MEAN VALUE THEOREMS IN q-CALCULUS

Predrag M. Rajković, Miomir S. Stanković, Slađana D. Marinković

Abstract. In this paper, some properties of continuous functions in q-analysis are investigated. The behavior of q-derivative in a neighborhood of a local extreme point is described. Two theorems are proved which are q-analogons of the fundamental theorems of the differential calculus. Also, two q-integral mean value theorems are proved and applied to estimating remainder term in q-Taylor formula. Finally, the previous results are used in considering some new iterative methods for equation solving.

1. Introduction

At the last quarter of the XX century, q-calculus appeared as a connection between mathematics and physics ([5], [6]). It has a lot of applications in different mathematical areas, such as number theory, combinatorics, orthogonal polynomials, basic hyper-geometric functions and other sciences—quantum theory, mechanics and theory of relativity.

Let $q \in \mathbb{R}^+ \setminus \{1\}$. A q-natural number $[n]_q$ is defined by

$$[n]_q := 1 + q + \dots + q^{n-1}, \quad n \in \mathbb{N}.$$

Generally, a q-complex number $[a]_q$ is $[a]_q:=\frac{1-q^a}{1-q},\quad a\in\mathbb{C}.$ The factorial of a number $[n]_q$ is $[0]_q!:=1,\quad [n]_q!:=[n]_q[n-1]_q\cdots[1]_q,\ n\in\mathbb{N}.$

Let q-derivative of a function f(z) be

$$(D_q f)(z) := \frac{f(z) - f(qz)}{z - qz}, \quad z \neq 0, \quad (D_q f)(0) := \lim_{z \to 0} (D_q f)(z),$$

and high q-derivatives are

$$D_q^0 f := f,$$
 $D_q^n f := D_q(D_q^{n-1} f),$ $n = 1, 2, 3, \dots$

Notice, that a continuous function on an interval, which does not include 0, is continuous q-differentiable.

AMS Subject Classification: 26 A 99

Keywords and phrases: q-calculus.

Communicated at the 5th International Symposium on Mathematical Analysis and its Applications, Niška banja, Yugoslavia, October, 2–6, 2002.

Supported by Ministry of Sci. & Techn. Rep. Serbia, the projects No. 1409/1379.

2. Extreme values and q-derivative

We will consider relations between, on one side, extreme value of a continuous function and, on the other side, derivatives and q-derivatives.

Theorem 2.1. Let f(x) be a continuous function on a segment [a, b] and let $c \in (a, b)$ be a point of its local maximum.

(i) If 0 < a < b, then there exists $\hat{q} \in (0,1)$ such that

$$(D_q f)(c) \begin{cases} \geq 0, & \forall q \in (\hat{q}, 1) \\ \leq 0, & \forall q \in (1, \hat{q}^{-1}). \end{cases}$$

(ii) If a < b < 0, then there exists $\hat{q} \in (0,1)$ such

$$(D_q f)(c) \begin{cases} \leq 0, & \forall q \in (\hat{q}, 1) \\ \geq 0, & \forall q \in (1, \hat{q}^{-1}). \end{cases}$$

Furthermore, $(\forall q \in (\hat{q}, 1) \cup (1, \hat{q}^{-1})) (\exists \xi \in (a, b)) (D_q f)(\xi) = 0.$

Proof. Since the proofs of (i) and (ii) are very similar, we will expose only the first one. Since c is a point of local maximum of the function f(x), there exists $\varepsilon > 0$, such that $f(x) \le f(c)$, for all $x \in (c - \varepsilon, c + \varepsilon) \subset (a, b)$. Let $q_0 \in (0, 1)$ such that $c - \varepsilon < q_0 c < c$. Now, for all $q \in (q_0, 1)$, it is valid qc < c and $f(qc) \le f(c)$, wherefrom $(D_q f)(c) \ge 0$. In a similar way, there exists $q_1 \in (0, 1)$ such that $c < c/q_1 < c + \varepsilon$ and for all $q \in (1, q_1^{-1})$ it holds $(D_q f)(c) \le 0$. At last, denote by $\hat{q} = \max\{q_0, q_1\}$.

