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THE LOWER AND UPPER TOPOLOGIES AS A BITOPOLOGY
B. Dvalishvili

Abstract. The importance of the theory of bitopological spaces is fully demonstrated by
its natural relationship to the theory of ordered topological spaces. Using the parallels drawn
by M. Canfell and T. McCallion between the theory of bitopological spaces and that of ordered
topological spaces, we construct the dimension theory for ordered topological spaces and formulate
and study the Baire-like properties of the latter spaces, thereby filling in the gap of the theory of
ordered topological spaces. Further, based on these parallels, the relations between the separation
axioms of ordered topological spaces and the corresponding bitopological spaces are established.

1. Introduction

The formation and progress of the theory of bitopological spaces, that is to
say, sets on which are defined two arbitrary topologies, originated from [15], are
not of isolated character. The theory acquires special importance in the light of
applications of its results.

It is to be noted that distance functions, uniformity and proximity are the
related notions in defining topology and, naturally, the situation treated in [15] is
by no means the only way leading to a symmetric occurrence of two topologies on
the same set: the investigations of quasi-uniformity [21], [33] and quasi-proximity
[13], [24] also lead to a similar result. Proceeding from the symmetric generation
of two topologies on a set, alongside with the above-mentioned cases, we can also
consider ordered topological spaces i.e., sets, having a topology and a partial order
[1], [6], [18], [19], [22], [25], partially ordered sets [2] and hence directed graphs [7],
[8], semi-Boolean algebras [26], S-related topologies [34] and so on.

There are several hundred works dedicated to the investigation of bitopologies,
i.e., pairs of topologies on the same set; most of them deal with the theory itself but
very few with applications. The later papers have appeared after the late sixties
(see, for example, [4]-[6], [8], [10], [11], [14], [17], [19], [25], [29]-[31]).

In the present paper the following abbreviations will be used: BS for a bitopo-
logical space, BsS for a bitopological subspace; BSs for bitopological spaces; sim-
ilarly, TS for a topological space, OTS for an ordered topological space and so
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on. Always i, € {1,2} and ¢ # j. Also note that in our discussion the letter
“u” abbreviates the word “upper”, the letter “I” abbreviates the word “lower” and
the combination of the letters L.s.c. (u.s.c.) abbreviate the phrase “lower (upper)
semicontinuous”.

Let (X,71,72) be a BS and P be some topological property. Then (i,7)P
denotes the analogue of this property for 7; with respect to 7;, and p-P denotes
the conjunction (1,2)P A (2,1)P, i.e., p-P denotes the “absolute” bitopological
analogue of P, where p is the abbreviation for “pairwise”. As we shall see below,
sometimes (1,2)P <= (2,1)-P (and thus <= p-P) so that it suffices to consider
one of these three bitopological analogues. Also note that (X, 7;) has a property
P < (X,71,72) has a property P, and d‘P < 1P A 2P, where d is the
abbreviation for “double”.

By analogy, for an OTS (X, 7, <) we will consider the properties (I,u)-P, (u.l)P
and O-P < (I,u)P A (u,l)P.

Let (X,71,72) be any BS and A C X be its any subset. Then 7;cl A and
7; int A denote respectively the closure and the interior of A in the topology 7;.

Though we expect the reader to be familiar with the basic notions of L. Nach-
bin’s theory, nevertheless, we would like to recall some of them. Following [22], each
subset A C X determines in a unique fashion an increasing set i(4) (a decreasing
set d(A4)) which is the smallest one among increasing (decreasing) sets containing A.
A set A C X is said to be convex if A =i(A)Nd(A). The smallest closed increasing
set I(A) (the smallest closed decreasing set D(A)) is also defined in a unique fashion.
Hence the set I(A) N D(A) is the smallest closed convex set containing A.

If I = [0,1] is the unit interval, then (I,w’) is the TsS of the natural TS (R,w).
For the natural OTS (R,w, <) the binary relation < is the natural order on R and
(I,w',<’) is the OTsS of (R, w, <).

Finally, please note that all generalizations for bitopological or topology-order
cases are constructed in the commonly accepted manner so that if the topologies
coincide or a partial order on a set is discrete, one obtains the classical definitions
and results from general topology.

2. Axioms of Separation

DEFINITION 2.1. A function f : (X,71,7) — ([,0') is said to be (4,))-
l.u.semicontinuous (briefly, (i, j)-l.u.s.c.) if f is i-l.s.c. and j-u.s.c.

Using Definition 2.1 from [16] in our terms we come to

DEFINITION 2.2. Let (X,71,72) be a BS and A, B be subsets of X. Then
A is (i, j)-completely separated from B if there is an (i,7)-l.u.s.c. function f :
(X,711,72) = (I,w') such that f(4) =0 and f(B) =1.

Since f : (X, 11,72) — (I,w') is (4,7)-lus.c. <= (1 —f) : (X, 71,72) — (I,w')
is (j,4)-l.u.s.c., it is clear that A is (4, j)-completely separated from B <= B is
(j,1)-completely separated from A.
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DEFINITION 2.3. Let (X, 7y, 72) be a BS. Then

(1) (X,71,72) is R-p-Ty (i.e., p-T; in the sense of Reilly) if it is d-Ty [27].

