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TRANSFORMATIONS OF DUAL PROBLEM AND
DECREASING DIMENSIONS IN LINEAR PROGRAMMING

Nebojsa V. Stojkovié¢ and Predrag S. Stanimirovié

Abstract. We investigate behavior of the potential function in a modification of the Mehro-
tra’s primal-dual algorithm. This modification reduces dimensions of the problem and eliminates
need for the finite termination algorithm. Numerical results on some examples from the Netlib
test set are provided.

‘We also regard problems about applying a stabilization procedure proposed by Kovacevié-
Vujci¢ and AS§i¢ in the Mehrotra’s primal dual interior-point algorithm for linear programming.
Transformations of the dual problem required for the application of the stabilization procedure
are considered.

1. Introduction

Primal-dual algorithms investigate linear programming problem in the stan-
dard form as

minimize ¢’z subject to Az =b, x>0, (1.1)

where ¢,z € R*, b € R™, A is an m x n real matrix and ¢T is transpose of the

vector ¢. The dual problem for (1.1) is
maximize b’ A subject to ATA+s=¢, s>0, (1.2)

where A € R™ and s € R" and b7, AT denote transpose of the vector b and the
matrix A, respectively. It is known that the vector z* € R™ is a solution of (1.1)
if and only if there exist vectors s* € R” and A* € R™ such that the following
conditions hold:

ATX + 5 =¢, Az* = b, (1.3a-b)
xzis; =0, i=1,...,n, (z*,8") > 0. (1.3c-d)
The central path C is an arc of strictly feasible points that plays a vital role

in the theory of primal-dual algorithms. It is parametrized by a scalar 7 > 0, such
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that each point (z,, A, s;) € C solves the following system:

AT +s=c¢, Az =b, (1.4a-b)
zi8; =71, 1=1,...,n, (z,8) > 0. (1.4c-d)
Instead of the complementarity conditions (1.3c), in (1.4) it is required that the
pairwise products z;s; have the same value for all indices ¢. From (1.4) we can
define the central path as
C ={(zr,Ar,s:) | 7> 0}.
The primal-dual feasible set F and strictly feasible set F° are defined by (see [7])
F={(z,\s) | Az =b, AN +s=¢, (z,5) >0},
F={(z,\s) | Az =b, AT\ +s5=¢, (z,5) > 0}.

The paper is organized as follows. In the second section we consider behavior
of the potential-reduction function caused by the elimination of columns and rows
of the matrix A, corresponding to zero variables. This part of the paper is a
continuation of the paper [6]. The motivation for this section is based on the
fact that reducing dimensions of the problem improves the stability and centrality
of iterative sequence. We show that reducing dimension decrease the potential
function ®,. In the third section we investigate transformations of the dual problem

caused by the stabilization procedure introduced in [3]. In the last section we show
the decreasing of the potential-reduction function in several known test problems.

2. Reduction of linear programming problem and potential function

In sequel we regard the linear programming problem in the general form
minimize c1x1 + - -+ cpT

k
subject to A3 5 < bz', 1= ]., .5 q,
i=1
k ) (2.1)
Ea,-jwjzbi, i=q+1,...,m,
i=1
z; >0, j=1,...,k
Standard form of (2.1) is (with k£ + ¢ = n)
minimize c¢;x; + -+ CpTE + Ck+1Th41 + - + CrTh
k
subject to ai T +Tpri = by, i=1,...,q,
j=1
k 2.2
Zaith‘j :bi, i:q-}-l,...,m, ( )
j=1
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The dual problem for (2.2) is
maximize biA1 + - -+ bpAm

m
subject to Z aj,-)\j +s;=c¢,i1=1,...,k
Jj=1

It is clear that if z; = 0 for some ¢, then this z; has no influence on the final
solution, so i-th column from the matrix A can be omitted. Also, if sx1; = 0 for
some j, then from (2.3) it follows A; = 0, so jth column and (k + j)-th row from
the matrix AT can be omitted. These facts imply the next two statements from [6].
For the sake of simplicity we use the following notations. Let @ = {ay,... ,a,} and
B = {pf1,--- B} be subsets of {1,...,m} and {1,...,n}, respectively, for some
integers 1 < s <m and 1 <t < n. By A* we denote the p x n submatrix of A
determined by the entries in rows indexed by «. Similarly, by Ag we denote the
m X ¢q submatrix of A determined by the entries in columns indexed by .