Let $q \in (\hat{q}, 1)$ be an arbitrary real number. Then $\eta = c/q \in (c, c+\varepsilon)$, wherefrom $f(c) \geq f(\eta)$, i.e., $f(q\eta) \geq f(\eta)$. From $q\eta < \eta$ we conclude $(D_q f)(\eta) \leq 0$. As f(x) is a continuous function, $(D_q f)(x)$ is continuous in (a, b), too. Since $(D_q f)(c) \geq 0$, $(D_q f)(\eta) \leq 0$, where $c, \eta \in (a, b)$, there exists $\xi \in (c, \eta) \subset (a, b)$, such that $(D_q f)(\xi) = 0$. Analogously, for an arbitrary $q \in (1, \hat{q}^{-1})$, the number $\eta = c/q \in (c - \varepsilon, c)$, wherefrom $(D_q f)(\eta) \geq 0$. Since $(D_q f)(c) \leq 0$, we have proved the existence of a zero of $(D_q f)(x)$ for $q \in (1, \hat{q}^{-1})$.

EXAMPLE 2.1. Let us consider f(x)=(x-1)(3-x)+2. Its maximum is at c=2, but q-derivative is $(D_qf)(x)=-[2]x+4$ and it vanishes at the point $\xi=4/(1+q)$. So, here is $\hat{q}=1/3$. For q=3/4, we have $(D_{3/4}f)(2)=1/2$, $\eta=2\frac{2}{3}$ and $\xi=2\frac{2}{7}$.

In a similar way, we can prove the next theorem.

Theorem 2.2. Let f(x) be a continuous function on a segment [a,b] and let $c \in (a,b)$ be a point of its local minimum.

(i) If 0 < a < b, then there exists $\hat{q} \in (0,1)$ such that

$$(D_q f)(c) \begin{cases} \leq 0, & \forall q \in (\hat{q}, 1) \\ \geq 0, & \forall q \in (1, \hat{q}^{-1}). \end{cases}$$

(ii) If a < b < 0, then there exists $\hat{q} \in (0,1)$ such that

$$(D_q f)(c) \begin{cases} \geq 0, & \forall q \in (\hat{q}, 1) \\ \leq 0, & \forall q \in (1, \hat{q}^{-1}). \end{cases}$$

Moreover, $(\forall q \in (\hat{q}, \hat{q}^{-1}))(\exists \xi \in (a, b)) (D_q f)(\xi) = 0.$

REMARK. If f(x) is differentiable for all $x \in (a,b)$, then $\lim_{q \uparrow 1} D_q f(x) = f'(x)$. So, if $c \in (a,b)$ is a point of local extreme of f(x), we have $f'(c) = D_1 f(c) = 0$.

3. Some q-mean value theorems

By using the previous results, we can establish and prove analogous of well-known mean value theorems in q-calculus.

Theorem 3.1. (q-Rolle) Let f(x) be a continuous function on [a,b] satisfying f(a) = f(b). Then there exists $\hat{q} \in (0,1)$ such that

$$(\forall q \in (\hat{q}, 1) \cup (1, \hat{q}^{-1})) (\exists \xi \in (a, b)) : (D_q f)(\xi) = 0.$$

Proof. If f(x) is not a constant function on [a,b], then it attains its extreme value in some point in (a,b). But, according to Theorems 2.1–2, $(D_q)f(x)$ vanishes at a point $\xi \in (a,b)$.

Theorem 3.2 (q-Lagrange) Let f(x) be a continuous function on [a,b]. Then there exists $\hat{q} \in (0,1)$ such that

$$(\forall q \in (\hat{q}, 1) \cup (1, \hat{q}^{-1})) (\exists \xi \in (a, b)) : f(b) - f(a) = (D_a f)(\xi)(b - a).$$

Proof. The statement follows by applying the previous theorem to the function f(x) - x(f(b) - f(a))/(b-a).