(2) (X,71,72)is p-T if for each pair of distinct points z, y € X there exist disjoint
a 1-open set U and a 2-open set V such that z € U, y € V [15].

(3) (X, 71,72) is (i, j)-regular if for each point x € X and each i-closed set FF C X,
x € F', there exist an i-open set U C X and a j-open set V' C X such that
zeU,FCVadUnNV =g [15].

(4) (X,71,72) is (i, 7)-completely regular if every i-closed set F C X is (4,5)-
completely separated from each point z € F' [16], [20].

(5) (X,71,72) is p-normal if for every pair of disjoint sets A, B in X, where A is
1-closed and B is 2-closed, there exist a 2-open set U C X and a 1-open set
VcXsuchthat ACU, BCVandUNV =g [15].

(6) (X,71,72) is hereditarily p-normal if its every bitopological subspace is p-
normal [9].

(7) (X,71,72) is (4, j)-extremally disconnected if 7;clU = 7;int7; clU for every
set U € 7; or, equivalently, 7; cl7;int A = 7;int 7; cl7; int A for every subset
ACX 3]

Using Lemma 0.2.1 from [11] it is not difficult to see that (X, m1,72) is (1,2)-
extr. disconn. <= (X,71,72) is (2,1)-extr. disconn. <= (X,7,72) is p-extr.
disconn.

THEOREM 2.1. A BS (X, 71,7) is hereditarily p-normal if and only if it is
p-completely normal in the sense of Patty, i.e., if and only if whenever A and B
are subsets of X such that (1 lANB)U (ANTycl B) = & there exist a 2-open set
U and a 1-open set V' which are disjoint and for which A C U and B C 'V [23].

COROLLARY. Every hereditarily p-normal BS is p-normal.

In the topological case the complete regularity in internal terms, i.e., without
using the notion of a function, was characterized by O. Frink [12], E. F. Steiner [32]
and V. L. Zaicev [36]. Their modifications for BSs were studied, on the one hand, by
M. J. Saegrove [28] using the generalization of Steiner’s method and, on the other
hand, by us with the aid of the generalized method of O. Frink and V. I. Zaicev
(see Theorem 2.2).

A double family, i.e., a pair of families Z = {21, 25}, where Z; is an i-closed
base of a BS (X, 71,72), is called a d-closed base and co Z = {co Z;,co Z2}, where
co Z; is an i-open base, conjugate with Z;, is called a d-open base, conjugate with
Z=1{2,2).

DEFINITION 2.4. A d-closed base Z = {Z1, 25} of a BS (X, 7y, 73) is said to
be a p-normal if the following conditions are satisfied:

(1) For every point € X and its any neighbourhood U(z) € co Z; (U(z) € co Z3)
there exists a set A € Z5 (A € Z1) such that x € A C U(z).
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(2) If A€ 2y, B€ 25 and AN B = @&, then there exist U € co 23, V € co Z; such
that ACU,BCVandUNV =ga.

THEOREM 2.2. A BS (X, 71,72) is p-completely regular if and only if it pos-
sesses at least one p-normal base [11, Theorem 0.2.2].

In [6] M. Canfell draw the parallel between the theories of OTSs and BSs in
the following manner: to each OTS (X, 7 <) there corresponds the BS (X, 1, 72),
wheren ={U er: U=iU)} and , ={V € 7: V =d(V)} are respectively the
upper and the lower topology with respect to the partial order < in terms of [6].
On the other hand, M. Canfell leaves the question open in what cases a BS can be
treated as an OTS, i.e., whether (X, 71,72) is a BS and whether 7 = sup(m1, ),
and what conditions one must have for the existence of a partial order < on X such
that 73 would coincide with the upper topology and 7 with the lower topology
of (X,7,<). According to H. A. Pristley [25, Proposition 10] the answer to this
question is as follows: let (X, 71, 72) be a BS and 7 = sup(71,72) be compact. Then
there exists a partial order < with a closed graph on X such that 7 and 7 are
respectively the upper and the lower topology of (X, 7, <) if and only if
(1) (X, T1,T2) is l—Tg (OI‘ a 2—T0).

(2) (X, 71, 72) is p-regular.

The above duality seems essential for discussing different mutually beneficial
relations between these two theories.

For example we can give a fact, which directly follows from this duality, (7) of
Definition 2.3 and [25, p. 521]:

(X, 71,72) is p-extremally disconnected <= (X, 7, <) is extremally order dis-
connected in 71 <= (X, 7, <) is extremally order disconnected in 7.

In the context with the above-said we shall consider the axioms of separation
of OTSs, taking into account the axioms of separation of the corresponding BSs,
also introduce and investigate the dimension functions and Baire-like properties for
OTSs. Please take into consideration that owing to duality, the results constructed
here are of quite a simple character.

DEFINITION 2.5. An OTS (X, 7, <) is said to be upper (lower) Tj-ordered if for
each pair of elements z, y € X, z £ y, there exists a neighbourhood U(y) = d(U(y))
(U(z) = i(U(z))) such that z€U(y) (y€U(x)), and (X,7,<) is said to be T}-
ordered if it is both upper and lower Tj-ordered [19].

The concept of Ti-order coincides with those of semicontinuous partial order
[35] and semiclosed partial order [22].

