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OPTIMALITY CONDITIONS AND TOLAND’S DUALITY
FOR A NONCONVEX MINIMIZATION PROBLEM

M. Laghdir

Abstract. This paper studies necessary and sufficinet conditions and provides a duality
theory for a wide class of problems arising in nonconvex optimization, such as minimizing a
difference of two convex functions subject to a convex vector constraint taking values in an ordered
topological vector space. These results are then used to study a problem of nondifferentiable
optimization.

1. Introduction

Many of the nonconvex minimization problems arising in applied mathemat-
ics, operations research and mathematical programming can be formulated as the
following nonconvex problem

inf f1(z) — fa()
(P) h(z) € =Y,
z € C,

where X and Y are two real topological vector spaces and Y is equipped with a
preorder induced by a convex cone Yy, fi, fo: X — R U {+o0} are two convex
functions and h: X — Y U {400} is a convex mapping and C is a nonempty
convex subset of X. The problem (P) includes a wide family of DC-minimization
problems subject to vector constraint taking values in finite or infinite dimensional
spaces. The purpose of this paper is to present the optimality conditions related
to the problem (P) and to formulate its Toland’s dual problem.

The main tools used to deal with this class of problems are the formulas of
the subdifferential and Legendre-Fenchel conjugate function of the composition of a
nondecreasing convex function with a convex mapping taking values in an ordered
topological vector space (see [1] and [2]).
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This paper is organised as follows. In section 2 we give some notations and
recall some definitions and results. Section 3 studies necessary and sufficient op-
timality conditions linked to problem (P). In Section 4, we deal with the dual
problem of (P) in the sense of Toland’s duality. In Section 5, we give an applica-
tions to nondifferentiable fractional programming problem.

2. Notations and Preliminaries

All the vector spaces introduced in the sequel are real spaces. By X and Y
we denote two topological vector spaces with respective topological duals X* and
Y*. The canonical bilinear form on X* x X (resp. Y* x V) is denoted by (-, -).
The space Y will be assumed to be equipped with a preorder <y induced by closed
convex cone Y, as follows

11 <y y2 < Y2 —y1 €Yy,

and an abstract maximal element +oo will be adjoined to Y. By Y we denote the
dual positive cone, i.e., the cone of positive linear functionals on Y given by

Yi={y"€eY":(y",y) 20, VyeY,}.
Recall that an operator H: X — Y U {400} is said to be Y, -convex if
H(azxy + (1 — a)zs) <y aH(z1) + (1 — a)H(z2)

for each 21,22 in X and for each @ € [0,1]. By domH = {z € X : H(z) € Y },
EpiH = {(z,y) € X xY : H(z) <y y} and InH := H(dom H) we denote,
respectively, the effective domain, the epigraph and the effective range of H. A
function G: Y — R U {+oo} is said to be Y;-nondecreasing on Y if

n <y y2 = G(y1) < G(y2).

Given F': X — R U {400}, the subdifferential of F at T € dom F, denoted by
OF (), is defined as

OF(T) ={2*e€ X" : F(z) > F(Z)+ {(=*,z —Z), Ve e X}
and its conjuguate function F*: X* — R U {+oo} is defined by

F*(z*) := sug{ (z*,z) — F(z) }.

ze
If C is a nonempty subset of X, then the cone that it generates is
R,C:=| | AC,
A>0
its indicator function is 6¢: X — R U {400} defined for every x € X by
0, ifreC

400, otherwise,

bc(z) = {
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and its support function 6 defined on the dual space X* is

65 (2*) := sup{z*, x).
zeC

Also, we define the cone of normal directions to C at xg € C' by
Ne(z):={2z* e X*: (", —2)<0,Vx e C}.

Throughout, we will adopt two conventions; the first is (+00) — (+00) = +00 and
the other is linked to the composite function, that is

G(H(z)), ifz € domH

eX GoH =
x = ( )(x) { +00, otherwise.

Now, let us recall some definitions and results that will be used throughout
the paper.

