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A SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS
WITH FRACTIONAL DERIVATIVES

B. Stankovié

Abstract. A subspace D/, (P) of the space of distributions has been analized and the Laplace
transform of their elements applied to solve, in a prescribed domain, the system of linear partial
differential equations with fractional derivatives, as well. To this system belongs a mathematical
model of a visco elastic rod submited to the axial force of the form F(t) = B + Af(t — to), where
A and B are constants and 6 is the Heaviside functions.

1. Introduction

Laplace transform (in short LT) of numerical functions has been elaborated
as a powerful mathematical theory very useful in solving mathematical models (cf.
[3]). However it has been belived that LT has two important shortcomings. First,
application of the Laplace transform call for some growth conditions of the elements
to which it is applied. Secondly, there is no simple characterisation of the functions
which are LT-s of the numerical functions, property important for the applications.
The situation with the LT of generalizedfunctions was similar (cf. [14], [15]).

Recently H. Komatsu [8], [9] overcame successfuly the all shortcomings of
the mentioned LT-s defining the LT of hyperfunctions in one dimensional case.
Notions of the Laplace hyperfunctions and hiperfunctions belong to an abstract
mathematical theory, therefore it can not easily be accepted by people working in
applications. In [13] one can find elaborated a theory the LT of a subspace D’ (P)
of the space of distributions. In this paper we use this theory to solve a system of
partial differential equations with fractional derivatives, which is a mathematical
model of a viscoelastic rod, and a coefficient of which is the discontinuous function
of the form B + Af(t — to).

2. A method of solutions of mathematical models

We recall some definitions and facts from [13] adapted to the need of forth-
coming equations.
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2.1. LT of tempered distributions

By S'(R) is denoted the space of tempered distributions and by &'y =
{T € S'(R); T|(—s0,0) = 0}, (T'|(—o0,0) is the restriction of T on (—00,0)). The
LT of an element f € S’ is defined by

F2) = L(F)(2) = (f(),e7), z € Ry +iR (2.1)

For the properties of so defined LT one can consult [14] and [15].

Let H(@A(Ry), o, 8 € Ry, denote the set of holomorphic functions f on
R} + iR which satisfy the following growth condition

1f(2)| < M1+ 21?21 +27P), 2 =z +iy € Ry +iR

We set H(R+) = Uys0,550 H(*A) (R} ). Then we have the following:

PROPOSITION A. Algebras H(Ry) and St are isomorphic. This isomorphism
is realized by the LT.

If 0 >0, f €S, and g = e f(t), then L(g)(s) = (f(t),e* 9!, Re s > 0.
Let F(s) be a holomorphic function for Res > w. The function F(¢ + w) is
holomorphic for Re¢ > 0. If F({ +w) € H(R}), then there exists f € §';) such
that
L(e“ f)(s) = F(s)- (2.2)

2.2. Space D, (I)
Let A be the vector space, subspace of e“!{S’ :

A={T € e”'S'(R); T|(—co,s) =0} (2.3)
In e“!S’, we define an equivalence relation: f ~ g <= f — g € A. Let B denote
B=e“'S", /A, (2.4)

then b € B <= b = class(T) = cl(T), where T € e“*S' ..
DEFINITION 1. Let I = [a,b), a >0, b < 00, a < b. D',(I) is a subspace of
e!D'((—00, b)),
D',(I) = {T € e“'D'((—00,b)); IT® € e“'S'y, T ooy =T}.  (25)
It is eaily seen that a distribution defined by e“!f(t), f(t) =0, t < 0 and f(t) C
L;:([0, 1)) belong to D', (I).
DEFINITION 2. The LT of f € D'(I),, is defined by
L(D'(I)) = L(e*'S"1)/ L(A). (2.6)
Hence, if f € D/, (I), then
L(f) = cl(L(f°)), where f° € e“'S',, f0|(_oo,b) = f. (2.7)

Let f € C®((—o0,b)), p € Ny = NU {0}; H be a function such that H(z) =
0, z € (—o0,a); H(z) =1, z € [a,b). Let [Hf] denote the regular distribution
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defined by Hf, [Hf] € D,(I). By | fé )], p € N, we denote the distribution defined

by the function f7; fP(z) = f®(z), z € (a,b), £ (z) =0, z € (—00,a) and
is not defined for = a. Then

DPIHf] = [fP]+ "D (@)d(@ = a) + - + ()07 (z - a)
= [£P)+ By(f) = [Haf D) + By (f) = [H P+ By (f),

where DP[H f] is the derivative of order p in the sense of distributions.
For f(®,0<a<]1,