DEFINITION 2.6. An OTS (X, 7, <) is said to be T-ordered if for each pair of
elements z,y € X, x £ vy, there exist disjoint neighbourhoods U(z) = i(U(x)) and

Uly) = d(U(y)) [19].

This concept coincides with those of continuous partial order and closed partial
order in [35] and [22], respectively.
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DEFINITION 2.7. An OTS (X,7,<) is said to be upper (lower) regularly
ordered if for each set F' = I(F) C X (F = D(F) C X) and each element z € F
there exist disjoint neighbourhoods U(F') = i(U(F')) and U(z) = d(U(z)) (U(F) =
d(U(F)) and (U(z) =i(U(z))).

(X, 7,<) is said to be regularly ordered if it is both upper and lower regularly
ordered. (X,7,<) is upper (lower) T3-ordered if (X, 7, <) is both upper (lower)
T;-ordered and upper (lower) regularly ordered. (X, 7, <) is T3-ordered if it is both
Ti-ordered and regularly ordered [19].

DEFINITION 2.8. An OTS (X, 7, <) is said to be normally ordered if for each
pair of disjoint sets Fy = I(Fy), Fo = D(F) there exist disjoint neighbourhoods
U(Fy) =i(U(F1)) and U(Fy) = d(U(F»)) [19], [22].

(X, 7, <) is said to be Ty-ordered if it is T1-ordered and normally ordered [19].

The work [19] also contains the definitions of the strong Tj-order separation
axioms for k = 1,4 obtained from the Tj-order separation axioms by using the term
“open neighbourhood” instead of “neighbourhood”. We denote the Tj-order (the
strong Ty-order) separation axioms by Ty(o) (STk(0)) for k =1,4.

It is obvious that following implications hold:

ST4(0) — ST3(0) — STQ(O) — STl(O)
U U U U

T4(0) —— T3(0) S Tg(o) —— T1(0)~

The converse implications are not generally valid.
Out of the basic separation axioms only the axiom T31 o) will be recalled.

DEFINITION 2.9. An OTS (X, 7, <) is said to be completely regularly ordered

if the following conditions are satisfied:

(1) For each point z € X and its every neighbourhood U(x) there are two con-
tinuous real-valued functions f and g on X, where f is order preserving and
g is order reversing such that 0 < f <1,0< g <1, f(z) =1 = g(x) and
inf(f(y),9(y)) = 0if y € X\U ().

(2) Ifz, y € X, x £y, then there exists an order preserving continuous real-valued
function f such that f(z) > f(y) [22].

(X, 7, <) is said to be Ty q) ordered if it is T and completely regularly ordered.

Let (X,7,<) be an OTS. Then by [18] a set A C X is called a decreasing
(increasing) zero set in (X, 7, <) if there is an order preserving (order reversing)
continuous function f : (X,7,<) —» (R,w, <) such that A ={z € X : f(z) <0}.
The family of all dereasing (increasing) zero sets in (X, 7, <) is denoted by A; (As).
Iff:(X,n<) = (Rw,<) is continuous and order preserving (order reversing),
then by Proposition 1.1 from [18], A € A; (A € Aj) defines a continuous order
preserving (order reversing) function f : (X,7,<) — (R,w, <) such that A = {z €
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X : f(x) =0, f > 0}. Clearly, in both cases A is closed in (X, 7, <) and therefore
A=D(A) for Ae A (A=1(4) for A € Ay).

Following [18], the family A; (A2) is a base of closed sets of a topology 7.4, (7.4, )
on X. Such topologies are characteristic of completely regularly ordered spaces.

DEFINITION 2.10. Let (X,7,<) be an OTS and Z; (2>) be a family of de-
creasing (increasing) closed sets of X. Then Z; U Z5 is called a normally ordered
subbase for (X, 7, <) if the following conditions are satisfied:

(1) 21 (Z2) is a base for closed sets of the topology 7z, (7z,) on X such
that sup(rz,,72,) = 7 and (7z,,7z,) is an order defining pair, so that
z €Tz, cyl =z <y<=ye€rzcl{z}

(2) f z € X, F € corzg, (F € corz,) and x €F, then there is a set A € 2,
(A€ Z))such that z € Aand ANF = 2.

(3) If Ay € 21, Ay € Z5 and Ay N Ay = &, then there are sets A] € Z;, A, € 2,
such that Ay C A}, Ay C AL, Ay NAL, =2 = A N Ay and A] U A, = X [18].

We conclude the dicussion of the axioms of separation of OTSs by investigating
their relations with the axioms of separation of the corresponding BSs, where the
correspondence is of one of the two types mentioned above.

THEOREM 2.3. Let (X,7,<) be an OTS, (X, 71,72) and (X,T4,,Ta,) be the
corresponding BSs in the sense of M. Canfell [6] and T. McCallion [18], respectively.
Then the following statements are valid:

(1) (X,m1,72) is R-p-T1 = (X,7,<) is STi(0)-

(2) (X,m1,72) is p-To = (X, 7,<) is STy0)-

(3) (X,711,72) is p-regular <= (X, 7, <) is strong reqularly ordered.

