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GENERALIZED BINOMIAL LAW
AND REGULARLY VARYING MOMENTS

Slavko Simié

Abstract. In this paper we demonstrate a method for estimating asymptotic behavior of
the regularly varying moments E(K,(X»)), (n — oo) in the case of generalized Binomial Law.
Here K,(x) is from the class of regularly varying functions in the sense of Karamata. We prove
that

E(Kp(Xn)) ~ Kp(E(Xn)), p>0, E(X,)—o0o (n— 00),

i.e., that the asymptotics of the first moment determines the behavior of all other moments.

1. Introduction

1.1. We shall consider a polynomial P,(c) :== Y, ., parc® with non-positive
zeros and a random variable X,, defined as follows: B

k
PnkC
P{Xn = k} = P (C)’

k<mn; k,neNU{0}.

We call this a generalized Binomial Law with parameter ¢ > 0, since for
Po(e)=(1+¢)" ¢/(Q+c):=p; 1/(1+¢):=g,

we obtain the well-known Binomial Law.

Define also, in the usual way, the first moment E(X,,) and variance D?(X,,):

B(X,) = Pnl(c) T kpasct DA(X,) o= %(C) (k= B s

The aim of this paper is to determine the asymptotic behavior of the moments
generalized in the following way.

Let K,(z) := z*4(z), x > 0; K,(0) := 0 be a regularly varying function of
index p € R in the sense of Karamata. Then

1
kPL(K)py, Ck, € R.
Bote) =, kPt

E(Ky(Xn)) :=
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We shall prove the following
THEOREM A. For the generalized Binomial Law, defined above, we have
E(K,(Xn)) ~ Kp(E(Xy)), E(X,) =00 (n— o0).
for each p € R*.

Therefore, for this class of distributions, it is particularly simple to determine
the asymptotic behavior of its moments.

1.2. Karamata’s class K, plays here an important role. We say that ¢ € K,
if it can be represented in the form ¢(z) := z°4(z), x > 0, p € R, where p is the
index of regular variation and £(z) € K is a slowly varying function, i.e., positive,
measurable and satisfying ¢(tz) ~ ¢(x), Vt > 0 (z — 00). Some examples of {(z)
are:

log z

_o8T log® bER;, 0<c<1.
DB ) expllog’a). a :

1, log® z, log’(log z), exp<

According to [2], a sequence (c¢,,), co = 0 is regularly varying with index p € R if it
has the form ¢, := n*¢,, n € N and {,, = £(n) for some continuous £ € Ky. Then
we also say that ¢, € K,,.

The theory of regular variation is well-developed and for more details see [1]
and [4].

2. Proofs

We prove Theorem A in three steps.
First, we suppose that p € N, {(-) := 1, and prove the next proposition.
ProposiTION 1. If E(X,) — 00 (n — o0), then

1

E(X") = Polo) En k™ pric® ~ (E(Xn))™  (n — 00),

for each m € N.

Denote by A the set of all polynomials with non-positive zeros.
To prove the last assertion, we need the following lemma.

LEMMA 1. If P,(c) € A and E(X,), D*(X,) are defined as above, then
D?(X,)

0= Ex.)

<1 for eachc€ Rt, n € N.

Proof. Since P,(c) € A, it can be represented in the form

Pn(c) = Pnn H (c + ank), anr > 0.
k<n
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Hence
BX) = cLllog Pa(e)) = 3 —5
n) = g8t Sh et ant’
d Chnk
D*(X,) = E(X?) — E*(X,) = c—(E(X,)) = Sl L
(Xn) = BX) = B(X0) = e (BUX) = & s
Therefore,
D2(_Xn) _ C Ank < C _ E(Xn)’

k<n €T Onk C+Qnk  g<n C+ Ank

i.e., Lemma 1 is proved. m

Consider now a sequence of polynomials {Q.,(c)} generated from P,(c) by the
recurrence relation

Qm(c) :=cQl,_1(c);  Qolc) :=Py(c), meEN.
It is easy to see that

Qm(c) = Y k™purct = E(X™)P,(c) m € N.
k<n
Since P,(c) € A, by the classical result, its zeros are separated by the zeros of
P! (c). Hence, zeros of Q1(c) := cP.(c) are also non-positive.
By induction we obtain @Q,,(c) € A, m € N. Therefore, we can apply Lemma
1 to the polynomial @ = @,,(c) € A and obtain

0<Tm:=w<l m € N.
But T,, = E(X™*Y)/E(X™) — E(X™)/E(X™" '), m € N; hence
E(XT)

BXT ) E(Xn) + kgm Ti—1 = E(X,) + O(m).