DEFINITION 2.1. [4]

(i) A function f: X — R U {400} is called a DC-function if it can be repre-
sented as a difference of two convex functions defined on X.

(ii) f: X — R U {+oo} is called a polyhedral convex function if

f(z) = max {{(z],z) +b;}, VzeX

1<i<n
where z7,25,...,2), € X* and b1,b2,...,b, € R.

In order to establish our main results we shall need the following results due
respectively to J. B. Hiriarty Urruty [4] and J. F. Toland [5]. These results es-
tablished respectively the local optimality conditions and Toland’s dual problem
related to an unconstrained DC-mathematical programming problem.

PROPOSITION 2.1. [4] (i) Let us consider two convex functions f1 and
fa: X — R U{+oc}. The condition df2(T) C df1(T) is necessary for T being
a local minimum of f = f1 — f2 on X.

(i) If, furthermore, we assume that fa is a polyhedral function, then the con-
dition 0f2(T) C 8f1(T) is necessary and sufficient for T being a local minimum of

f = fl - fg on X.
PROPOSITION 2.2. [5] Let f1: X — RU{+00} be any function and fo: X —
R U {400} be a conver and lower semicontinuous function. We have

Inf {fi(2) = fol2)} = inf {fa(=") = fi(=")}-

zreX*

We finish this section by recalling some formulas established in [1] (see also [2])
by C. Combari, M. Laghdir and L. Thibault, concerning the computation of the
subdifferential and conjugate function of the composition of a nondecreasing convex
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function with a convex mapping taking values in a partially ordered topological
vector space. For this, let us consider the following constraint qualification

X and Y are Fréchet spaces,

G is convex, proper, lower semicontinuous and
(C.Q.Ap.By) Y, -nondecreasing on Imh + Y7,

H is Y, -convex, proper with closed epigrah in X x Y,

R, [dom G — Im(domF Ndom H)] is a closed vector subspace.

THEOREM 2.1. [1] If the condition (C.Q.Aq.By) holds then we have:

i) 0(F+GoH)Z) = LJ O(F +y* o H)(Z), for any T € X and
y*€0G(H (%))
i) (F+ Go H)*(z*) = min [G*(y*) + (F + y* o H)*(z*)], for any z* € X*.
y*eYy

REMARK 2.1. The above proposition holds also (see [1]), if we suppose, instead
of the condition (C.Q.A¢.Bg.), that X and Y are locally convex topological real
linear spaces and G is finite and continuous at some point § = h(Z) where Z €
C Ndom f; Ndom h.

3. Optimality conditions

In order to establish the optimality conditions related to problem (P) we will
need the following constraint qualification

X and Y are Fréchet spaces,

f1 and fs are convex, proper and lower semicontinuous
(C.Q.A,.By) i S
h is convex and Epih is a closed subset of X x Y

R, [Yy + h(dom f; N C Ndom h)] is a closed vector subspace.

Now, we are ready to state the necessary optimality conditions.

PROPOSITION 3.1. Let & be a feasible point of (P), i.e., # € CNh™Y(=Y,).
We suppose that the constraint qualification (C.Q.A1.By) is satisfied. If T is a local
manimum, for the problem (P) then for each x* € 0 f2(%) there exists some y* € Y
satisfying (y*, h(Z)) = 0 and z* € I(f1 + éc + y* o h)(Z).

Proof. First, let us notice that the function y — é_y, (y) is convex and Y, -

nondecreasing on the whole space (see also [1]) and with the convexity of mapping
h we obtain that the composite function is also convex.