(18] = Ep =y DU ) + 0] = ey Jim, / LE=7) gr 5t - ),
2.9)

where 6 is the Heviside function. If f = O(t~(8-%)), ¢t 50, 0 < & < < 1, then

t —
lim / =1 4 o, (2.10)
t—at J, T

3. Solutions of a mathematical model

(2.8)

3.1. Mathematical model of lateral vibration of a visco-elastic rod

Consider a rod BC' of length [ = 1 simply supported at both ends as shown
in Fig. 1. The axis of the rod is initially straight. At the end C the rod is loaded
by a compressive forc F' that is function of time ¢ and whose action line coincides
with the rod axis in the undeformed (initial) state.

Fig. 1. Coordinate system and local configuration

If we consider the planar motion with the force F = B + Af(t — to), to > 0, (0 is
Heaviside’s function), then the following system

0€? ag2 a2
5 N (3.1)
0*u 0%u 5 0%u o
6§2+/"L1Dt 6§2+N2Dt 6—€2_m+:u/Dtm
0<t, 0< €< 1, with the boundary conditions:
m(0,t) = 0; m(L,¢) =0; u(0,t)=0, u(l,t)=0,t>0, (3.2)

and A = B + A8(t — to) is the mathematical model of this motion (cf. [1]). Similar
models one can find in [2], [6], [7], [10], [11].
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In [1] system (3.1), (3.2) has been treated but for A = B 4+ Ad(t — to), where
¢ is Dirac’s distribution. Here we will consider a system some more general than
system (3.1)

Pm  0Pu  O%u .

6—£2+ a—52-|-W_g(t)smk7r§,kEN, ,
8u U 5 0% o 1)
6—§2+M1Dt8—€2+N2Dt 3—8:m+thma

0<t 0< &< 1, with the same boundary conditions (3.2), where g € C([0, 0))
and without any growth condition. In case g = 0 system (3.1’) becomes (3.1).

Let us remark that in system (3.1’) we have a coefficient which is a discon-
tinuous function with a discontinuity in ¢ = t9 > 0. Therefore, we shall con-
struct a solution for the domain Dy = {(£,t); 0 < £ < 1, 0 < t < to} with
boundary conditions (3.2) and initial conditions in ¢ = 0 and then for the domain
Dy, = {(&,t); 0< & <1, tg < t} using the method presented in part 2.

3.2. Separation of variables
Let us suppose that the solutions of the system (3.17), (3.2) have the from
m(&,t) = MV (1), u(§,t) = U(T (). (3.3)
It is easily seen that for M and U which satisfy boundary condition (3.2) we have
for every k € N a solution:

Mp(§) =Cysin knw&; Up(€) = Cysin kw&, keN (3.4)
To find the corresponding values T}, and Vi we have to solve the system:
T (8) = Akm)*Ti(t) — (k) Vie(t) = g(t)
Vi(t) + VO (t) + (k1) Te () + +pa (k) °TY + po (k) > TP (8) = 0, 0 < t.
(3.5)
3.3. Localization of the solution

The defined domain D, calls for the analysis of system (3.5) in the interval
(0,t0) with initial condition in ¢ = 0. In this case A\ = B, where B is a constant.
By the results in [1], where system (3.5) has been treated by the same method, the
solution to system (3.5) is

Ti(t) = Tu (0) (uFass (8) + F (1))
+ TV (0) (uFa(t) + Fo()) + (uFa + Fo) % 9)(t) (3.6)
Vi(t) = —(km)*{Tk(0) [u2F11.5(t) + p1 Frea(t) + FL ()] + T (0) [ Fa(t)

+ p2Fp(t) + Fo(t)] + (11 Fa + p2Fs + o) x g) (1)}, 0<t<to, o
3.7

where
Fy(t) = £71(s”/ Aro(s))(2), (3.8)
Aro(s) = us® T + 82 + (kn)* (w1 (km)? — Bp)s® + (km)* pas?
+ (km)%((km)? — B) = pus®t® + s% + as® + bs” + d. (3.9
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With regard to domain D, we have to find a solution to system 3.(5) but
in the interval (to,b) for any b > o, and A = B + A. The mode of proceedings
is the following: First we have to localize the supposed solution to (3.5) on the
interval (tg,b). Then we suppose that there exists a solution T}, Vi to (3.5) such
that Hy Ty € C'([to, b)), (Hi,Tk)® € L([to,b)); Vi € C((to,b)) N L ([to,d)).