(4) (X,7,<) is completely reqularly ordered = (X, TA,,TAa,) is p-completely reg-
ular and, conversely, if sup(Ta,,TA,) = 7, then (X,74,,7T4,) i8S P- 31 =
(X, 7,<) is T51(g)-

(5) (X,11,72) is p-normal <= (X, 1, <) is strong normally ordered.

Proof. (1)—(3) and (5) are immediate consequences of the corresponding defi-
nitions. Hence it remains to prove only (4). We begin by assuming that (X, 7, <)
is completely regularly ordered. Then by Theorem 1.3 from [18], A; U A; is a
normally ordered subbase for (X,7,<). Therefore on account of Definition 2.4,
A = {A;1, A2} is a p-normal base for the BS (X, 74,,74,) and it remains to use
Theorem 2.2.

Conversely, let (X,74,,74,) be p-Ts1 and z € X. It is assumed that U(x) is
any 7-neighbourhood of z. Since sup(7.4,,74,) = 7, there are Uy € 74,, Uz € T4,
such that x € Uy NUy C U(z). Thus 2 € X\(U1 N Uy) = (X\U1) U (X\U2) so
that £ € X\U; and £ € X\U,. Since (X,74,,7T4,) is p-completely regular, there
are functions f,g : (X, 74,,74,)— (I,w'), where f is a (1,2)-l.us.c., g is a (2,1)-
Lu.s.c. such that f(z) =1 = g(z), f(X\U1) = g(X\Uz2) = 0. But (X,74,,74,)
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is p-completely regular and therefore it is p-regular. Hence by [15, p. 87|, f, g :
(X,7,<) = (I,w',<') are continuous and respectively order preserving and order
reversing functions. Since Uy N Uz C U(z) = X\U(z) C (X\U1) U (X\U2), we
obtain inf{f(y),g(y)} =0 for y € X\U(z). Thus (1) of Definition 2.9 is satisfied.
Finally, let z,y € X, < y be false. Then z # y and since (X,74,,74,)
is R-p-Ty, we have {y} € cor; and therefore there is a (1,2)-l.u.s.c. function
[ (X,74,,74,) — (I,0') such that f(z) = 1, f(y) = 0. By virtue of the above
reasoning, f : (X,7,< ) — (I,w’, <) is also continuous and order preserving. m

COROLLARY 1. Let (X,7,<) be an OTS and (X,7a,,74,) be Rp-Ty. If
sup(74,,74,) =T, then (X,74,,74,) 18 p-T31 <= (X,7,<) is Ts1(q).-

Proof. Is an immediate consequence of (4) of Theorem 2.3. m

COROLLARY 2. Ifsup(74,,74,) =7 and (X,74,,74,) is p-Ts1, then (X, 7, <)
has a normally ordered subbase.

Proof. Indeed, by (4) of Theorem 2.3, (X, 7,<) is T31(g) and therefore com-
pletely regularly ordered. Thus it remains to use Theorem 1.3 from [18]. m

3. Dimension functions

Let us define new operators which are also natural and necessary for further
investigations. Every set A in (X, 7, <) determines uniquely the largest decreasing
(increasing) set d;(A) (i1(A)) contained in A and the largest open decreasing set
Di1(A) (increasing set I (A)) contained in A. It is obvious that d; = X\i(X\A4)
(11(A4) = X\ d(X\A4)), D1(4) = X\ I(X\A) (/1(4) = X\ D(X\A)). Moreover, if A
is closed and decreasing (increasing), then A = d(A) = D(A4) =di(A) (A=i(A) =
I(A) = i1(A4)), and if A is open and decreasing (increasing), then 4 = di(A4) =
Dy (4) = d(4) (4 = ir(4) = [(A) = i(4)).

If (X,7,<)isan OTS and (X, 71, 72) is the corresponding BS in Canfell’s sense,
then it is clear that D(A) = el A (I1(A) = mint A), I(A) = »cl A (D1(4) =
T2 int A) and thus A is closed and convex in (X, 7,<), ie., A=D(A)NI(4) <= A
is p-closed in (X, 7y,72), i.e., A =71 clAN 7 cl A. Due to these relations we have
D(AUB) = D(A)UD(B), D(D(4)) = D(A4), I(AUB) = I(A)UI(B), I(1(A)) = I(A),
Dl(A N B) = Dl(A) N Dl(B), Dl(Dl(A)) = Dl(A) and Il(A N B) = Il(A) N Il(B),
L (11(A4)) = Li(4).

Also note that u-Bd(X) = {A € 2% : L1(A) = @}, I-Bd(X) = {4 € 2% :
Di(A) =2}, u-D(X)={A€2X: [(A) = X} and I-D(X) = {4 € 2X : D(4) =
X}.

DEFINITION 3.1. For a subset A of an OTS (X, 7, <) the (I,u)- and (u,l)-
boundaries are respectively the sets (I,u)-Fr A = D(A) N I(X\A), (u,l)-FrA =
I(A) N D(X\A).