LEMMA 2.1. [6] Consider the linear programming problem (2.2),(2.3). Assume
that x;, =---=x;, =0, and consider the set of indices I ={i1,...,iq} C{1,... ,n}.
Denote by A € R™("=9 the matriz Ay, ny\g, and let £,6,8 € R be, re-
spectively, vectors x,c and s without i-th (i € I) coordinates (£ = 41, .. n)\1,¢ =
cq1,.. ni\z ond 8 =811 nn1)- By @i(X) we denote the linear function

goz-(/\):ci—(au)\1+---+am,~)\m), i€l.
Then the primal-dual problem (2.2), (2.3) is equivalent to
minimize ¢'%  subject to Az = b, >0, z;,=0,i€l,
magzimize b X subject to ATAN+3=¢ §>0,s = wi(A), i €1,
where AT is the transpose of A.

LEMMA 2.2. [6] Assume that in the primal-dual problem (2.2),(2.3) the iden-
tities spyj, =+ = Skyj, =0 are satisfied. Consider the sets J={ji,...,jn} and
J¥ ={k+j|j € J}. Denote by AT € R("=Wx(m=h) the matriz

Ty{Lee n\I* _ ({1 mT )T
(A ){1,... ym\S T (A{1,... ,n}\Jk) :
Let #,¢,5 € R*™" be, respectively, vectors x,c,s without (k + j)th (j € J) co-
ordinates, and let \,b € R™ " be, respectively, vectors A\, b without jth (j € J)
coordinates. By 1;(&) denote the linear function
’Lﬁ](@) = bj - Z Qj;Ti, 7€ J
i=1, igJ¥
Then the primal-dual problem (2.2),(2.3) is equivalent to
minimize ¢14& subject to A =0, &>0, Tpy; =Y;(Z), j€J,
mazimize bT\ subject to AT N+ 3= ¢, 3820, 5545;=0,j5€J,

where A = AE:: :;”}}\\ﬂ.
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The following statement summarizes the results of above lemmas.

THEOREM 2.1. [6] Let z;;, = --- =z, = 0 and Sgyj, = -+ = Spjp = 0,
where the sets I = {i1,...,iq} and J = {j1,...,jn} are defined as in Lemma 2.1
and Lemma 2.2, respectively. Under the notations of Lemma 2.1 and Lemma 2.2
the primal-dual problem (2.2)-(2.3) is equivalent to

minimize ¢T% subject to Az=b, £>0, z;=0,i€l, Tpy;=1;(2), jEJ,
mazimize bTA subject to ATA+3=¢, §>0, sk =0, j€J, sz-=g0,-(:\), i€l
where A € Rim-Mx(n-h-d) 3 s 3¢cRn-h-d X }pecRmh

REMARK 2.1. Theorem 2.1 is a generalization of Theorem 3.1, part (b), proved
in [5].

The ability to identify zero variables early on in an iterative method is of con-
siderable value and can be used to computational advantage. The paper [2] gives
a formal presentation of the notion of indicators for identifying zero variables, and
also studies various indicators. About the numerical experience with various indica-
tors for identifying zero variables see also the paper [4]. The term indicator denotes
a function that identifies constraints that are active at a solution of a constrained
optimization problem. If some members of a solution z* are identified early on in
an iterative procedure, this information can be used as follows:

1. Reduce dimension of the problem by dropping the columns od A corre-
sponding to zero variables.

2. Help recover an optimal basis for the linear program.

3. Help obtain very accurate solutions.

The reduction of dimension of the problem by dropping the columns of the
matrix A corresponding to zero variables is investigated in [2] and [4]. We consider
the influence of the elimination of columns and rows in the decreasing the potential
function ®,,.

