RENORMALIZING ITERATED REPELLING GERMS OF C²

Claudio Meneghini

Abstract. We find bounded-degree renormalizing polynomial families for iterated repelling germs of $(C^2, 0)$. These families consist in contracting mappings and yield germs whose differentials have rank two.

1. Foreword

In this paper we deal with renormalizing families of iterates of holomorphic mappings with a repelling fixed point at 0. The process of renormalization could be described as composing on the right the elements of a holomorphic family \mathcal{F} with a family of mappings of a fixed type (depending on the nature of the problem: linear, affine, polynomial ones, etc) and then extracting a normally convergent subsequence from the new family. This is a useful tool in complex analysis: in one variable, for instance, it allows, as shown in [5], Chap. 8, to get a 'linearizing' change of coordinates (known as Königs coordinates) in the neighbourhood of a repelling (or attractive) fixed point p of a holomorphic endomorphism φ of \mathbb{P}^1 : at a repelling fixed point, this coordinates could be in fact achieved by composing on the right the iterates φ^n with multiplication by $[\varphi'(p)]^{-n}$ and letting n diverge.

Moreover, by a slightly different point of view, one could consider 'Zalcman's renormalization lemma' (see [7], [1], p. 9), which amounts to getting a normal family from a nonnormal one by means of composition on the right with a family of contracting affine functions: this yields an entire limit function and allows quite direct proofs of both great Picard's and Montel's theorems (see [1], pp. 10/11): this topics will not be discussed in this paper.

The situation is different in higher dimension: the following example, adapted from [6] (9.2) shows, for instance, the existence of nonnormal families of iterates of an automorphisms of \mathbb{C}^2 , with a repelling fixed point in 0, which are by no means linearly renormalizable.

Let $F \in Aut(\mathbb{C}^2)$ be defined by $F(z,w) = (\alpha z, \beta w + z^2)$, with $|\alpha| > 1$, $|\beta| > 1$ and $|\beta| \ge |\alpha|^2$; F admits a repelling fixed point in 0, hence $\{F^{ok}\}$ cannot be normal at 0.

 $AMS\ Subject\ Classification{:}32 \ H\ 50$

Now $F^{o\,k}(z,w) = (\alpha^k z, \beta^k w + \beta^{k-1}[1+c+\cdots c^{k-1}]z^2)$, where $c = \alpha^2/\beta$; then $F^{o\,k}\,o[F_*(0)]^{-k}(z,w) = (z,w+\beta^{-1}\big[c^{-k}+c^{-k+1}+\cdots+c^{-1}\big]z^2)$; since $c\leq 1$, the coefficient of z^2 diverges as $k\to\infty$.

Thus, composing with 'division' by differentials in 0 allows in general no kind of renormalization; however, see [3] for a deep analysis of renormalization by differentials in connection with 'Lattes examples' in \mathbb{P}^N .

By contrast, we shall show that the family of the iterates of a repelling germ of $(\mathbb{C}^2,0)$ admits a renormalizing family consisting of polynomial mappings fixing 0, with uniformly bounded degrees and converging unformly on compact to 0, in such a way that a holomorphic germ \boldsymbol{H} tangent to the identity is yielded after renormalization. This fact implies, in particular, that the dimension of the image of any representative of \boldsymbol{H} will be maximal.

2. Some definitions and lemmata

2.1. Elementary mappings

We recall that $G = (g_1, g_2)$ is called an *elementary mapping* of \mathbb{C}^2 if $g_1(z) = c_1 z_1$, $g_2(z) = c_2 z_2 + h(z_1)$, where the c_k 's are complex constants and h is a holomorphic function of z_1 ; G is an automorphism if and only if each c_k is nonzero.

LEMMA 1. If $H: \mathbb{C}^2 \to \mathbb{C}^2$ is defined by setting $H(x,y) = (\alpha x, \beta y + h(x))$, where $h(x) = \sum_{l=0}^{\infty} \eta_l x^l$ and α , β are complex constants, then, for $n \geq 0$, $H^{\circ n}(x,y) = \left(\alpha^n x, \left[\sum_{k=0}^{n-1} \beta^k h(\alpha^{n-1-k}x)\right] + \beta^n y\right)$; moreover, if $\alpha \neq 0$, $\beta \neq 0$, then H is invertible and there holds $H^{-n}(x,y) = (\alpha^{-n}x, \left[-\sum_{k=1}^n \beta^{-k} h(\alpha^{-n-1+k}x)\right] + \beta^{-n}y)$.

Proof: by induction on n.