THEOREM 3.1. In an OTS (X, 7, <) the (I,u)- and (u,l)-boundaries have the
properties as follows:
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(1) (I,u)-Fr A = By U Bs, where By € I-Bd(X) and By € u-Bd(X).
(u,1)-Fr A = Cy UCy, where Cy € u-Bd(X) and Cy € I-Bd(X).
(2) D(A) =D1(A) U (I,u)-Fr A, I(A) = [1(A) U (u,l)-Fr A.
(8) D1(A) = A\(l,u)-Fr A, I, (A) = A\(u,l)-Fr A.
(4) (l,u)-Fr A = (u,l)-Fr(X\A).
(5) X =L(A)U (u,)-FrAUD;(X\A) =D1(4) U (l,u)-Fr AU I, (X \A).
(6) (Il,u)FrD(A)U (I,u)-FrD;1(A) C (I,u)-Fr A.
(u,1)-FrI(A) U (u,l)-FrI; (A) C (u,l)-Fr A.
(7) A=D(A) < (I,u)-Fr A = A\ Dy (4).
A=1(A4) < (u,l)-Fr A = A\, (A).
(8) A=D1(A) < (I,u)-Fr A =D(A)\A.

A=1L(A) <= (u,l)-Fr A=T1(A)\A.
(9) A=D1(A) =D(A) <= (l,u) FrA =o.
A=I5L(A)=](4) <= (u,l)-FrA=2.
(10) (l,u)-FrAu (I,u)-FrB = (I,u)-Fr(AU B) U (l,u)-Fr(An B) U (({,u)-Fr AN
(u,1)-Fr B) U ((I,u)-Fr BN (u,l)-Fr A).
(u,l)-Fr AU (u,l)-Fr B = (u,l)-Fr(AU B) U (u,l)-Fr(A N B) U ((u,l)-Fr AN
(l,u)—FrB)U(( 1)-Fr BN (I,u)-Fr A).

Proof. The theorem is proved by simple calculations, taking into account
Canfell’s duality and Theorem 1.3.1 from [11]. m

REMARK 3.1. Following [25, p. 509] if A is a subset of an OTS (X,7,<), 4
may be made into an OTS (A, 7', <’), where 7’ is the induced topology and <’ the
induced order, so that if z, y € A, then v <' y <= z < y. On the other hand, 4
may be regarded as a BsS (A, 77,74), 71 and 75 being the topologies induced on A
by the upper and lower topologies 71 and 75 on X. It is clear, that every member of
7, is 7'-open and increasing in A and every member of 7} is 7'-open and decreasing
in A. Define (4,7',<’) to be an order subspace of (X, 7, <), if 71 and 74 coincide
with the upper and lower topologies of (4,7, <'). The same idea is considered by
S. D. McCartan [19], where the term “7-compatibly ordered” is used.

In the sequel we shall consider only an order subspace of an OTS (X, 7, <).

DEFINITION 3.2. An OTS (X, 7, <) is said to be hereditarily strong normally
ordered if its any order subspace is strong normally ordered.

To characterize such spaces we shall make use of the following notions.

DEFINITION 3.3. If A and B are subsets of an OTS (X, 7, <), then we write
A <’ B to indicate that (ANI(B)) U(D(A) N B) = &. In addition, if A <’ B and
there exist disjoint neighbourhoods U(A) = D;(U(A)) and U(B) = I, (U(B)), then
we write A <’ B.

PROPOSITION 3.1. The following conditions are satisfied in an OTS (X, 1,<):
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(1) (X,7,<) is hereditarily strong normally ordered if and only if A <' B =
A < B, for every pair of subsets A, B C X.

(2) If (X,7,<) is strong regularly ordered and A C X, then (A,7',<') is also
strong regqularly ordered.

(3) If (X,7,<) is strong normally ordered and A = D(A) NI(A) C X, then
(A,7',<") is also strong normally ordered.

Proof. Using Canfell’s duality and Remark 3.1, the proof immediately follows
from Theorem 2.1, Propositions 3.1.1 and 3.2.1 from [11]. m

COROLLARY. FEvery hereditarily strong normally ordered space is strong nor-
mally ordered.

Proof. Follows immediately from (1) of Proposition 3.1. m

DEFINITION 3.4. Let (X, 7,<) be an OTS and n denote a nonnegative integer.
We say that

(D1 (u,)-indX =-1<—= X =2.

(2)1 (u,0)-ind X < n if for every point x € X and any neighbourhood U(z) =
I;(U(x)) there exists a neighbourhood V(z) = I;(V(z)) such that I(V(x)) C
U(X) and (u,)-ind(({,u)-FrV(z)) <n—1.

(3)1 (u,)-ind X = n if (u,l)-ind X < n and the inequality (u,[)-ind X < n—1 does
not hold.

(4)1 (u,!)-ind X = oo if the inequality (u,!)-ind X < n does not hold for any n.
Similarly,

(D)2 (Lu)indX =-1<—= X =2.

(2)2 (I,u)-ind X < m if for every point x € X and any neighbourhood U(z) =
Dy (U(z)) there exists a neighbourhood V (z) = D, (V(x)) such that D(V(z)) C
U(X) and (I, w)-ind((u,)-FrV(z)) <n—1.

(3)2 (I,u)-ind X =n if (I,u)-ind X < n and the inequality (/,u)-ind X < n—1 does
not hold.

(4)2 (I,u)-ind X = oo if the inequality (I,u)-ind X < n does not hold for any n.
O-ind X <n <= (u,0)-ind X <nA (l,u)-ind X <n.