On the other hand,
E(X7) =[] B(XH/EXE)

k<m

= [ (B(X.) + O(k)) = B(X.)™ + O(m?) B(X, )™,
k<m

Since m € N is fixed and E(X,) — oo (n — 0), Proposition 1 is proved. m
In the next step, we shall prove our assertion for real positive exponents i.e.,

ProposITION 2. If E(X,) — 0o (n — 00) then
E(X]) ~ (BE(Xn))”  (n— ),
for each p € RY.
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Proof. For this we need the well-known Lyapunov’s moments inequality

LEMMA 2. For real r > s >t we have
(B(X;) ™" < (B(X;))* " - (B(X,,)" .

Let m < p<m—1,m € N. Applying Lemma 2 and Proposition 1, we get
B(Xp) < (B(X)r~m - (B(Xph)mr
= (B(X,))memHHm= Do) (1 4 (1)) = (B(Xa)) (1 + o(1)).
Hence limsup E(X£)/(E(X,))” <1.
Pu&;{; now in Lyapunov’s inequality r :=m + 1; s :=m; t := p we obtain
BE(XP) > (BX)™ =7 (B(X )™
= (B(X,))mmH1=A=tmam=e)(1 + o(1)) = (E(Xn))*(1 + o(1)),
ie., linrr_l'igf E(XA)/(E(Xy)) > 1.
Therefore, Proposition 2 is proved. m

Now we are able to prove Theorem A. For this, we just need the following
assertion which is fundamental in the Theory of Regular Variation ([1], [4]).

LEMMA 3. For any slowly varying £(-), some u € Rt and y — oo, we have
(i) sup(ztl(z)) ~y*"U(y); (1) supz™Hl(x) ~y " l(y).

z<y >y

We shall estimate the expression 7',

poo BENX) L Yken Mpar(UR)/UE(XR)) — 1)c*
= BXDUE(X,) S an B '
Now, for some g, 0< o <1 we get

D k<n K Pk |0(R) JU(E(Xn)) — 1]c*

IT| <

Zkgn kpp”kck
1
e T+ ) +
Ekgn kppnkck (k<crE(Xn) 0cE(X,)<k<E(Xn)/oc k>E(X,)/o
=T+ Ty +Ts.

Applying Lemma 3 (part (i)) and Proposition 2, we obtain
1

= S e o ity O PR UE (X)) = RS
k<n n <o n

T

w (k) o2y ECXE)
<, _sup (RIEH(R)/HECG) + /) T

~ 20 B(X,))"? - (B(X,))? < 0?2,
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and, analogously, using (ii) of Lemma 3,

/2 s B(X?)
T < su k=P20k)JLE(X,)) +k° _—~
N (k) /U(B(X,)) )BT

~ 2E(Xn) /o) 7% - (B(X0))? < o?/.
We also have
EaE(Xn)gkgE(Xn)/o kP pri|[(k)/U(E(Xn)) — 1]c*

Zkgn kP ppick

< sup (k) /U(E(Xn)) — 1] = o(1) (E(Xn) — o0),
0E(X,)<k<E(Xn)/o

T, =

by the Uniform Convergence Theorem ([1], pp. 6-11).
Therefore,

T<Ti+To+T5=0(0"?)+0(1) (n— o).
Since p > 0 and ¢ can be taken arbitrarily small, we deduce that
E(K,(B(X,)) ~ B(X2)U(X,) ~ (B(X,))PUE(w2)) = K,(E(X,)) (n— o),
i.e., operators £ and K, are asymptotically commutative, which was the content

of Theorem A. Hence, the proof is done. m

REMARK 1. In the previous proof, the sum 73 may be empty. But then
T< sup  [U(k)/UE(Xn))—1]
ocE(Xy)<k<n
< sup [L(k)/U(E(Xn) — 1] = o(1) (n — o0),
o E(Xn)<k<E(X,)/o
by Uniform Convergence Theorem again.
Finally, we give some applications of Theorem A.

ExampLE 1. Taking Pp(c) == (1 +¢)"; E(X,) = ¢fzn (n — o0) and putting
T4: = D} 133 *= ¢ we obtain an asymptotic formula for regularly varying moments

of the Binomial Law:

2 kot (Z)P’“q”—k ~pPnfl,, pE€RT (n— oo).
k<n

EXAMPLE 2. Laguerre polynomials L(na)(c) of index a > —1 have all zeros real

and positive. Hence Lgf)(—c), ¢ > 0, satisfy the condition of Theorem A. Using
Perron’s formula (cf.[3], p.197) we obtain E(X,) ~ \/cn (n — o0), i.e.,

1 k
3 X Kl <n+ a) o~ PlPU(R), >0, peRY  (n— o).
Lna (—C) k<n n—=k/) k!

REMARK 2. Further considerations can show that Theorem A is also valid for
negative values of exponent p (see [5]).
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