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SPECTRAL STATES OF COMMUTATIVE L.M.C. ALGEBRAS

A. K. Gaur

Abstract. We characterize the commutative locally multiplicative convex (l.m.c.) algebras
in terms of the spectral states. We also give a characterization of spectral states in terms of
commutative semisimple 1.m.c. algebras. Further, with the help of radicals of l.m.c. algebras we
give a necessary and a sufficient condition for an algebra to be commutative modulo its radical.

1. Introduction

Let X be a locally m-convex (l.m.c.) algebra with unit e. We will follow the
notations and terminologies of [4] and [6]. It is sufficient for our purpose to note
that, for a given l.m.c. algebra X with unit e there exists a separating family of
submultiplicative seminorms {P,} on X which generates the topology and is such
that P,(e) = 1 for all @ in the index set I. Given such an aglebra, we denote
by P(X) the class of all such families of seminorms on X, and by (X, {P,}) the
algebra X with a particular family of seminorms {P,} € P(X).

For every a € I, let X, denote the unital Banach algebra. Using Bonsall
and Duncan’s notation [2], the spectral state of X, is denoted by Q(X,) and
N Xe) ={feXt:fle)=1,|f(z)| < pal(z),z € Xo}, where py(-) is the spectral
radius of zo and ||z4]la = Pa(z). (See Michael [6]). 2(X,) is a weak*-compact
convex subset of the complex plane. The set of all spectral states of X is denoted
by Q(X). If g% : X — X, is the quotient map and ¢, is the adjoint of g, then we
define Q(X) = J gL (Q(Xa)).

Given (X,{P,}), we define the set Do(X,P.;e) = {f € X : f(e) =
1land |f(z)| < Py(X) for all z € X} and we write
D(X,{P.};e) = | J{Da(X, Pase)}.
Note that Do (X, Py;e) is isomorphic to D(X4, |||la; €a) and D(X, {P,}; ) depends

upon the particular family of seminorms {P,} € P(X) chosen to associate with X.
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2. Spectral states and commutative l.m.c. algebras

Using the idea in Giles and Koehler [4], we can say that Q(X) is the state
space of (X,{P,}) and Q(X) = D(X,{P,};e). Note that (X) does not depend
on the particular family of seminorms {P,} chosen to generate the topology.

THEOREM 2.1. Let Dx = (\{D(X,{Pa};e) : {Pa} € P(X)}. Then
Q(X) = Dx.

Proof. Let f € Q(z) and {P,} € P(X). If z € X and a € I with |f(z)] <
Pa(Za) < Py(x), then there exists M > 0 and 8 € I such that P,(z) < M Ps(z) and
|f(x)] € 3/Pa(z™) < ¥/ M Pgs(z) for every natural number n and every 2 € X. This
shows that f € Dx. Conversely, suppose that f € X " is not a spectral state and
f(e) = 1. Then for each a, there exists z, € X, such that |f(z4)| > pa(ga(za))-
By Lemma 2.8, [2], there exist seminorms v, on X, equivalent to the usual norm
| - ||« such that |f(za)| > va(ga(za))- Let Py = vo, @ € I. Then P, € P(X), but
f € D(X,{P.};e). This implies that f ¢ Dx and hence Q(X)=Dx.m

Let X be a commutative L.m.c. algebra. Let ® x be the set of all multiplicative
linear functionals on X and let &, be the set of all multiplicative linear functionals
on X,. Also, suppose that ¥, = ¢%(®,). This means that for each a, ®, is
homeomorphic to ¥,. Let X and X « be the Gelfand transformations on X and X,,
respectively. Denote a compact Hausdorff space by E and suppose u(E) denotes
the set of all probability measures on E. (For more on these measures, see [1]).

PROPOSITION 2.1. For a commutative l.m.c. algebra X with unit and for
f € X', the following are equivalent.

(a) For a € I and p € p(E)a, f(z) = [ X(z)dy, v € X.
(b) There exists a probability measure u on ® x with compact (equicontinuous)
support K, (see [7]), with f(z) = [ X(z)dp, v € X.

Proof. If K is a compact subset of ® x, then K is contained in some 1),. Hence,
(b) implies (a). The implication (a) = (b) follows by the definitions involved. m

PROPOSITION 2.2. There exists a € I such that [ef®)| < |le*||a, z € X if
and only if
Re f(2) < sup{ Rena(a)  7la € B }. (+)

Proof. For a € I, |ef®] < |le**|lo & Ref(z) < Lln|e™®=|,, where In
is the natural log function, m is a natural number, and z € X. If sp(X,,zq)
denotes the spectrum of z,, see [4], then by Theorem 8, page 32 of [2], we have
sup{Re) : X\ € sp(Xq,20)} = inf{L1In|le"® ||, : n is a natural number} and

hence |le/(®)|| < ||e**|| is equivalent to condition (x). m

REMARK 2.1. The above propositions provide us with a characterization for
spectral states of l.m.c. algebras. Further, these characterizations also show that
Q(X) does not depend on the particular family of seminorms.
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It is clear that Q(X) contains all non-zero multiplicative linear functionals.
Also, if X is a commutative l.m.c. algebra, then every probability measure on the
Carrier space [8, p. 261] of X provides a spectral state on X.

For commutative X, Q(X) is nonempty, but if H is an infinite dimensional
complex Hilbert space and B(H) is the set of all bounded linear operators on H,
Q(B(H)) = 0, see example 5, page 115, [2]. In fact for C*-algebra X, Q(X) =
(. On the other hand, if B(H) is the set of all compact operators on H, then
Q(B(H)) = {0}.

