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MEAN VALUE THEOREMS IN ¢-CALCULUS
Predrag M. Rajkovi¢, Miomir S. Stankovi¢, Sladana D. Marinkovié

Abstract. In this paper, some properties of continuous functions in g-analysis are investi-
gated. The behavior of g-derivative in a neighborhood of a local extreme point is described. Two
theorems are proved which are g-analogons of the fundamental theorems of the differential cal-
culus. Also, two g-integral mean value theorems are proved and applied to estimating remainder
term in g-Taylor formula. Finally, the previous results are used in considering some new iterative
methods for equation solving.

1. Introduction

At the last quarter of the XX century, g-calculus appeared as a connection
between mathematics and physics ([5], [6]). It has a lot of applications in different
mathematical areas, such as number theory, combinatorics, orthogonal polynomials,
basic hyper-geometric functions and other sciences—quantum theory, mechanics
and theory of relativity.

Let ¢ € Rt \ {1}. A g-natural number [n], is defined by

[nlg:=14+q¢+--+¢"", neN
1= 0%
Generally, a g-complex number [a], is [a], := ] qq , a € C. The factorial of a
number [n], is [0]! :=1, [n]!:=[n]yln —1];---[1]q, n €N

Let g-derivative of a function f(z) be
_ 1z - flez) o
(Dgf)(z) := e 70, (Dgf)(0) := lim(Dy f)(2),
and high g¢-derivatives are

DYf = f, Dl f:=DyDj7'f), n=1,23,....

Notice, that a continuous function on an interval, which does not include 0, is
continuous g¢-differentiable.
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2. Extreme values and g-derivative

We will consider relations between, on one side, extreme value of a continuous
function and, on the other side, derivatives and g-derivatives.

THEOREM 2.1. Let f(z) be a continuous function on a segment [a,b] and let
¢ € (a,b) bea point of its local mazimum.

(i) If 0 < a < b, then there exists § € (0,1) such that

>0, VYge(g1)
1

oanef 2o el

(i) If a < b < 0, then there exists § € (0,1) such

<0, VYge(g1)

@0 0 vaema

Furthermore, (Vq € (¢g,1)u (1,@_1)) (E|§ € (a, b)) (Dyf)(€) =0.

Proof. Since the proofs of (i) and (ii) are very similar, we will expose only the
first one. Since ¢ is a point of local maximum of the function f(z), there exists
€ > 0, such that f(z) < f(c), for all z € (c —e,c+¢€) C (a,b). Let go € (0,1) such
that ¢ — e < goc < ¢. Now, for all g € (go,1), it is valid gc < ¢ and f(gc) < f(c),
wherefrom (D, f)(¢) > 0. In a similar way, there exists ¢ € (0,1) such that
c<c/qu <c+eandforall g€ (l,g;") it holds (D,f)(c) < 0. At last, denote by
qA = ma’x{qO; (II}

Let g € (4,1) be an arbitrary real number. Then n = ¢/q € (¢, c+¢), wherefrom

fle) = f(n), ie., f(gn) 2 f(n). From qn < n we conclude (D, f)(n) < 0. As f(z)
is a continuous function, (D, f)(x) is continuous in (a,b), too. Since (D,f)(c) >

0, (Dyf)(n) < 0, where ¢,n € (a,b), there exists £ € (¢,n) C (a,b), such that
(Dyf)(€) = 0. Analogously, for an arbitrary ¢ € (1,47'), the number n = ¢/q €
(¢ — €,¢), wherefrom (Dgf)(n) > 0. Since (Dyf)(c) < 0, we have proved the
existence of a zero of (D, f)(z) for g € (1,47 '). m

EXAMPLE 2.1. Let us consider f(z) = (z — 1)(3 — z) + 2. Its maximum is
at ¢ = 2, but g-derivative is (D,f)(z) = —[2]z + 4 and it vanishes at the point
£€=14/(1+4q). So, here is § = 1/3. For q = 3/4, we have (D3,4f)(2) =1/2,n =22
and £ = 22.

In a similar way, we can prove the next theorem.

THEOREM 2.2. Let f(z) be a continuous function on a segment [a,b] and let
¢ € (a,b) be a point of its local minimum.

(i) If 0 < a < b, then there exists § € (0,1) such that

<0, Vqe (1)
1

w””ﬁzm Vg € (1,q ).
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(ii) If a < b < 0, then there exists § € (0,1) such that

>0, VYge (1)

(D"f)(c){ <0, Vge(1,q).

Moreover, (Yq € (¢,4"))(3¢ € (a,b)) (Dgf)(€) =0

REMARK. If f(x) is differentiable for all € (a,b), then lim,41 D, f(z) = f'(z).
So, if ¢ € (a,b) is a point of local extreme of f(z), we have f'(c¢) = D1 f(c) =0

3. Some g-mean value theorems

By using the previous results, we can establish and prove analogons of well-
known mean value theorems in g-calculus.