DEFINITION 3.5. Let (X, 7, <) be an OTS and n denote a nonnegative integer.

We say that

(1)1 (u,0)IndX = -1+ X = 2.

(2)1 (u,!)-Ind X < n if for every set F' = I(F) and any neighbourhood U(F) =
L (U(F)) there exists a neighbourhood V(F) = I (V(F)) such that I(V(F)) C
U(F) and (u,1)-Ind((l,u)-FrV(F)) <n — 1.

(3)1 (u,)-IndX = n if (u,])-Ind X < n and the inequality (u,!)-IndX < n —1
does not hold.

(4)1 (u,!)-Ind X = oo if the inequality (u,!)-Ind X < n does not hold for any n.
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Similarly,

(Lu)-IndX = -1« X =2.

(I, u)-Ind X < n if for every set F' = D(F) and any neighbourhood U(F) =
D¢ (U(F)) there exists a neighbourhood V(F') = D1 (V (F)) such that D(V(F)) C
U(F) and (I, u)-Ind((u,l)-Fr V(F)) <n — 1.

(l,u)-Ind X = n if (l,u)-Ind X < n and the inequality (/,u)-Ind X < n -1
does not hold.

(I,u)-Ind X = oo if the inequality (I,u)-Ind X < n does not hold for any n.
O-Ind X <n <= (u,l)-Ind X <nA(l,u)-Ind X <n.

DEFINITION 3.6. Let (X, 7, <) be an OTS and n denote a nonnegative integer.

say that

(u,1)-dimX = -1<= X = 2.

(u,1)-dim X < n if for all families of sets {U, = L(U,) : s = 1,k} and
{F, =1(F.): s=1,k}, where F, C U, for each s = 1, k, there exists a family
of sets {V, = L(Vs): s = I,_k} such that F, C V, C U, for each s = 1,k and
ord{(l,u)-FrVy: s=1,k} <n.

(u,1)-dim X = n if (u,l)-dim X < n and the inequality (u,l)-dimX < n —1
does not hold.

(u,1)-dim X = oo if the inequality (u,[)-dim X < n does not hold for any n.

Similarly,

(LLu)-dimX = -1<—= X = 2.

(I,u)-dim X < n if for all families of sets {U; = Dy(U,) : s = 1,k} and
{F, = D(F,): s =1,k}, where F, C U, for each s = 1, k, there exists a family
of sets {V; =Dy (Vs): s = I,_k} such that Fy, C V, C U, for each s = 1,k and
ord{(u,!)-FrVy: s =1k} <n.

(l,u)-dim X = n if (l,u)-dim X < n and the inequality (/,u)-dimX < n —1
does not hold.

(I,u)-dim X = oo if the inequality (I,u)-dim X < n does not hold for any n.
O-dim X <n < (u,])-dim X <nA (l,u)-dim X <n.

If (X,7,<)is an OTS and (X, 7y, 72) is the corresponding BS in the sense of

Canfell, then it is obvious that

(u,1)-ind(X, 7, <) = (1, 2)-ind(X, 11, 72),
(I, u)-ind(X,7,<) = (2,1)-ind(X, 11, 72),
O-ind(X, 7, <) = p-ind(X, 11, 72);
(u,1)-Ind(X, 7, <) = (1,2)-Ind(X, 71, 72),
(I, u)-Ind(X, 7, <) = (2,1)-Ind(X, 71, 72),
O-Ind(X,7,<) = p-Ind(X, 11, 72);
(u,1)-dim(X, 7, <) = (1,2)-dim(X, 71, 72),
(I, u)-dim(X,7,<) = (2,1)-dim(X, 71, 72),
O-dim(X, 7,<) = p-dim(X, 71, 72).-
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Thus one can prove that for the OTS (R, w,<) the values of nine ordered
dimension functions coincide with integer 1.

All results presented below concerning the ordered dimension function are
the immediate corollaries of the results discussed in Chapter IIT of [11] with Re-
mark 3.1 taken into account. One can easily verify that if two OTSs (X, 7, <) and
(Y,~, <) are both homeomorphic and order isomorphic in the sense of [11], then
O-ind X = O-indY, O-Ind X = O-IndY and O-dim X = O-dimY.

For the sake of simplicity all results are formulated for the dimension functions
O-ind X, O-Ind X and O-dim X.

THEOREM 3.2. The following conditions are satisfied in an OTS (X, 7, <):
(1) If O-ind X ((u,!)-Ind X or (I,u)-Ind X) is finite, then (X,7,<) is strong reg-

ularly ordered (strong normally ordered).

(2) If (A, 7',<") is an order subspace of (X,7,<) (A = D(A) N I(A)), then

O-ind A € 0-ind X (O-Ind A < O-Ind X and O-dim A < O-dim X).

(3) The equalities O-Ind X = 0 and O-dim X = 0 are equivalent.
(4) If (X,7,<) is a strong normally ordered space and { X, }o_; is a sequence of
subsets in X such that X = ‘Elem, X =D(Xm)=1(X,n) and O-Ind X, =0

(or, equivalently, O-dim X,,, = 0) for each m = 1,00, then O-Ind X = 0 (or,

equivalently, O-dim X = 0).