EXAMPLE 2.1. Let E be a compact Hausdorff space and C(E) be the l.m.c.
algebra of all complex-valued continuous functions on E. The topology on C(E)
is of the uniform convergence. Then ®¢(g) is isomorphic to E. The countable
compact subsets of E are the compact subsets of ®¢(g). Let ¢ € C(E) and for
each natural number n, a, € E. Suppose A, € [0,1], then a linear functional f
on C(E) is given by f(¢) = Yo, And(an). These linear functionals define the
spectral states of C(E). Let u be a probability measure on E which vanishes at
singletons. Then f is defined by integration with respect to u such that f(e) = 1.
Further, |f(¢)| < pc(g)(¢) and f(¢) € cosp(C(E), ¢) for each ¢ € C(E), where co
is the convex hull. Since f is defined by integration with respect to a probability
measure g with an uncountable support, f is not a spectral state.

REMARK 2.2. If A is a finite dimensional complex Banach algebra with unit
and Wedderburn decomposition A = A1 & Ay @ --- @ A,, ® R (where R is the
radical of A and each A; is a subalgebra of A that is isomorphic to a matrix algebra
over the complex numbers), then (A) is the convex hull of the normalized traces
T;(i =1,2,...,m), see Theorem 11, p. 119 [2]. Also, if R is the Jacobsen radical
of A, then f(R) = {0} for each f in Q(A).

3. Commutative semisimple algebra and spectral states

DEFINITION 3.1. X, is semisimple if the Gelfand transformation on X, is
one-to-one.

A commutative Banach algebra A is simple if Rad(A) = {0}.

So if we have a semisimple 1.m.c. algebra, then a rich supply of spectral states
is possible. We prove the following theorem which characterizes such algebras.

THEOREM 3.1. Let X be an l.m.c. algebra with unit. Then X is commutative
and semisimple if and only if Q(X) separates the points of X.

Proof. Let X be a commutative semisimple l.m.c. algebra with unit. Then the
complex homomorphisms of X separate the points of X, see Corollary 3.5.1, [5].
Hence, Q(X) separates the points of X.

Conversely, suppose that Q(X) separates the points of X. If f € Q(X), then
f(ab) = f(ba), a,b € X, by Theorem 4, p. 114 [2]. Hence, X is commutative. Since
every f € Q(X) vanishes on the kernel of the Gelfand transformation X on X,
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Proposition 2.1 proves that X is one-to-one and X is semisimple by Definition 3.1
above. m

In [4], it is shown that if X is a complex l.m.c. algebra with unit, then for each
reX,

cosp(X,x) € ({V(X,{Pa};a) : {Pu} € P(X)} C cosp(X, )

where V(X, {P,}; z) is the numerical range of z in X.

If X is commutative modulo its radical, then cosp(X,z) = {f(z) : f € Q(X)}.
This follows from the fact that the following condition in [4]

(Y f(@): f € D(X,{P.};e) }
can be replaced by
{#@):f e DX AP}e) }

Inspired by this observation, we have the following theorem.

THEOREM 3.2. Let X be a complete l.m.c. algebra with unit. Then X is
commutative modulo Rad(X) if and only if cosp(X,z) = {f(z) : f € Q(X)} for
every x € X.

Proof. Let X be commutative modulo Rad(X). By Proposition 24.16 in [3], it
follows that for a,z,y € X, a(zy — yz) is quasi-regular or quasi-invertible, see [5,
p.13]. This implies that px (zy —yz) = 0. Thus, for each & € I, po(TaYa —YaZa) =
0, which proves that X, is commutative modulo Rad(X,).

For each z € X, { fa(%a) : fa € U X4a) } C cosp(Xa, z4) and since X, is com-
mutative modulo Rad(X,), we have sp(Xq, o) = { Pa(Za) : ¢ € P }. Further,
since &, C Q(X,), and Q(X,,) is convex, we have cosp(Xq,Za) C { fa(Za) : fo €
(X4) }- Hence we have established that if X is commutative modulo Rad(X),
then cosp(Xa,Za) = { fa(za) : fa € UXa) }

Since the family of spectra is a well directed family, we have cosp(X,z) =
Ucosp(Xa,Za), see Theorem 1 [4]. By the definition of Q(X), we prove that
cosp(Xa,Za) = { fa(Ta) : fa € Q(Xy)} implies that cosp(X,z) = {f(z) : f €
Q(X) } for every z € X.

Conversely, suppose that for each z € X, cosp(X,z) = { f(z) : f € QUX) }.
Since sp(X, 2y — yz) = {0}, we have the commutativity of each X, modulo its
radical. Hence, a(zy — yz) is quasi-regular in X. This shows that zy — yz belongs
to Rad(X) and hence X is commutative modulo Rad(X). m

COROLLARY 3.1. If X is a complete l.m.c. algebra with unit and X is com-
mutative modulo Rad(X), then

Ix ={ze X :{sup|f(z)]: feUX)} <0}
={ze X :V(X,{Pa};z) is bounded} = Ux
={z€ X :px(z) <o} =Rx.
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Proof. T'x = Ux follows from Theorem 4, [4]. By Theorem 3.2, {f(X): f €

Q(X)} =cosp(X,z), hence Ux = Rx.m

COROLLARY 3.2. Q(X) is weak*-bounded.

Proof. The result follows from Corollary 3.1 and the fact that Q(X) is weak*-

bounded if and only if sp(X, z) is bounded for each z € X. m
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