Potential-reduction methods use a logarithmic potential function to measure
the worth of each point in F° and aim to achieve a certain fixed reduction in this
function at each iteration. The most interesting primal-dual potential function is
Tanabe-Todd-Ye function ®,, defined by

n
®,(z,s) = plogz’s — . log z;s;
i=1
for some parameter p > n. In the next theorem we investigate the influence of
reductions enabled by Theorem 2.1 to the function &,.

THEOREM 2.2. Suppose that the central path is not followed and suppose that
zjs; < e <1 for somejeJC{l,...,n} and x;s; > €, i ¢ J. If it is possible to
eliminate x; (or s;, for some j > k) and to eliminate j-th columns from the matriz
A (j-th rows and (j — k)-th columns from the matriz AT), then

log (1 + LJEJ 23t

p
ZigJ e ) —|J|loge < ®,(z,s) — ®,(,3)

<log(1+ 7] )p—zlogm-s-
B n—|J| i€d e
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Proof. Applying Lemma 2.1 (Lemma 2.2) we can eliminate z;, (s;) and j-
th columns from the matrix A (j-th rows and (j — k)th columns from the matrix
AT). Let &,(&,5) = plog #7534y 10g ;5; be the potential-reduction function of
reduced problem, where Z and § denote the vectors z and s without j-th elements,
respectively. Then we have

®,(z,s) — <i>p(:f:,§) = p(logz’'s —logz?5) — ¥ logz;s;

jer
D jes TiS

= plog <1+ ]7> — Y logx;s;
Digs Tisi jeJ ™
Z'eij5j>

>plog 1+ =L~ ) —|J|loge.

> plog ( o) 1t

On the other side, since

> jes TS |J e
plog (1 + 17) < plog (1 + 7)
Digy Tisi (n—|Je

. I \?
®,(x,s) — @,(&,5) <log (1 + 171 ) — > logz;s;,
n—|J| jeJ

we have

which completes the proof. m

3. Transformation of dual problem

The next procedure is proposed in [3] for stabilization of ill-conditioned lin-
ear programming problem. This stabilization procedure is based on the Gaussian
elimination.

PROCEDURE 3.1. Step 1. For a given k let j(1),...,5(n) be the indices
satisfying conditions (m;?(l)/s;?(l)) >.> (x;?(n)/s;?(n)), andlet h e {1,...,n—1} be
the smallest index such that (m?(ml)/s?(ml)) <1.

Step 2. Order the columns of A and ¢” so that the j(p)-th column comes to
the p-th position, p=1,...,n. Set p=1,¢ = 1.

Step 3. Find |a;(p),p| = max{|a;p|, i = q,... ,m}. If |a;y) p| # 0 go to Step 5.

Step 4. If |ajp),p| = 0 and p = h set # = ¢ — 1 and RETURN. Otherwise
replace p by p+ 1 and go to Step 3.

Step 5. Exchange the i(p)-th and ¢-th row in A and b. Using a4, as the pivot
element eliminate a;p,i = ¢+ 1,...,m (if any) and c,.

Step 6. If ¢ = min{ﬁ,m} orp= h set 7 = g and RETURN. Otherwise replace
pby p+1,qbyq+1and go to Step 3.