Let now $p_N(x) = \sum_{l=0}^N \eta_l x^l$ be the N-th degree truncation of the development of h and

$$H_N^{-n}(x,y) = (\alpha^{-n}x, [-\sum_{k=1}^n \beta^{-k}p_N(\alpha^{-n-1+k}x)] + \beta^{-n}y)$$

the corresponding truncation of H^{-n} ; note that, if $|\alpha| > 1$ and $|\beta| > 1$, then H_N^{-n} is a polynomial contracting mapping for every $n \ge 0$ and $\{H^{-n}\} \to 0$ uniformly on compacta in \mathbb{C}^2 .

Theorem 2. If $|\alpha| > 1$, $|\beta| > 1$ and $|\beta| < |\alpha|^N$, then $\{H^{\circ n} \circ H_N^{-n}\}$ converges uniformly on compacta to a lower triangular automorphism of the form H(x,y) = (x,h(x)+y) for a suitable entire function ψ .

Proof. Trivially $(H^{\circ n} \circ H_N^{-n})_1(x,y) \equiv x$ and

$$(H^{\circ n} \circ H_N^{-n})_2(x,y) = \sum_{k=0}^{n-1} \beta^k h(\alpha^{-1-k}x) - \sum_{k=1}^n \beta^{n-k} p_N(\alpha - n - 1 + kx) + y$$
$$= \sum_{k=0}^{n-1} \beta^k h(\alpha^{-1-k}x) - \sum_{k=0}^{n-1} \beta^k p_N(\alpha - 1 - kx) + y$$

$$= \sum_{k=0}^{n-1} \beta^k R_N(\alpha - 1 - kx) + y := \psi_n(x) + y,$$

where R_N is the N-th remainder in the development of h.

Now
$$h_n(x) = \sum_{k=0}^{n-1} \beta^k \sum_{l=N}^{\infty} \eta_l(\alpha^{k+1})^{-l} x^l$$
; since, for $N \ge l$, we have

$$|\beta^k \alpha^{-(k+1)l}| < |\beta \alpha^{-N}|^k.$$

we can let n diverge and exchange the order of summation, getting, uniformly on compact sets:

$$h(x) := \lim_{n \to \infty} \psi_n(x) = \sum_{l=N}^{\infty} (\sum_{k=0}^{\infty} \beta^k (\alpha^{k+1})^{-l}) \eta_l x^l$$
$$= [\sum_{k=0}^{\infty} (\beta \alpha^{-l})^k] \alpha^{-l} \eta_l x^l = \sum_{l=N}^{\infty} (\alpha^l - \beta)^{-1} \eta_l x^l; \tag{1}$$

by comparison with $h = \sum_{l=0}^{\infty} \eta_l x^l$, we see that the last series in (1) represents an entire function ψ : this ends the proof.

2.2. A lemma by Rosay and Rudin

We recall the lemma from the Appendix of [6], specialized to \mathbb{C}^2 .

LEMMA 3. Let V be a neighbourhood of 0 in \mathbb{C}^2 , $F:V\to\mathbb{C}^2$ a holomorphic mapping with F(0)=0 and $F_*(0)$ lower triangular; suppose that all eigenvalues λ_i of $F_*|_0:=A$ satisfy $|\lambda_i|<1$. Then there exist: (i) an elementary polynomial automorphism G of \mathbb{C}^2 such that G(0)=0 and $G_*|_0=A$ (thus $c_i=\lambda_i$ for every i), (ii) polynomial applications $T_m:\mathbb{C}^2\to\mathbb{C}^2$, with $T_m(0)=0$, $T_{m*}|_0=\mathbf{id}$ such that $G^{-1}\circ T_m\circ F-T_m=O(|z|^m)$, $(m=2,3,\ldots)$.

2.3. A lemma on attractive germs

The following lemma shows that a holomorphic mapping has a contracting behaviour near an attractive fixed point.

LEMMA 4. Let V be a neighbourhood of 0 in \mathbb{C}^N , $F:V\to\mathbb{C}^N$ a holomorphic mapping admitting an attractive fixed point at 0: then there exists A<1 and a neighbourhood $\mathbb{R}\subset V$ of 0 such that $F^n(\mathbb{R})\subset A^n\mathbb{R}$.

Proof. By Schur's lemma, we may suppose, without loss of generality, that

$$F_*(0) = \begin{pmatrix} \lambda_1 & \dots & \dots & 0 \\ a_{21} & \lambda_2 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ a_{N1} & \dots & \dots & a_{NN-1} & \lambda_N \end{pmatrix},$$

where the λ_k 's (with $|\lambda_1| \leq |\lambda_2| \leq \cdots \leq |\lambda_N|$) are the eigenvalues of $F_*(0)$ and the a_{jk} 's complex constants.