4. Mean value theorems for q-integrals

In q-analysis, we define q-integral by

$$I_q(f) = \int_0^a f(t) d_q(t) := a(1-q) \sum_{n=0}^{\infty} f(aq^n) q^n.$$

Notice that

$$I(f) = \int_0^a f(t) dt = \lim_{q \uparrow 1} I_q(f).$$

Theorem 4.1 Let f(x) be a continuous function on a segment [0,a] (a>0). Then

$$(\forall q \in (0,1))(\exists \xi \in [0,a]): I_q(f) = \int_0^a f(t) d_q(t) = a f(\xi).$$

Proof. Since f(x) is a continuous function on the segment [0, a], it attains its minimum m and maximum M and takes all values between. According to assumption 0 < q < 1, we have $0 < aq^n < a$ and $m \le f(aq^n) \le M$. Now,

$$a(1-q)\sum_{n=0}^{\infty} mq^n \le a(1-q)\sum_{n=0}^{\infty} f(aq^n)q^n \le a(1-q)\sum_{n=0}^{\infty} Mq^n,$$

wherefrom $m \leq \frac{1}{a} I_q(f) \leq M$. So, there exists $\xi \in [0, a]$ such that $a^{-1} I_q(f) = f(\xi)$.

Moreover, if we define

$$\int_a^b f(t) \, d_q(t) := \int_0^b f(t) \, d_q(t) - \int_0^a f(t) \, d_q(t),$$

then the next theorem is valid.

Theorem 4.2. Let f(x) be a continuous function on a segment [a,b]. Then there exists $\hat{q} \in (0,1)$ such that

$$(\forall q \in (\hat{q}, 1))(\exists \xi \in (a, b)): \quad I_q(f) = \int_a^b f(t) \, d_q(t) = f(\xi)(b - a).$$

Proof. It is easy to prove that $\lim_{q \uparrow 1} I_q(f) = I(f)$, i.e.

$$(\forall \varepsilon > 0)(\exists q_0 \in (0,1))(\forall q \in (q_0,1)): \quad I(f) - \varepsilon < I_q(f) < I(f) + \varepsilon.$$

According to the well known mean value theorem for integrals, we have

$$(\exists c \in (a,b)): I(f) = f(c)(b-a).$$

Let $\varepsilon \leq (b-a) \min\{M-f(c),f(c)-m\}$, where m and M are the minimum and maximum of f(x) on [a,b]. Now,

$$(\exists \hat{q} \in (0,1))(\forall q \in (\hat{q},1)): \ f(c) - \frac{\varepsilon}{b-a} < \frac{1}{b-a} \ I_q(f) < f(c) + \frac{\varepsilon}{b-a},$$

hence $m < I_q(f)/(b-a) < M$. Since f(x) is a continuous function on the segment [a,b], it takes all values between m and M, i.e.

$$(\exists \xi \in (a,b)) : \frac{1}{b-a} I_q(f) = f(\xi),$$

what we wanted to prove.

Theorem 4.3 Let f(x) and g(x) be some continuous functions on a segment [a,b]. Then there exists $\hat{q} \in (0,1)$ such that

$$(\forall q \in (\hat{q}, 1))(\exists \xi \in (a, b)): \quad I_q(fg) = g(\xi)I_q(f).$$

Proof. According to the second mean value theorem for integrals, we have

$$(\exists c \in (a,b)): I(fg) = g(c)I(f).$$

Hence $\lim_{q\uparrow 1}I_q(fg)=g(c)I(f)=g(c)\lim_{q\uparrow 1}I_q(f),$ i.e., $\lim_{q\uparrow 1}\frac{I_q(fg)}{I_q(f)}=g(c).$ Now,

$$(\exists q_0 \in (0,1))(\forall q \in (q_0,1)): \quad g(c) - \varepsilon < \frac{I_q(fg)}{I_q(f)} < g(c) + \varepsilon.$$