It is easy to see that a feasible point Z of (P) is a local minimum of (P) if
and only if Z is a local minimum of the following unconstrained DC-minimization
problem (Q)

(Q) inf {f1(2) +éc(2) + 8-y, 0 h)(2) = fa(2)}.
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Hence, by applying Proposition 2.1, it follows that
df2(x) CA(fi + bc + 6_y, o h) (%),

and according to Theorem 2.1, the condition (C.Q.A;.B;) ensures that

af>(z) C L] o(fi +éc+y oh)(@),
y*EN(h(Z),~Yy)
(y*,h(z))=0

i.e., for each 2* € 0f2(7), there exists some y* € Y such that (y*,h(z)) = 0 and
z* € 9(fr+éc +y* oh)(z). m

By taking into account Remark 2.1 we obtain the same result as above in the
setting of locally convex topological real vector spaces.

PROPOSITION 3.2. Let X and Y be two locally conver topological real vector
spaces, fi,fa: X — R U {+o0} are two proper convex functions with fa lower
semicontinuous, h: X — Y U {400} is a proper and Y, -convex mapping and C
is o closed convex subset of X. If there exists some T € C Ndom f; Ndomh such
that § := h(Z) € —int Y, where int Y, denotes the topological interior of the cone
Y, , then for each x* € Of2(x) there exists some y* € Y[ such that (y*,h(z)) =0
and x* € O(f1 + 6¢ +y* o h)(Z).

In order to establish the sufficient conditions linked to problem (P), let us
denote by I(z) the subset of {1,2,...,n} C N* given by

I(z):={ie{1,2,...,n} : fo(@) = (a,7) + b; }

where fo(z) := maxi<i<n{(z],z) + b;} is a polyhedral function with z}, =3, ...,
x¥ € X* and by,by,...,b, € R.

PROPOSITION 3.3. If we assume that fo is a polyhderal conver fuction, then
under the same assumptions as in Proposition 3.1 or Proposition 3.2 we obtain
that a feasible point T of (P) is a local minimum for the problem (P) if and only
if for each i € I(Z) there exists some y; € Y} such that (y;,h(Z)) = 0 and x} €
O(f1+ ¢ +y; o h)(T).

Proof. By proceeding as in the proof of Proposition 3.1 and by combining
assertion ii) of Proposition 2.1 and Proposition 2.2, we obtain that a feasible point
T € X is a local minimum of the problem (P) if and only if

0f2(Z) CA(f1 +bc + by, o h)(T) = L] ah+é0+y oh)(@)
y EN(h(Z),~Y5)
{y*,h(z))=0

As f5 is the supremum of a finite family of affine functions, thus it is easy to check
(or see [1]) that
Of2(x) =co{x} :i € I(z) } (3.1)
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where co stands for the convex hull. Since the subdifferential is a convex subset,
we deduce that Z is a local minimum of (P) if and only if for each ¢ € I(Z) there
exists some y; € Y such that (y;,h(z)) =0 and 2} € 9(f1 + 6¢c +y; oh)(z).m

COROLLARY 3.1. If, in addition to the assumptions of the above Proposition
3.3, we assume that fi and h are finite and continuous at some point of C, then
a feasible point T is a local minimum of (P) if and only if for each i € I(Z) there
exists some y; € Y such that (y;h(z)) =0 and x} € f1(z)+N(z,C)o(y; oh)(Z).

4. Toland’s dual problem associated to (P)

Let us consider the following functions fi, fo: X — RU{+},¢g: Y — RU
{+x}and h: X — Y U{+o0}. By (£) we shall mean the following minimization
problem

(£): it {(fi+g0h)@) - fo(@)}
By virtue of Proposition 2.2, if we assume that fo = f3* then
i {(fi+goh)@) - L)} = _inf {£5(") = (i +g0h) (")}

where f1, g and h are arbitrary functionals. Hence the dual problem (£*) associated
to (£) takes the following form

() inf {f5(@") = (fi+g0h)" @)}
Now, we can state the following duality result.