Set

$$E_{\varepsilon} = \begin{pmatrix} \varepsilon^{N} & 0 & \dots & 0 \\ 0 & \varepsilon^{N-1} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & \varepsilon \end{pmatrix} :$$

if ε is small enough, there exists A < 1 such that

$$||E_{\varepsilon}^{-1}F_{*}(0)E_{\varepsilon}|| (= ||E_{\varepsilon}^{-1}F_{*}E_{\varepsilon}(0)||) < A;$$

thus there exists $\varrho > 0$ such that

$$E_{\varepsilon}^{-1} \circ F \circ E_{\varepsilon}(B(0,\varrho)) \subset B(0,\varrho),$$

hence, if $p \in B(0,\varrho)$, $\|E_{\varepsilon}^{-1}F_{*}^{n}E_{\varepsilon}(p)\| < A^{n}$ and $\|E_{\varepsilon}^{-1}F^{n}E_{\varepsilon}(p)\| < A^{n}\|p\| \le A^{n}\varrho$, i.e. $E_{\varepsilon}^{-1} \circ F^{n} \circ E_{\varepsilon}(B(0,\varrho)) \subset B(0,A^{n}\varrho)$.

This fact will eventually imply

$$F^n(E_{\varepsilon}(B(0,\varrho))) \subset E_{\varepsilon}(B(0,A^n\varrho)) = A^n E_{\varepsilon}(B(0,\varrho));$$

we conclude by setting $\mathbb{R} = E_{\varepsilon}(B(0, \varrho))$.

3. The main result

LEMMA 5. Let f be a holomorphic mapping in a neighbourhood of $0 \in \mathbb{C}^2$, with f(0) = 0 and $f_*(0)$ attractive. There exist: a neighbourhood \mathbb{R} of 0, a biholomorphic mapping $\Psi : \mathbb{R} \to \mathbb{C}^2$ with $\psi(0) = 0$ and $\psi_*(0) = \mathbf{id}$ and an elementary polynomial automorphism G of \mathbb{C}^2 such that $G^n \circ \Psi = \Psi \circ f^n$ for each $n \geq 0$.

Proof: By Lemma 4 there exists a neighbourhood \mathbb{R} of 0 such that $f^{\circ n}(\mathbb{R}) \subset A^n\mathbb{R}$ for a suitable real constant A < 1 and every n > 0.

We may suppose that $f_*(0)$ is lower triangular (necessarily attractive) at 0: Lemma 3 gives us a lower triangular polynomial automorphism $G: \mathbb{C}^2 \to \mathbb{C}^2$ such that G(0) = 0 and $G_*(0) = f_*(0)$; by Lemma 1, there exists a complex constant γ such that $|G^{-k}(w) - G^{-k}(w') \le \gamma^k |w - w'|$ for each $(w, w') \in [\mathbb{D}(0, 1/2)]$. Take an integer m such that $A^m \le 1/\gamma$: Lemma 3 yields a polynomial application $T := T_m$ correspondingly.

Let us proceed exactly like in the proof if the Theorem in the appendix of [6] (see from line 29 of page 84 up to line 4 of page 85), whose notations we have kept; this shows that the limit $\lim_{k\to\infty} G^{-k} \circ T \circ f^k$ exists uniformly on each compact set of $\mathbb R$ so it canonically defines a holomorphic application $\Psi: \mathbb R \to \mathbb C^2$ such that $\Psi(0) = 0$, $\Psi_*(0) = \mathrm{id}$ and $G^n \circ \Psi = \Psi \circ f^n$.

THEOREM 6. Let h be a repelling holomorphic germ of $(\mathbb{C}^2, 0)$, with h_* admitting the eigenvalues α , β such that $\beta \geq \alpha > 1$ and $|\beta| < |\alpha|^N$; then there exists a sequence $\{Q_n\}$ of polynomial mappings which

- are contracting in a neighbourhood of 0;
- converge uniformly on compacta to 0 in \mathbb{C}^2 ;

• have uniformly bounded degrees

such that $\{\mathbf{h} \circ Q_n\}$ converges to a holomorphic germ \mathbf{H} of $(\mathbb{C}^2, 0)$, with $\mathbf{H}_*(0) = \mathrm{id}$.

Proof. Let (\mathcal{U}, h) be a representative of h with inverse (\mathcal{V}, f) ; maybe shrinking \mathcal{V} we may suppose, by Lemma 4, that there exists $A \in \mathbb{R}$ such that $f^n \subset A^n \mathcal{V}$ (i.e. $\mathcal{V} = \mathbb{R}$ with respect to the notation of Lemma 4.