Since g(x) is a continuous function on the segment [a,b], it attains its minimum m_g and maximum M_g . Let $\varepsilon \leq \min\{M_g - g(c), g(c) - m_g\}$. Hence

$$(\exists \hat{q} \in (0,1))(\forall q \in (\hat{q},1)): \quad m_g < \frac{I_q(fg)}{I_q(f)} < M_g.$$

Since f(x) takes all values between m_g and M_g , we conclude that

$$(\exists \xi \in (a,b)): \frac{I_q(fg)}{I_q(f)} = g(\xi). \quad \blacksquare$$

5. Estimation of remainder term in q-Taylor formula

Let f(x) be a continuous function on some interval (a, b) and $c \in [a, b]$. Jackson's q-Taylor formula (see [3], [4] and [2]) is given by

$$f(z) = \sum_{k=0}^{\infty} \frac{(D_q^k f)(c)}{[k]_q!} (z - c)^{(k)}, \quad z \in (a, b),$$

where

$$(z-c)^{(0)} = 1, \quad (z-c)^{(k)} = \prod_{i=0}^{k-1} (z-cq^i) \quad (k \in \mathbb{N}).$$

T. Ernst [2] have found the next q-Taylor formula

$$f(z) = \sum_{k=0}^{n-1} \frac{(D_q^k f)(c)}{[k]_q!} (z - c)^{(k)} + R_n(f, z, c, q),$$
 (5.1)

where $R_n(f, z, c, q)$ is the remainder term determined by

$$R_n(f, z, c, q) = \int_{t-a}^{t=z} \frac{(z-t)^{(n)}}{z-t} \, \frac{(D_q^n f)(t)}{[n-1]_q!} \, d_q(t). \tag{5.2}$$

Theorem 5.1. Let f(x) be a continuous function on [a,b] and $R_n(f,z,c,q)$, $z,c\in(a,b)$ be the remainder term in q-Taylor formula. Then there exists $\hat{q}\in(0,1)$ such that for all $q\in(\hat{q},1)$, $\xi\in(a,b)$ can be found between c and z, which satisfies

$$R_n(f, z, c, q) = \frac{(D_q^n f)(\xi)}{[n-1]_q!} \int_{t=c}^{t=z} \frac{(z-t)^{(n)}}{z-t} d_q(t).$$
 (5.3)

Proof. Since f(x) is a continuous function on [a,b], it can be expanded by q-Taylor formula (5.1) with the remainder term (5.2). Notice that the functions

$$\frac{(z-t)^{(n)}}{z-t} = \prod_{i=1}^{n-1} (z-tq^i)$$

and $(D_q^n f)(t)/[n-1]_q!$ are continuous on the segment between c and z which is contained in (a,b). According to Theorem 4.3., there exists $\hat{q} \in (0,1)$, such that for all $q \in (\hat{q},1)$ can be found ξ between c and z such that (5.3) is valid.

Theorem 5.2. Let f(x) be a continuous function on [a,b] and $z,c \in (a,b)$. Then there exists $\hat{q} \in (0,1)$ such that for all $q \in (\hat{q},1)$, $\xi \in (a,b)$ can be found between c and z, which satisfies

$$f(z) = \sum_{k=0}^{n-1} \frac{(D_q^k f)(c)}{[k]_q!} (z - c)^{(k)} + \frac{(D_q^n f)(\xi)}{[n]_q!} (z - c)^{(n)}.$$

