
2" (t) = —f(t), af(® (t) + f (t) = ba(® () + z (t) in S;_ and let f be a continuous
function on the interval [0,00) and f(0) =0. Then

(i) z € C*([0,00)) and x is the unique solution to given equations.

(i) With the given assumptions on f, the solutions f and x of system (2)
satisfies the following: b > a if and only if f(t) > x(t) in a neighborhood of zero.

Proof. (i) Let us define f = 0 on (—00,0). Then f belongs to S;. (Moreover
it is continuous on R).) We can rewrite the second equation of the system

To,of =Tpax (13)

Due to Proposition 1 equation (13) has a unique solution z € S;. Since it satisfies
z"(t) = — f(t), z is a function with continuous first and second derivative on [0, 00).
We use the general assertion of Schwartz: if u is a distribution defined by a locally
integrable function and if its distributional derivative is a locally integrable func-
tion, then the function u has a classical derivative equal to that locally integrable
function.

(ii) If we apply Laplace transform to (13) we get Lf(s) = %, Rs > 0,
ie. N
LH(s) = La(s) + (0 — 1)~ La(s),  ®s>0. (14)
a L
Now we apply inverse Laplace transform to (14). We obtain
f(t):x(t)—l—(g—l) ((5+e'a (t, é)) rz(t). (15)

Integration by parts with initial conditions gives

(6+e:1 (t, 2)) *7 () = eq (t, 2) * 1’ (t)

wherefrom it folows
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The function e, (),t) is completely monotone? for A > 0 and 0 < a < 1 (see [2]).
Therefore e, (¢,2) > 0. Since 2/(0) = 1 there is € > 0 such that 2'(t) > 0 for
t € [0,¢). Hence from (16) we have that f(t) > z(t) if and only if (2 — 1) > 0 which
we wanted to prove. m

5. Existence of solution

We solve system (2) by using two methods. Firstly, we use the Laplace trans-
form method and, secondly, we formulate an iterative procedure for obtaining the
solution.

5.1. Laplace transform method

THEOREM 3. Let a,b€ R, a >0,b>0, a € (0,1). System (2) has a unique
solution in S’ NC%(R) given by

(1 + as@)edit
a(t) = (a +2)s2t + 25; + bas® ™!
s1n o0 r*(b—a)e "tdr (a7)
0 ) +2(1 +r2)ra(b+r2a)cosa7r+(ra(b+r2a))2’
(14 bsg)e®
1= ,zzl a(a +2)s0T! + 2s; + basd !
sin am / r*(a—b)e "tdr as)
™ Jo (1+72)%+2(1 +r2)ra(b+r2a)cosar + (ro(b +r2a))?’

t > 0, where s1 and s2 (s1 = 33) are poles of the first order of the function Lx(t)
and Lf (t), and Rs; < 0.
REMARK 2. Initial conditions £(0) = 0 and f(0) = 0 imply
2 (14 as$)
,; ala+2)s?t! + 2s; + bas? ™!
sinar [ r*(b—a) dr
™ /0 (1472 +2(1 +12) re(b + r2a) cos am + (ro(b + r2a))?’

2 (1+bs)
Z a+1 . a—1
i=1 a(a +2)si™ + 2s; + bas;
sin am r®*(a—b) dr

™ /0 (1472 +2(1 +12) re(b + r2a) cos am + (ro(b + r2a))?
REMARK 3. From equations (17) and (18) we conclude that z and f are

continuous. Also we can differentiate (17) and (18) two times and get continuous

functions, i.e. f and z belong to C?(]0, 00)), and the claim of Theorem 2 is valid.

2 A function f(z) is completely monotone for t > 0 if (—1)" f(")(z) > 0 for alln = 0,1,2,...
and all t > 0.
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Proof of Theorem 3. The first equation in (2) gives

r=t—txf, t>0 (19)
Substituting (19) into (13) we get Ty of = Tp,a(t —t * f). Applying the Laplace
transform to (11) and (19) we get
(as®*+1)Lf(s) = (bs* + 1)L[t — t = f] Rs > 0,
1 1
(a5 + 1) L () = (bs% + (g — HLI() R >0,
bs® +1
L) = as®t? + 52 4 bs* + 1 % >0, (20)
and
La(s) = 8%(1 ~Lf(s) Rs > 0, (21)
La(s) = as” +1 Rs > 0. (22)

as®t? + 52 + bs® + 1
Now we apply the inverse Laplace transform to (20) and (22)

h(t) = —— / eULh(s)ds >0,
Y

271,
where v = {s: ®s = 0,0 > 09 = 0}.
After the use Cauchy formula on an appropriate conture we obtain
2 e*t(1 + as?) sin arr y

z(t) = +
®) 121 a(a + 2)s¢t! 4 2s; + bas? ™!
s

T
y /°° (b—a) dr

o (1+72)° +2(1+r2)re(b+r2a)cosar + (re(b+r2a))?’
t > 0. Similarly we get

2 e%it(1 + bs®) sin am
ft)=3 at1 : a1 T x
i=1 a(a + 2)si™ + 2s; + bas; T

y /oo r®(a—b)e tdr
o (L+72) +2(1+72)ro(b+ r2a) cosam + (ro (b + r2a))?

t>0.

In a forthcoming paper we will show that zeros of A(s) = as®t2+52+bs*+1 =
(s + 2)(1 + as*) — (2 — 1) exist and lie in the left complex halfplane. m

5.2. Iterative procedure
Recall that we have formulas (21) and (15),

La(s) = S%(l _Lf(s), Rs>0, (23)

@ +1
Lf(s) = Z‘;ai TLa(s),  Rs>0. (24)
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Let us denote B = Zizﬁ If we substitute B and (23) into (24) we get

L) = 51~ L(5))

Now we calculate Lz(s) and obtain

o= 53 (-B) + o (B er

8

One can show that for |s| > 2, ®s > 0,

(s%)nﬁf(s)‘ tends to zero as n — oc.

More precisely, for |s| > g, Rs > 0 we have

B\" b\" [£f(s)]
(5) erol< () 55
1 = ( B\* b
Thus Lz is an analitic function, Lz(s) = 2 > (—5—2) ) |s| > P Rs > 0. Since
k

— 1l
n o

2
Lz belongs to Dy and has the given form for
transform is given by

2(t) =tx 5 (§t+ (g - 1) e’a(t,é) *t)k (25)

k=0

| > g, Rs > 0, its inverse Laplace

k

where u® = u * u x - - - * u. Formula (25) represents one more form of the solution
—_——

k times

for system (2). The function f is of the form

b b 1
f(t)=x*(at+ (a—l)ea(t,a)*t), t>0.
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