By lemma 5 there exist: a biholomorphic mapping $\psi: \mathcal{V} \to \mathbb{C}^2$ tangent to the identity in 0 and an elementary polynomial automorphism G of \mathbb{C}^2 such that $f^n(z) = \psi^{-1}G^{\circ n}\psi(z)$, for each n > 0 and $z \in \mathcal{V}$: thus $h^n(z) = \psi^{-1}G^{-n}\psi(z)$, for each n > 0 and $z \in f^n(\mathcal{V})$.

Set $H := G^{-1}$: we have $H_*(0) = G_*^{-1}(0) = f_*^{-1}(0) = h_*(0)$ hence \mathbf{H} will be defined by setting $H(x,y) = (\alpha x, \beta y + h(x))$, with h entire and h(0) = 0.

For each $M \geq 0$, let Θ_M be a polynomial mapping such that

$$\psi \circ \Theta_M = \mathbf{id} + O(|z|^M).$$

By Theorem 2, $\{H^{\circ n}\}$ admits a family of contracting polynomial mappings $\{P_n\}$ converging uniformly on compacta to 0, with $P_n(0)=0$ and uniformly bounded degrees such that $\{H^{\circ n}\circ P_n\}$ converges uniformly on compacta to an entire mapping S on \mathbb{C}^2 (note that $P_n:=H_N^{-n}$ with respect to the notation of Theorem 2).

Since $|\alpha| \leq |\beta|$ and h(0) = 0, we have:

$$\left| \sum_{k=1}^{n} \beta^{-k} h(\alpha^{-n-1+k} u) \right| = O(n|\alpha|^{-n}|u|);$$

thus $P_n(z) = O((n+1)|\alpha|^{-n}|z|)$, where z = (u, v); moreover

$$\psi \circ \Theta_M \circ P_n = P_n + O\left([(n+1)|\alpha|^{-n}|z|]^M\right).$$

Now $P_n^{-1} \circ f^n$ is tangent to the identity at 0 for all n, hence we may assume that there exists a neighbourhood \mathcal{A} of 0 such that $P_n^{-1} \circ f^n(\mathcal{V}) \supset \mathcal{A}$.

This eventually implies that, if $z \in \mathcal{A}$,

$$\begin{split} \psi \circ h^n \circ \Theta_M \circ P_n &= H^{-n} \circ \psi \circ \Theta_M \circ P_n \\ &= H^{-n} \circ \psi \circ \Theta_M \circ \left(P_n + O\left(\left[(n+1)|\alpha|^{-n}|z| \right]^M \right) \right) \\ &= S + O\left((n+1)|\beta|^n \left[(n+1)|\alpha|^{-n}|z| \right]^M \right) \\ &= S + O\left((n+1)^{M+1}|\alpha|^{n(N-M)}|z|^M \right). \end{split}$$

By choosing M > N and passing to germs at 0, we see that $\Psi \circ \mathbf{h}^n \circ \Theta_M \circ P_n$ converges to S, hence $\mathbf{h}^n \circ \Theta_M \circ P_n$ converges to $\Psi^{-1} \circ S$.

Now the $\Theta_M \circ P_n$'s are polynomial mappings, contracting in a neighbourhood of 0, with uniformly bounded degrees, since so are the P_n 's; they converge uniformly on compacta to 0 by the corresponding property of the P_n 's; moreover, Ψ^{-1} is tangent to the identity at 0 and $rk(S_*(0)) = 2$ by Theorem 2: setting $H = \Psi^{-1} \circ S$ ends the proof. \blacksquare

REFERENCES

- [1] F. Berteloot, V. Mayer, Rudiments de dynamique holomorphe, Société Mathématique de France, EDP Sciences, 2001.
- [2] F. Berteloot, Principle de Bloch et estimations de la métrique de Kobayashi des domaines de C², preprint.
- [3] Ch. Dupont, Propriétés extrémales et caractéristiques des exemples de Lattès, Thèse de doctorat, université Paul Sabatier, Toulouse, le 29/11/2002.
- [4] M. Gromov, Foliated plateau problem: part II: harmonic maps of foliations, GAFA, 1, 3 (1991), 253-320.
- [5] J. Milnor, Dynamics in One Complex Variable, Friedr. Vieweg und Sohn Verlagsgesellshaft mbH, Braunschweig/Wiesbaden, 1999.
- [6] J.-P. Rosay, W. Rudin, Holomorphic maps from C^n to C^n , Trans. of the A.M.S. 310, 1, (1988).
- [7] L. Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc. 35 (1998).

 $\left(\text{received }06.05.2003\right)$

Dept. of Mathematics, University of Parma, 85, Strada M.D'Azeglio, 43100 Parma (I), Italy E-mail: clamengh@bluemail.ch