Proof. Applying $\frac{(z-t)^{(n)}}{z-t}=-D_{q,t}\left(\frac{(z-t)^{(n)}}{[n]_q}\right)$, to the integral in (5.3) we have

$$\begin{split} \int_{t=c}^{t=z} & \frac{(z-t)^{(n)}}{z-t} \, d_q(t) = - \int_{t=c}^{t=z} D_{q,t} \bigg(\frac{(z-t)^{(n)}}{[n]_q} \bigg) \, d_q(t) \\ & = - \frac{(z-t)^{(n)}}{[n]_q} \bigg|_{t=c}^{t=z} = \frac{(z-c)^{(n)}}{[n]_q}. \end{split}$$

So,
$$R_n(f, z, c, q) = \frac{(D_q^n f)(\xi)}{[n]_q!} (z - c)^{(n)}$$
.

THEOREM 5.3 Let f(x) be a continuous function on [a,b] and $R_n(f,z,c,q)$, $z,c \in (a,b)$ be the remainder term in q-Taylor formula. Then there exists $\hat{q} \in (0,1)$ such that for all $q \in (\hat{q},1)$, $\xi \in (a,b)$ can be found between c and z, which satisfies

$$R_n(f, z, c, q) = \frac{(D_q^n f)(\xi)}{[n]_q!} (z - c)^{(n)}.$$

Proof. Since f(x) is a continuous function on [a,b], it can be expanded by q-Taylor formula (5.1) with the remainder term (5.2). Notice that the functions

$$\frac{(z-t)^{(n)}}{z-t} = \prod_{i=1}^{n-1} (z-tq^i)$$

and $(D_q^n f)(t)/[n-1]_q!$ are continuous on the segment between c and z which is contained in (a,b). According to Theorem 4.3., there exists $\hat{q} \in (0,1)$, such that for all $q \in (\hat{q},1)$, ξ between c and z can be found such that

$$R_n(f, z, c, q) = \frac{(D_q^n f)(\xi)}{[n-1]_q!} \int_{t=c}^{t=z} \frac{(z-t)^{(n)}}{z-t} d_q(t).$$

Applying

$$\frac{(z-t)^{(n)}}{z-t} = -D_{q,t} \left(\frac{(z-t)^{(n)}}{[n]_q} \right),$$

to the previous integral we have

$$\int_{t=c}^{t=z} \frac{(z-t)^{(n)}}{z-t} d_q(t) = -\int_{t=c}^{t=z} D_{q,t} \left(\frac{(z-t)^{(n)}}{[n]_q}\right) d_q(t)$$
$$= -\frac{(z-t)^{(n)}}{[n]_q} \bigg|_{t=c}^{t=z} = \frac{(z-c)^{(n)}}{[n]_q}.$$

So,
$$R_n(f, z, c, q) = \frac{(D_q^n f)(\xi)}{[n]_q!} (z - c)^{(n)}$$
.

6. Application

Here we will apply the previous theorems in analyzing an iterative method for solving equations.

Suppose that an equation f(x) = 0 has a unique isolated solution $x = \tau$. If x_n is an approximation for the exact solution τ , using Jackson's q-Taylor formula, we

$$0 = f(\tau) \approx f(x_n) + (D_q f)(x_n)(\tau - x_n),$$

hence $\tau \approx x_n - \frac{f(x_n)}{(D_n f)(x_n)}$. So, we can construct q-Newton method

$$x_{n+1} = x_n - \frac{f(x_n)}{(D_q f)(x_n)}. (6.1)$$

More simply, it looks like $x_{n+1}=x_n\bigg\{1-\frac{1-q}{1-\frac{f(qx_n)}{f(x_n)}}\bigg\}$. This method written in the form $x_{n+1}=x_n-\frac{x_n-qx_n}{f(x_n)-f(qx_n)}f(x_n)$

$$x_{n+1} = x_n - \frac{x_n - qx_n}{f(x_n) - f(qx_n)} f(x_n)$$

reminds to the method of chords (secants).