THEOREM 3.1. (¢-Rolle) Let f(x) be a continuous function on [a,b] satisfying
f(a) = f(b). Then there exists § € (0,1) such that

(Ve € (@, 1)U1,¢7") (K€ (a,b): (Dgf)E) =0

Proof. If f(z) is not a constant function on [a, b], then it attains its extreme
value in some point in (a, ). But, according to Theorems 2.1-2, (D,) f (z) vanishes
at a point £ € (a,b). m

THEOREM 3.2 (g-Lagrange) Let f(z) be a continuous function on [a,b]. Then
there exists § € (0,1) such that

(Vg€ (@ 1)U ,d ") (EE € (@,b): f) - fla)= (D))~ a).

Proof. The statement follows by applying the previous theorem to the function

f(z) —2(f(b) — f(a))/(b—a).m
4. Mean value theorems for g-integrals

In g-analysis, we define g-integral by

L(f) = / " 10 dy(t) = a(1 — g) > fag")a"

Notice that u
:/ f(t)dt =lm I, (f).
0 qtl

THEOREM 4.1 Let f(z) be a continuous function on a segment [0,a] (a > 0).
Then

(Vg€ (0,1)F e 0,a)): I(f / £(8) a £(€).
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Proof. Since f(z) is a continuous function on the segment [0, a], it attains
its minimum m and maximum M and takes all values between. According to
assumption 0 < ¢ < 1, we have 0 < ag™ < a and m < f(ag™) < M. Now,

S flag")q" < a(1 - q) ¥ Mq",

n=0 n=0

a(l-q) 20 mq" < a(l - q)

wherefrom m < L I,(f) < M. So, there exists £ € [0,a] such that a™ I,(f) =
f(§). m

Moreover, if we define

b b a
[ rwaw = [ roa0- [ rode.
then the next theorem is valid.

THEOREM 4.2. Let f(z) be a continuous function on a segment [a,b]. Then
there exists § € (0,1) such that

b
(Vg € (¢,1))(3E € (a,b)) = I,(f) =/ f()dy(t) = f(E)(b—a).

Proof. Tt is easy to prove that limgqy I,(f) = I(f), i.e.

(Ve > 0)(3q0 € (0,1))(Vg € (90, 1)) = I(f) —e < Io(f) <I(f) +e.

According to the well known mean value theorem for integrals, we have

(e e (a,b): I(f) = flc)(b—-a).
Let € < (b — a) min{M — f(c), f(c) —m}, where m and M are the minimum and
maximum of f(z) on [a,b]. Now,
€ 1 €

b_a<qu(f)<f(c)+b_a,

(3¢ € (0,1))(Vg € (¢,1)) : f(e) -

hence m < I;(f)/(b—a) < M. Since f(z) is a continuous function on the segment
[a, b], it takes all values between m and M, i.e.

(3¢ € (a,b)) : " a

what we wanted to prove. m

THEOREM 4.3 Let f(z) and g(x) be some continuous functions on a segment
[a,b]. Then there exists § € (0,1) such that

(Vg € (¢, 1))(F € (a,0)) = I,(fg) = 9(E) Ly (f)-
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Proof. According to the second mean value theorem for integrals, we have

(3ce(a,b): I(fg) = 9(0)I(f).

Hence lim I,(79) = 9(91(f) = o(&) i 1, (1), i, Tim I;q((’;f’)) — g(c). Now,
(Ba0 € (0,1))(Va € (@,1)):  g(c) — < % <y +e

Since g(z) is a continuous function on the segment [a,b], it attains its minimum
mgy and maximum M. Let e < min{M, — g(c), g(¢) — m,y}. Hence

Iq(fg)
1,(f)

Since f(x) takes all values between m, and M,, we conclude that

. Iq(fg)
1 (f)

(3 € (0,1))(Vg e (¢,1)): my <

< M,.

(3¢ € (a,b)) =9(6)-

5. Estimation of remainder term in g-Taylor formula

Let f(x) be a continuous function on some interval (a,b) and ¢ € [a,b]. Jack-
son’s g-Taylor formula (see [3], [4] and [2]) is given by

= (Dgf)(e)

f(z) = kXZ:O [k]q' (Z - C)(k)a z € (aab)a
where s
(-0 =1, (z-0® =][(z-cd) (keN.
i=0

T. Ernst [2] have found the next g-Taylor formula

n—1 (D¥ f)(c
i) =5 LPO w4 R e0), (1)
=0 [kl
where R, (f, 2, ¢, q) is the remainder term determined by

Ro(f,2,¢,q) = / =2 (5 _)(m) (Dgf)(t!)

t=c z—1 [TL - 1]4

dy(t). (5.2)

THEOREM 5.1. Let f(x) be a continuous function on [a,b] and Ry,(f,z,¢,q),
z,c € (a,b) be the remainder term in q-Taylor formula. Then there exists § € (0,1)
such that for all ¢ € (§,1), £ € (a,b) can be found between ¢ and z, which satisfies