In order to incorporate this procedure in primal-dual interior point method,
we need corresponding modification of Step § in the stabilization procedure. This
modification gives a specific transformation of the dual problem. We regard linear
problem (1.1) with objective functions ¢’z + d and b7\ + d for primal and dual
problem respectively.
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THEOREM 3.1. Suppose that the matriz A of linear problem (1.1), which sat-
isfies ¢ = -++ =cp—1 =0, has a form

faip, ... ai,p—1 aip P ain
0 e Qq—1,p—1 Qg—1p --- Qg—1,n
A=|0 ... 0 Ggp oo+ Qgn | . (3.1)
0o ... 0 Amp - - Amn
If we use aqp as the ;n'vot element to eliminate a;p,i = q+1,. _ ,m, and ¢, then

the dual problem of transformed problem
minimize ¢z +d' subject to A’z =1b', x>0,

18
maximize b'° N +d' subject to AN 45 = d, >0,

where

c , & oa

dI=d+a_pbq; A;ZA“ l#qa A;:AQ+Z %Ai_acﬁ'
qap =g+l
Proof. As
) a; .
b;:bza i=1,...,q, b;:bi_aﬂbfﬂ i=q+1...,m,

ap
the value of dual objective function is

VXN +d = Z BN+ df

:gb"’\”%(/\ﬁ > aﬁ/\i—c—”)+ > (b ( a"’b))\i+d’

i=q+1 Qgp Qqp i=q+1 Aqgp
’L m m ’L
—Zb/\+2 pb)\—pbq-l—zbi)\i—z —Lp i +d'
i=q+1 Qqp Qqp i=q+1 i=q+1 Qqp
=bTA— 2p, +d =b"A+d
Qqp
Further, the elements of matrix A’" X' have the form Yimyai;A, j=1,...,n. Now

we have

Ea”z+s]:Ea”)\ +s8;=0=c;, j=1,...,p—1,

3

S
[y

=

moq
Zazp z+5p=E w’\+aqp()‘ + > sz__)‘*‘sp
i=q+1 Qqp Aqp

)

~.
=

M

!
aipAi +8p — ¢ =0 =1},

i=1

o o Qip Cp gj
E% z+sj=2aij/\,-+aqj( + X —N ——)+ > (am——aip))\,-

i=q+1 Qqp Qgp i=q+1 Qgp

a a
aj aj .

+s55 = E a,,)\ + 85 — cp=cj— cj = c] j=p+1,...,n. =
Agp Qgp
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REMARK 3.1. It is obvious that the form (3.1) of the matrix A is not restrictive
because, if a1; is the pivot element for arbitrary matrix A and arbitrary ¢, we
immediately get the matrix of the form (3.1) and after applying the transformation,
matrix A’ has the same form.

4. Numerical experiences

The reduction of dimensions in Mehrotra’s algorithm is implemented in the
package MATHEMATICA. In the next examples we consider a small subset of known
test problems in the literature. We use notation delta = ®,(z,s) — <i>p(§:, 3). Note
that practical value of p are n ++/n,10n or n +n'-5. In the following examples we
used compromise value p = 2n.

ExXAMPLE 4.1. For the test problem Afiro we get the result arranged in the Ta-
ble. Eliminating threshold is 10~1. Note that in 8th
iteration 35 variables are eliminated and we have con-
siderable decreasing of the potential function. Col-
umn No iter. denotes the order number of the itera-
tion when the elimination is applied, and in column
No var. we give the number of eliminated variables. Afiro

ExAMPLE 4.2. In the tables on the next page we give results for some Netlib
test problems. We see that the potential-reduction function is considerably de-
creased when the elimination is applied.

5. Concluding remarks

We investigate the elimination of columns and constraints in the primal-dual
interior point method which is mainly based on the Mehrotra’s algorithm, restated
in [7], [1]. It is well known that reducing dimensions of the problem improve the
stability and centrality of iterative sequence. We showed that reducing dimension
decrease the potential function. In order to make numerical experience, we devel-
op a research code for the implementation of the Mehrotra’s algorithm and the
modification in the package MATHEMATICA.

We also investigate transformations of the dual problem, caused by Step § of
the stabilization procedure introduced in [3].
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