PROPOSITION 4.1. Let us assume that fi and fo: X — RU{+00} are conver,
proper and lower semicontinuous, g: Y — RU{+oo} is Y -nondecreasing, proper,
convez and lower semicontinuous and h: X — Y U{+o0} is Y, -convex and proper
with closed epigraph. If Ry[dom g— h(dom f; Ndom f3)] is a closed vector subspace
of Y then we have inf(L) = inf(L*) where

mf(£%) = _int | max (") = g"(0") = (fry” o )" (&)},

Proof. We have already pointed out that the following equality
inf {(fi+goh)(@) — fo(@)} = inf {f@")~(fi+goh)@")}

T*EX*

holds under the assumption fo = f3* which is fulfilled since f; is proper, convex

and lower semicontinuous. By applying again Theorem 2.1, we get
(fi+goh) (z") = min {g"(y") + (fr +y" 0 h)"(z")},
yreYy
and thus we may write that
it {(fi + g0 h)(@) - fa(a)}
= inf {f;(z")— min {g*°(y") + (fr +y" 0 h)"(z")}}
Yy €Y+

l‘* eX*
= inf, yzneagci{fé‘ (@)g* (") = (f+y* oh)*(z*)}. =
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Now, let us go back to our main problem (P),

inf f1(z) - fa(2)
xeC.

From the previous results the Toland’s dual problem associated to (P) is defined
by
(P*) in

inf {£3(a") = (fi + 60 + 6oy, o h)*(2")}.

It was mentioned previously that when f5 is convex, proper and lower semicontin-
uous we have inf(P) = inf(P*).

PROPOSITION 4.2. Let us consider two convex, proper and lower semicontin-
uous functions fi and fa : X — R U {400}, a Y} -conver and proper mapping
h: X — Y U {400} with closed epigraph and let C be a nonempty closed and
convez subset of X. If Ry[Y} + h(dom fi N C)] is a closed vector subspace of Y,
then we have inf(P) = inf(P*) with

f(P) = in{ max {£5(2%) = (fi + 80 +y" o h)'(a)}.

Proof. Tt suffices to observe that (P) has the form of the problem (£), i.e., (P)
is equivalent to

zlélg({(fl + ¢ +6-y, o h)(z) — f2(2)},

and that the function g: ¥ — R U {+oc0} given by g(y) = é_y, (y) is convex,
proper, lower semicontinuous and Y, -nondecreasing on the whole space Y (see [1])
and ¢g* = (5iY+ = 6y_: and therefore by applying Proposition 4.1 we obtain there
desired result. m

Under the conditions of Remark 2.1 we obtain the above result in the setting
of locally convex topological vector spaces.

PROPOSITION 4.3. Let X andY be two locally convex topological vector spaces,
fi, f2: X — R U {400} two convex proper functions, h: X — Y U {400} is a
Y, -convex and proper mapping and C is a nonempty convexr subset of X. If we
assume that there exists some T € C Ndom fi Ndom h such that § := h(Z) € int Y7,
then we have inf(P) = inf(P*) with

inf(P*) = inf ;Peaﬁ*_{fé‘(x*) — (f+0c +y o h)*(z")}. (4.1)

COROLLARY 4.1. If we assume, in addition to the assumptions of Proposition
4.2 or Proposition 4.3, that fi and h are finite and continuous at some point of C
then inf P = inf Px with

wi(P) = nl o max U@ 06 )~ oh) )
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Proof. Since h is finite and continuous at some point z € dom f; N C, we have
according to [1] that

(fi+ 80 +y" o h)* (@) = min {(fi+8c) (" —u) +(y" o )" ()}
Also, since f; is finite and continuous at the same point Z, we obtain

(fi+dot+yToh)" (") = min min {f;(z"—u"~v")+8c(v")+(y"oh)" (u")}. (4.2)
Substituting (4.2) in (4.1) we get

int(P*) = inf max {£5(a") = (fi+ 00 +y" o h) (2")} =

inf {f2(2") = fi (@™ =" =v") =65 (v") = (y" o h)"(v")}-

z*eX* (y*,u*, *)EY*XX*XX*

5. Application to fractional mathematical programming problems

In this section, we illustrate the previous results by deriving optimality con-
ditions for a scalar nondifferentiable fractional programming problem subject to a
convex vector constraint. Let us consider the following optimization problem
fi(z)

F2(z)
(H) § h(z) e =Y,

z €C,

inf

where fi, fo: X — R U {400} are two convex functions with fi(z) > 0 and
fo(x) >0 forall z € X, h: X — Y U {400} is a Y, -convex mapping and C is a
nonempty convex closed subset of X. By (Hz) we denote the following minimization

problem
inf{f1(z) — 3f2()}
(Hs) < h(z) € -Y,
zeC
where 35 is a real number.