It is clear that (4) remains valid if X, = OleF,’L”, where F* = D(F™) =
I(EF™) and O-Ind E = 0 (or, equivalently, O-dim F* = 0) for each m = 1,00,

n=1,00.

THEOREM 3.3. The following conditions are satisfied in a hereditarily strong
normally OTS (X, 1,<):

(1) If My, My, ..., M, are any subsets of X, then O-ind(MoU M U---UM,) <
O-ind My + O-ind M; + --- + O-ind M,, + n and thus if X = kQOMk’ where
O-ind M;, = 0 for each k = 0,n, then O-ind X < n.

(2) If X, = D1(X,) = Li(Xn) for each m = 1,00, X;uy1 C Xom, X1 = X and
mcﬁ:le = @, then O-Ind(X;\Xm4+1) < n for each m = 1,00 implies that
O-Ind X <n.

Therefore if A =D(A) =I(A), then O-Ind A <n and O-Ind(X\A) < n imply

that O-Ind X < n.

(3) If {D,}5o_4 is a disjoint sequence of sets covering X such that Fs = U D,, =

m<s
D(F,) = I(Fs) for each s = 1,00, then 0-Ind D,,, < n for each m = 1, 00 implies
that 0-Ind X < n.
(4) If X = PUQ, where O-Ind P < n, O-IndQ <0, then O-Ind X <n + 1.
Thus if X = qum’ where O-Ind X,,, < 0 (or, equivalently, 0-dim X,,, < 0)

for each m = 0,n, then O-Ind X < n.
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It is clear that many other results from [11, Chapter III], which we have not
included in Theorems 3.2 and 3.3, since the objective was the demonstration of the
M. Canfell duality for dimension functions, remain valid.

4. Baire-like properties

DEFINITION 4.1. A subset A of an OTS (X, 7, <) is u-nowhere dense (also

called u-rare) in X if I;(I(4)) = @ and A is I-nowhere dense (also called [-rare) in
X if D{(D(A)) = 2.

The family of all u-nowhere dense (I-nowhere dense) subsets of X is denoted

by w-ND(X) (END(X)).

PROPOSITION 4.1. Let (X, 7,<) be an OTS. Then the following conditions
are satisfied:

(1) Aeu-ND(X) ((Ael-ND(X)) < I(A) Cc D(X\I(A)
(D(A) C I(X\D(A)), for any subset A C X.

(2) If (Y,7',<') is an order subspace and A C Y, then A € u-ND(Y)
(A€ l-ND(Y)) < T'(A) cDY\I'(A) (D'(A) cL(Y\D'(4)).

Proof. Immediately follows from Propositions 1.1.1 and 1.5.2 from [11], Re-
mark 3.1 and using Canfell’s duality. m

DEFINITION 4.2. A subset A of an OTS (X, 7, <) is of u-first (I-first) category
(also called u-meager (I-meager), u-exhaustible (I-exhaustible)) in X if A = Cl>_J_°1An,

where A,, € w-ND(X) (A, € I'’ND(X)) for every n = 1,00 and A is of u-second
(I-second) category (also called u-nonmeager (I-nonmeager), u-inexhaustible (I-
inexhaustible)) in X if it is not of u-first (I-first) category in X.

The family of all sets of u-first (I-first) category in X is denoted by u-Catg,(X)

(I-Catg, (X)), while the family of all sets of u-second (I-second) category in X is
denoted by u-Catg, (X) (I-Catg,(X)).

A subset A of an OTS (X, 7, <) is of u-CatgI (u-CatgII) (respectively I-Catgl
(I-Catg1l)) if A is of u-first (u-second) (respectively [-first (I-second)) category in
itself considered as on order subspace.

We introduce the following notations: u-Gs(X)={A C X : A= Orlen, where
A, = Ii(A,), Vn = T,00}, 1Gs(X) = {A C X : A= cr’j’lAn, where A4, =
Di(A,), Vn =T,00}, u-Fo(X)={AC X : A= ‘Elem where A, = I(4,), VYn =

Loo}and -7, (X)={ACX: A= ‘Elen, where A, = D(4,), ¥n =T, 0}

By analogy with Theorem 1.1.3 from [11] we have

THEOREM 4.1. The following statements hold in an OTS, (X,7,<):
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(1) The family u-Catg,(X) (I- Catg,(X)) is a o-ideal so that A, € wu-Catg,(X)

(A, € l-Catg, (X)) for every n = 1,00 = glAn € u-Catg,(X) ( fJ_olAn €
l- Catg,(X)), and B € u- Catg,(X) (B € I-Catg,(X)), A C B = A ¢
u-Catg,(X) (A € I-Catg,(X)).

(2) u-Fo(X)Nu-Bd(X) C u-Catg,(X) and I-F,(X)N1-Bd(X) C I-Catg,(X).

(3) For every set A € u-Catg,(X) (A € I-Catg,(X)) there is a set B € u-F,(X)N
u-Catg,(X) (B € I-Fo(X) Ni-Catg, (X)) such that A C B.

(4) The family u- Catg, (X) (I- Catg,(X)) is closed under arbitrary unions and
A € u-Catg, (X) (A € I-Catg,(X)), A C B = B € u-Catg,(X) (B €
l_catgn(X))'

(5) If X € u-Catg, (X) (X € l-Catg, (X)) and for a subset A C X there is a set
B € 1-Gs(X)NI-D(X) (B € u-Gs(X)Nu-D(X)), B C A, then A € u-Catg,(X)
(A €l-Catg,(X)).