Theorem 6.1. Suppose that a function f(x) is continuous on a segment [a, b]and that the equation f(x) = 0 has a unique isolated solution $\tau \in (a,b)$. Let the conditions

$$|(D_q f)(x)| \ge M_1 > 0, \qquad |(D_q^2 f)(x)| \le M_2$$

are satisfied for all $x \in (a,b)$. Then there exists $\hat{q} \in (0,1)$, such that for all $q \in (\hat{q}, 1)$, the iterations obtained by q-Newton method satisfy

$$|\tau - x_{k+1}| \le \frac{M_2}{(1+q)M_1} |(\tau - x_k)^{(2)}|.$$

Proof. From the formulation of q-Newton method (6.1), we have

$$x_{k+1} - \tau = x_k - \tau - \frac{f(x_k)}{(D_q f)(x_k)},$$

hence $f(x_k) + (D_q f)(x_k)(\tau - x_k) = (D_q f)(x_k)(\tau - x_{k+1})$. By using q-Taylor formula at the point x_k of order n = 2 for $f(\tau)$ we have

$$f(\tau) = f(x_k) + (D_q f)(x_k)(\tau - x_k) + R_2(f, \tau, x_k, q).$$

Since $f(\tau) = 0$, we obtain $(D_q f)(x_k)(\tau - x_{k+1}) = -R_2(f, \tau, x_k, q)$, i.e.

$$|\tau - x_{k+1}| = \frac{|R_2(f, \tau, x_k, q)|}{|(D_q f)(x_k)|}.$$

According to Theorem 5.1., there exists $\hat{q} \in (0,1)$ such that for all $q \in (\hat{q},1)$, $\xi \in (a,b)$ can be found such that

$$R_2(f, \tau, x_k, q) = \frac{(D_q^2 f)(\xi)}{[2]_q} (\tau - x_k)^{(2)}.$$

Now,

$$|\tau - x_{k+1}| = \frac{|(D_q^2 f)(\xi)|}{|(D_q f)(x_k)|} \; \frac{|(\tau - x_k)^{(2)}|}{1 + q}.$$

Using the conditions which function f(x) and its q-derivatives satisfy we obtain the statement of the theorem.

Remark. In our papers [7] and [8] we have discussed q-iterative methods in details.

REFERENCES

- [1] N. S. Bakhyalov, Numerical Methods, Moscow State University, Moscow, 1977.
- [2] T. Ernst, A new notation for q-calculus and a new q-Taylor formula, Uppsala University Report Depart. Math., (1999), 1-28.
- [3] F.H. Jackson, A q-form of Taylor's theorem, Mess. Math. Math. 38, (1909), 62-64.
- [4] S. C. Jing and H. Y. Fan, q-Taylor's formula with its q-remainder, Comm. Theoret. Phys. 23, 1 (1995), 117-120.
- [5] E. Koelink, Eight lectures on quantum groups and q-special functions, Revista Colombiana de Matematicas 30, (1996), 93-180.
- [6] T. H. Koornwinder and R. F. Swarttow, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333, (1992), 445-461.
- [7] P. M. Rajković, M. S. Stanković and S. D. Marinković, On q-iterative methods for equation solving, Conf. Applied Math. PRIM, Zlatibor, Yugoslavia, 2002.
- [8] M.S. Stanković, P.M. Rajković and S.D. Marinković, Solving equations by q-iterative methods and q-Sendov conjecture, Constructive Function Theory (Ed. B. Bojanov), Varna Bulgaria 2002.

(received 23.12.2002)

Predrag M. Rajković, Faculty of Mechanical Engineering, University of Niš, 18000 Niš, Yugoslavia *E-mail*: pecar@masfak.ni.ac.yu

Miomir S. Stanković, Faculty of Occupational Safety, University of Niš, 18000 Niš, Yugoslavia E-mail: mstan@znrfak.ni.ac.yu

Sladana D. Marinković, Faculty of Electrical Engineering, University of Niš, 18000 Niš, Yugoslavia *E-mail*: sladjana@elfak.ni.ac.yu