By (2.8) and (2.9) to (3.5), on the interval [tg,b), it corresponds in D, ([to, b))

D?[Hy, Ti] — (A + B)(km)?[Hyo Ti] — (km)*[Hy, Vi
= Ty (to) D 6(t — to) + T (t0)(t — to) + [Hiyg]
[Hio Vi) + pD®[Hyo Vi] + (k) [Hy T
+ pu1 (km)* D¥[Hy, Ti] + pa(km)> DP[Hy, Ty] = 0.

(3.10)

Let TP € e“'S'(Ry + [to, b)) such that T¢|(_cosy = Hio Tk, VY € 'S (Ry +
[to, b)) such that V2| (_co,p) = Hi, Vi and g° € e“!S' (R4 +[to, b)), gol(—co,p) = Hto9-
Applying to (3.10) the defined LT, we get

(s* = (A + B)(km)*)T(s) — (km)*V(s)

= Ty(to)se 1 + T (to)e 0% +3°(s) +7u(s),  (3.11)
(14 ps®) V() + (k) (1 + pas® + pizs®) TP (s) = Fals).
where r; and r, € A. By T,? is denoted the LT of T}.
When we solve this system in f,?, Vko and use the inverse LT, we get
(Hi Ti)(t) = Th(t0)0(t — to) (uGa+1(t — o) + G1(t — to))+
+ TV (t0)0(t — t0) (uGa(t — to) + Golt — to)) + +((uGa + Go) * Hy9)(1), (3.12)

(HioVi) = = (km)*{Tk(t0)8(t — to) [u2G145 (¢ — to) + pn Gaurr (t — to) +G1 (¢ — to) |+
+ TV (0)8(t — to)[u1 Galt — to) + p2Gs(t — to) + Go(t — to)]
+ [(11Ga + p2Gp + Go) x (Hy,9)|(t)}, to <t <b, (3.13)
where G,,(t) = L7 (sP/A},), A}, equals Agg in which instead of B we have A+ B.

Therefore, we can use the properties of solution (3.6), (3.7) to system (3.5) (cf. [1])
taking into account that we have A + B instead of B.

3.4. Global solution

Now we have a solution for the domain D, given by (3.6), (3.7) and a solution
for the domain D, given by (3.12), (3.13). It is easily observe that not only
solutions (3.6), (3.7) and (3.12), (3.13) have the same structure but also the solution
in [1] for A = B which has the form of solution (3.6), (3.7) but for 0 < ¢ < b, where
b is any positive number. Therefore, we can use the results contained in [1]. In this
way we know that T) and Vj, given by (3.6), (3.7) and (3.12), (3.13) but in case
g = 0, have the following properties which do not depend on the value of B:

1. T, € C2((0,t0]) N CL([0,t0]), T> € L1([0,t0]) N C((0,t0]), TV (#) is not
bounded at t = 0 and V}, € L([0,#5]) N C((0,%0]), Vi (#) is not bounded at t = 0. If
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additionally T} (0) = 0, then T}, € C2([0,]) and Vi € C([0,to]), Vi(0) = 0,V €
L1([0,0]) N C((0,10]) and Vk(l)(t) is not bounded at t = 0.

2. Ty € C((to,b)) N C([to, 1)), T € L([to,b)) N C((to,b)) and Vi €
L!([to,b)) N C((to,b)). Vi is not bounded at t = to. If T(0) = 0, then
T, € CA([to,b)) and V! € Li([to,b)) N C((to,b)) for every b > 0; V(1) is
not bounded at t = t,.

3. It t — O, then: Ty(t) — Tho, Ty (1) = T, Vi(t) ~ t=F=) and T (¢) is
also not bounded.

We add a property more:

4. If Tyo = 0, then lim,_,o+ T.> () = 0.

Let us prove it.

In this case T and V;? which correspond to Ty = T} |(—cop) and Vi =
V2(—co,p), respectively, are

T (t) = Tio(1Fa(t) + Fo(t)) (3.14)

Vi (t) = Teo(m Fa(t) + p2Fp(t) + Fo(t)). (3.15)