REMARK 5.1. Since f; and f; may take both the value +o00, we adopt through-
out this section the convention (+00) x 0 = 0.

The following result from [3] allows us to write equivalently the fractional
programming problem as a DC-minimization problem.

PROPOSITION 5.1. [3] The point T is a local (resp. global) solution of the
problem (H) if and only if T is a local (resp. global) solution of the problem (Hs)
_ @)

with § = @)




Optimality conditions and Toland’s duality ... 29

Let us consider the following constraint qualification

X and Y are Fréchet spaces,

f1 and f5 are convex, proper and lower semicontinuous,
Epih is a closed subset of X x Y,

R, [Y; + h(dom f; N C Ndom k)] is a closed vector subspace.

(C.Q.As.B,)

Now, we state the necessary optimality condition for the scalar fractional pro-
gramming problem (H).

PROPOSITION 5.2. Let T be a feasible point of (H), i.e., T € CNhA™YH(=Y,).
If we assume that the condition (C.Q.A2.Bs) is satisfied and T is a local minimum
for the problem (H), then we have: for any x* € 0f2(Z) there exists some y* € Y
verifying (y*, h(Z)) =0 and 3z* € O(f1 + 6c + y* o h)(Z).

Proof. For proving the necessity of optimality conditions we distinguish two
cases. The first is when § > 0. For this, from Proposition 5.1, a feasible point Z of
(H) is a local minimum if and only if Z is a local minimum of (H;s). As 9(5f2) =
50f2(Z) and by applying Proposition 3.1 we get under the condition (C.Q.As.B>)
that for each z* € 9f2(Z) there exists some y* € Y satisfying (y*, h(Z)) = 0 and

sz* € O(f1 + 6c +y* o h)(Z).

The case when § = 0 implies f1(z) = 0 and by virtue of Remark 5.1 and the fact
that Z is a local minimum of (H) we obtain

0€9(fi +6c +b6_yyoh)(T),

which ensures under the condition (C.Q.As.B>) the existence of y* € Y7 satisfying
(y*,h(z)) = 0 and0 € O(f1 + ¢ + y* o h)(Z). This completes the proof. m

COROLARRY 5.1. If we assume, in addition to the assumptions of the above
Proposition 5.2, that f; and h are finite and continuous at some point of C, that
the condition (C.Q.A3.By) holds and T is a local minimum of (H) then we obtain:
for any x* € 0f2(x) there exists some y* € Y} satisfying (y*, h(x)) =0 and

sz* € 0f2(Z) + No(Z) + 0(y™ o h)(Z).

The related sufficient optimality conditions are given by

PROPOSITION 5.3. If we suppose that fo is a polyhedral conver function, then
under the same assumptions in Proposition 5.2 we obtain that a feasible point T of
(H) is a local minimum for the problem (H) if and only if for each i € I(Z) there
exists some y; € Y such that (y;,h(z)) =0 and

sz € O(f1 +6c +y oh)(Z).
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Proof. We apply Proposition 3.3 and Proposition 5.2. m

COROLLARY 5.2. If, under the assumptions of Propositions 5.3, f1 and h are
assumed to be finite and continuous at some point of C, then Z is a local solution
of (H) if and only if for each i € I(x), there ewists some y; € Y| such that
(y¥,h(z)) = 0 and 5250 f1(Z) + No(x) + 9(y} o h)(z).

Proof. We use the same arguments as in Corollary 3.1. m
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