(6) X € u-Catg,(X) (X € I-Catg,(X)) <= the intersection of any sequence
{U.}52,, where U, = D1(U,) € I-D(X) (U, = I1(Uy) € u-D(X)) for each
n =1,00, is nonempty.

PROPOSITION 4.2. Let (X,7,<) be an OTS, (X, 71,72) be the corresponding
BS in the Canfell’s Sense, (Y,7',<') be an order subspace, where Y € 11 (Y € 12)
and AC X. Then A € u-ND(X) (A € I-ND(X)) = ANY € u-ND(Y) (ANY €
IND(Y)) so that A € u-Catg,(X) (A € I-Catg, (X)) = ANY € u-Catg, (V)
(ANY € 1-Catg,(Y)) and ANY € u-Catg,(Y) (ANY € l-Catyg,(Y)) = A €
u-Catg,; (X) (A € lI-Catg,(X)).

COROLLARY. Let (X,7,<) be an OTS and (Y,7',<') be an order subspace,
whereY € 11 (Y € 2) and A CY. Then A € u-ND(X) (4 € I-lND(X)) =
A€eu-NDY) (A €l-ND(Y)) so that A € u-Catg,(X) (A € I-Catg,(X)) = A €
u-Catg,(Y) (A € I-Catg,(Y)) and A € u-Catg,(Y) (A € [-Catg,(Y)) = A €
u-Catg,, (X) (A € I-Catg,, (X)).

Proof. Follows directly from Canfell’s duality and Theorem 1.5.1 from [11]. m

We know that the main result (Corollary of Theorem 1.5.2 from [11]) holds
only for BSs of the type (X, 71 < ), i.e., for 71 C 72, while for the BS (X, 71, 72)
associated with an OTS (X, 7, <) in Canfell’s sense, the topologies 71 and 7o are
not comparable by the set-theoretic operation inclusion. Therefore it is clear that
for an OTS (X, 7, <) and according to Canfell associated BS (X, 71, 72) we have:

ifU€en (UE€Em)and (U,7,<') is an order subspace, then U is of u-CatgIl
(I-Catgll) = U € u-Catg,(X) (U € I-Catg, (X)) and U € u-Catg,(X) (U €
I-Catg,(X) = U is of u-Catgl (I-CatgI).

Let (X,7,<) be an I-space in the sense of [25, p. 508], so that U € 7 =
i(U),d(U) € 7. Then by Proposition 5 in [25], Y € 7 implies that (Y, 7', <') is the
order subspace. But for Canfell’s BS (X, 7, 72) we have ; C 7 and therefore for
I-space (X, 7, <) the above formulated results has the form:
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ifUen (UE€Emn), then
U is of u-CatgIl (I-Catgll) = U € u-Catg,(X) (I-Catg, (X)) and
U € u-Catg,(X) (U € I-Catg,(X)) = U is of u-CatglI (I-CatgI). m

DEFINITION 4.3. An upper (lower) Baire space or briefly u-BrS (I-BrS) is an
OTS (X,7,<) such that U =1, (U) # & (U =D1(U) # &) = U is of u-Catgll
(U is of I-Catg1I).

It is clear that we can introduce also

DEFINITION 4.4. An almost upper (lower) Baire space or, briefly, A-u-BrS
(A-1-BrS) is an OTS (X, 7,<) such that U = I;(U) # @ (U = D1(U) # ) =
U € u-Catg,,(X) (U € I-Catg,(X)).

It is obvious, that if any U € 7 \{@} (U € 2\{@}) is an order subspace of an
OTS (X, 1,<), then (X, 7,<) is u-BrS (I-BrS) = (X, 7,<) A-u-BrS (an A-[-BrS)
so that, if (X, 7, <) is an I-space, then (X, 7, <) is an u-BrS (I-BrS) = (X, 1, <)
is A-u-BrS (A-I-BrS).

THEOREM 4.2. The following conditions are equivalent in an OTS (X, 7, <):

(1) (X,7,<) is A-u-BrS (A-I-BrS).

(2) If {U,}S2, is any countable family of subsets in X, where U, = Dy(U,) €
I-D(X) (Un = I(Un) € u-D(X)) for each n = 1,00, then ?W_OIU,L € I-D(X)
( ‘Flen € uD(X)).

(3) A€ u-Catg,(X) (A €l-Catg, (X)) = X\A € l-'D(X) (X\A4 € u-D(X)).

(4) If {Fn}22, is any countable family of subsets in X, where F, = I(F,) €
u-Bd(X) (F, = D(F,) € I-Bd(X)) for each n = 1,00, then OL_len € u-Bd(X)

(nfjlpn € 1-Bd(X)).

The proof of this theorem repeats that of Theorem 4.1.2 from [11], taking into
account (3) of Theorem 4.1. and

LEMMA 4.1. The following equivalences are correct in an OTS (X, 1, <):

A€ l-D(X) (A €uD(X)) < every set U =1(U) # o (U=D1(U) # @)
intersects A <= X\ A € u-Bd(X) (X\A € [-Bd(X)).
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