Hence, by LT we get
T(s) = Tho(ufals) + fo(s),  V(s) = Tho(ma fa(s) + n2fa(s) + fo(s))-
Let us consider the function
f(s) = 8°T{(s) — Tio = 8* (TR (s) — Tho/°)
= Tros” (us® [ Aro(s) +1/Ago(s) — 1/57)
= —Tyo(afa(s) +bfa(s) + dfo(s)) = —TpoL(aFa(t) + bF5(t) + dFo(1))(s).
It follows that there exists continuous function F'(t), t > 0,
F(t) = =T} (aFy(t) + bFs(t) + dFy(t)), t >0,
such that L£(F)(s) = s*(L(T)(s) — Tr/5%)-
Let G(t) denote the function G(t) = f(f dr [; F(u)du, t > 0. Then by
3, I, Kap. 2, §12, Satz 5] £(G)(s) = T? — T},/s2. Since G € C2([0,0)), G(0) =
0, G (0) = 0 and since by (9) T2(t) = G(t) + Tlst,t > 0, it is easily seen that
TP € C%([0,00)), as well and TP(0) = 0, (TP)M(0) = T, (TP (t) = GA(¢) =
F(t). By the properties of Fj(t) (cf. [1]) lim;_o+ (T0) P (t) = 0. T = TP, has
the same properties as 7). Namely, we proved that Ty € C?([0,b)).
We need some propertes more in case g # 0.
5. The function

Z(t) = (nFa + Fo) x 9)(t) = /0 (uFo(t —7) + Fo(t —7))g(r) dr

has the following properties which follows from the properties of Fj:

t
2'(t) = / (WFasa (t — 7) + Folt — 7)g(r) dr € C((0,b))
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for every b > 0. Also Z'(t) — 0,t — 0. Consequently Z(t) € C([0,b)) and
Z(t) = 0,Z'(t) - 0,t — 0.

The properties of the function U(t) = ((uFy + Fo) * Hy,g)(t) can be deduced
from the properties of Z(t). Let us do it.

((uFo + Fo) * Hyog)(t) = ~/t (nFo(t —7) + Fo(t — 7)) (Hio 9)(7) dr

t—to
- / (WFa(t — u— 70) + Fot — u — to) (Huog) (u + to) du

= [ Pt~ )+ i - w)(ig9) a4 t0)

where x =t — 1.

It follows from the properties of Z(¢) that u(t) = ((uF, + Fo) * Hyyg) €
C'([to,b)), and that U(t) — 0, UM(t) = 0, t — tor. Taking into account
these cited properties we extend solution (3.6), (3.7) continuously to the whole
(0,b),b > to, and also its derivatives, if it is possible. Let us start with Tj,. We

know that there exist limy ¢y Ty (t) = Tk, and limyg g, T,gl) = T,%to. We define
Tyi(to) and TV (to) so that Tk(to) = Tk, and Ty (to) = T}, . Then by (3.12) it
follows limy—¢ , Tk (t) = Tr(to) and limy 404 T,gl)(t) = Tk(l)(to). Consequently
T, € C([0,)),b > to. Since lim,_o+ T\ (t) is not bounded, lim, ;4 T 2 (£) is
not bounded, as well. Thus Tlgz) (t) is not bounded at t = t,.

Consequently, the extended solution (3.6) to (0,b),b > to, is a solution in the
generalized sense.

If T (0) =0, and g = 0 then lim;_,o+ T,S‘))(t) = 0 and the solution (3.6) can be
extended as a classical solution to (0,b),b > to.

With regard to Vi(t), Vi (t) ~ Ti(t)(to)pat= B~ t — 0t. Then there exists
Vk(a) (t),t >0 and Vi (t) € L1([0,b)),b > to, is a classical solution.

4. Some remarks in the case g =0

4.1. Stability of solutions

We know (cf. [1]) that system (3.5), for A = B, kg € N and B > (kom)?
has solutions which are not stable. But if B = (kom)?2, these solutions are stable.
We can use this fact in the following way: If the rod at its end is loaded by the
constant compressive force F' = B and the state is not stable, we can always, in a
moment ¢ = ty change the force F, by an A such that for ¢ > ¢ the rod is loaded
by A + B = (kw)? which leads to a stable state.

4.2. A new solution to (3.1), (3.2)
We can construct a new solution to (3.1), (3.2) by the sinus series (cf. [6]):

W) = 5 e Tult)sinkng,  mE1) = Y Ty sinkre  (4.1)
k=1 k=1
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Since ¢,k € N, are arbitrary constants, we can always give to c¢x,k € N, such
values that the first series (4.1) converges in [a,b], 0 < a < b < oo and if T} (0) =
0,k € N, then it converges in [0,],0 < b < co. With regard to the second series,
¢k, k € N, can be defined such that the series and its first derivative converge in
[0,b], 0 < b < oo and the second derivative converge in [a,b], 0 < a < b < co. But
if T, (0) = 0, then a can be sero, as well.

4.3. More complex force F

If the force F' is more complex,

Fit)=B+ > A0t —1),0<t; < -+ <tp,
i=1

the procedure can be repeated for every interval [t;,ti41).
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