(Dg ) /t_z (z =)™

n—1],! Z—t

Rn(fazaca Q) = dq(t)- (53)

=c
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Proof. Since f(z) is a continuous function on [a, b], it can be expanded by
g-Taylor formula (5.1) with the remainder term (5.2). Notice that the functions

— ) ot )
(Zz _t)t — H(z—tqz)
i=1
and (D7 f)(t)/[n — 1],! are continuous on the segment between ¢ and z which is
contained in (a,b). According to Theorem 4.3., there exists § € (0,1), such that
for all ¢ € (¢,1) can be found & between ¢ and z such that (5.3) is valid. m

THEOREM 5.2. Let f(z) be a continuous function on [a,b] and z,c € (a,b).
Then there exists ¢ € (0,1) such that for all ¢ € (g,1), £ € (a,b) can be found
between ¢ and z, which satisfies

. _nil (Dfl;f)(c) 5 — ) (D;lf)(g) 5 — )™
TO=8 w C797F T E9T
— ) — ()
haveProof. Applying % =— qvt(%) to the integral in (5.3) we
t=z (z _ t)(n) _ t=z (Z — t)(")
[t ao == [ oS e
=™ [T oo™
[n]q —c a [n],
Dn
S0, Rn(f,2,¢,0) = %(z —o®™. =

THEOREM 5.3 Let f(z) be a continuous function on [a,b] and Ry(f,z,¢,q),
z,c € (a,b) be the remainder term in q-Taylor formula. Then there exists § € (0,1)
such that for all ¢ € (§,1), £ € (a,b) can be found between ¢ and z, which satisfies

(D7 &)
[n]!

Proof. Since f(z) is a continuous function on [a, b], it can be expanded by
g-Taylor formula (5.1) with the remainder term (5.2). Notice that the functions

_pm ol
L0 -t

z—1 !
=1

Rn(fJZJC7Q) = (z_c)(n)

and (Dy f)(t)/[n — 1],! are continuous on the segment between ¢ and z which is
contained in (a,b). According to Theorem 4.3., there exists ¢ € (0,1), such that
for all ¢ € (¢,1), £ between ¢ and z can be found such that

DO [~ 0

n—1],! 2—t 1

Rn(fJZJCJq) =

=c
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Applying
(z —t)™ (z—t)™
L M ] (i )

z—t [nlg

to the previous integral we have

[T a0 = [T o (S5 4w

Ol
L |, Wl
SO) Rn(f,z,c,q):%(z_c)(n)‘ -

6. Application

Here we will apply the previous theorems in analyzing an iterative method for
solving equations.

Suppose that an equation f(z) = 0 has a unique isolated solution z = 7. If
is an approximation for the exact solution 7, using Jackson’s ¢-Taylor formula, we
have

0=f(r) = f(zn) + (Dgf)(@n) (T — zn),

f(@n)
(Dqf)(2n)

hence 7 ~ x,, — . So, we can construct g-Newton method

f(@n)

Tn4+l = Tp — m (61)

f(zn)
LTn — qIn

fzn) = flgzn)

reminds to the method of chords (secants).

1—
More simply, it looks like z,,11 = zy, { 1- % } This method written in the
form 5

Tn41 = Tp —

THEOREM 6.1. Suppose that a function f(x) is continuous on a segment [a, b]
and that the equation f(x) = 0 has a unique isolated solution T € (a,b). Let the
conditions

[(Dgf)(@)| > My >0,  [(Dff)(2)| < Mo

are satisfied for all x € (a,b). Then there exists § € (0,1), such that for all
q € (4,1), the iterations obtained by q-Newton method satisfy

M.
|7 — Zpt1| < ( 2

e (2)|_
1+ q)M1

|(T — =)
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Proof. From the formulation of g-Newton method (6.1), we have
f(zk)
(Dqf) ()’
hence f(zg)+(Dqf)(zk)(T—2k) = (Dgf)(xk)(T —Tk41)- By using ¢-Taylor formula
at the point zy, of order n = 2 for f(r) we have
f(r) = f(ar) + (Do f) (@i ) (T — zk) + Rao(f, 7, Tk5 @)
Since f(7) =0, we obtain (D, f)(xx)(T — k+1) = —Ro(f, 7, zk,q), €.
|R2(fa T, xkaq)|
T—Zpy1]| = —
=2l = D, ) )
According to Theorem 5.1., there exists § € (0,1) such that for all ¢ € (g,1),
¢ € (a,b) can be found such that

R2(f57-7$k5q) =

LT+l — T =Tp —T —

(D7)
2],

|(DZHEO] (7 = 21)|
(Dyf)(@r)l  1+q

Using the conditions which function f(x) and its g-derivatives satisfy we obtain the
statement of the theorem. m

(r— ).

Now,

|T_'Z-k+1| = |

REMARK. In our papers [7] and [8] we have discussed g¢-iterative methods in
details.
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