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THE REPRESENTATIONS OF FINITE REFLECTION GROUPS
Muhittin Baser and Sait Halicioglu

Abstract. The construction of all irreducible modules of the symmetric groups over an
arbitrary field which reduce to Specht modules in the case of fields of characteristic zero is given
by G. D. James. Halicioglu and Morris describe a possible extension of James’ work for Weyl
groups in general, where Young tableaux are interpreted in terms of root systems. In this paper,
we further develop the theory and give a possible extension of this construction for finite reflection
groups which cover the Weyl groups.

1. Introduction

The representation theory of symmetric groups over fields of characteristic zero
is well developed and documented with a number of books devoted to the subject.
The original approach was due to G. Frobenius and I. Schur followed independently
by A.Young in a long series of difficult but highly influential papers. Later, in the
1930’s, W. Specht presented an alternative approach which led in an elegant way
to a full set of irreducible modules, now called Specht modules. I. G. Macdonald
showed [12] how to obtain irreducible modules for a Weyl groups by a construction
using subsystems of the root system of the Weyl groups. Macdonald’s method gives
many, but in general not all, of the irreducible modules. In 1976, G. D. James in
a very important paper [11], gave an easy and ingenious construction of all the
irreducible modules of the symmetric groups over an arbitrary field which reduce
to Specht modules in the case of fields of characteristic zero. Al-Aamily, Morris
and Peel [1] showed how this construction could be extended to deal with the Weyl
groups of type B,. In [13], A. O. Morris described a possible extension of James’
work for Weyl groups in general.

Later, the second author and Morris [7] gave an alternative generalisation
of James’ work which is an improvement and extension of the original approach
suggested by Morris. In [8], L. Hawkins extended Macdonald’s construction to the
case where the subsystem of the roots is replaced by a parabolic subset. Although
the conjugacy classes and irreducible characters are known for all finite reflection
groups individually no unified approach has been obtained. We now give a possible
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extension of James’ work for finite reflection groups which is a generalization of the
original approach suggested by Halicioglu [6].

2. Preliminaries

In this section, we establish the notation and state some results on finite reflec-
tion groups which are required later. The basic definitions and background material
required here may be found in N. Bourbaki [2], R. W. Carter [3], J. E. Humphreys
[9] [10], Grove and Benson [5], Halicioglu and Morris [7].

Let V' be l-dimensional Euclidean space over the real field equipped with a
positive definite inner product ( , ). For a € V, a # 0, let 7, be the reflection
in the hyperplane orthogonal to «, that is, 7, is the linear transformation on V
defined by

(a,v)

(@, q)

T V—1V, v T (V) =v—2

for all v € V. Let ® be a root system in V and 7w be a simple system in ®
with corresponding positive system ®* and negative system ®~. Then the finite
reflection group

W=W(®) = (1 | 72 = (TaTg)™? =e, a, € mand a # ()

where e is the identity element of W and m,s is the order of 7,73. Let {(w) denote
the length of w and the sign of w, s(w), is defined by s(w) = (=1)"®) w € W.

2.1 To each root system @, there corresponds a graph I' called the Cozxeter
graph (or Dynkin diagram) of W, whose nodes are in one-to-one correspondence
with the elements of 7. A finite reflection group is irreducible if its Coxeter graph is
connected. Finite irreducible reflection groups have been classified and correspond
to root systems of type A; (I > 1), B, (I > 2), C; (I > 3), D; (I > 4), Eg, E7, Es,
Fy, G2, Hs, Hy, Ir(p) (p =5 or p > 7). For example W(A4;) = S;;1 the symmetric
group on the set {1,2,...,l+ 1} and W(G2) = D¢ dihedral group of order 12.

2.2 A subsystem W of ® is a subset of ® which is itself a root system in the
space which it spans. The finite reflection subgroup W(¥) of W corresponding to
a subsystem W is the subgroup of W generated by the 7,, @ € W. The subsystems
¥, and ¥y are conjugate under W if ¥, = w¥, for some w € W.

2.3 The graphs which are Dynkin diagrams of subsystems of ® may be obtained
up to conjugacy by a standard algorithm due independently to E. B. Dynkin, A.
Borel and J. de Siebenthal (see e.g. [4]).

2.4 The simple system J of ¥ can always be chosen such that J C % [14].

2.5 The set Dy = {w € W | w(j) € & for all j € J} is a distinguished set
of coset representatives of W(¥) in W, that is, each element w € W has unique
expression of the form dgwy, where dg € Dy and wg € W(¥). Furthermore dy is
the element of minimal length in the coset dg W(¥) [3].
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2.6 If ¥ is a subsystem of ® with simple system J C ®T and Dynkin diagram
A then let ¥ = |J;_, ¥;, where ¥; are the indecomposable components of ¥. Let
Ji be a simple system in U, (i = 1,2,...,r) and J = |J;_, Ji. Let U~ be the largest
subsystem in ® orthogonal to ¥ and let J- C ®* the simple system of ¥+ Let '
be a subsystem of ® which is contained in ® \ ¥, with simple system .J "Cc &t and
Dynkin diagram AU = Ui, \IJ;, where \I/'Z are the indecomposable components
of ¥, then let J; be a simple system in ¥ (i =1,2,...,s) and J = Ui, J;. Let
'L be the largest subsystem in ® orthogonal to ¥ and let J'+ C &+ the simple
system of W'+, If J stand for the ordered set {J1,J2, -y Ir; Ji, Jé, ceey J;}, where
in addition the elements in each .J; and .J; are ordered, then let Ta = {w.J | w € W}.
The pair J = {J;J'} is called a useful system in ® if W(J) N W(J) = (e) and
W) NW(J' ) = (e). The elements of Tx are called A-tableauz, the J and .J'
are called the rows and the columns of {J; J,} respectively. Two A-tableaux J
and K are row — equivalent, written J ~ K, if there exists w € W(J) such that
K = wJ. The equivalence class which contains the A-tableau J is {J} and is called
a A-tabloid. Let T be the set of all A-tabloids. Then 7o = {{ dJ } | d € Dy}.
The group W acts on 74 as o{wJ} = {owJ} for all 0 € W. Let K be arbitrary
field and M2 be the K-space whose basis elements are the A-tabloids. Extend the
action of W on 7a linearly on MA, then M2 becomes a KW-module. Let

Ky = Z s(o)o and e; ;= ki {J}
ageW(J’)

where s is the sign function. Then e; ; is called the generalized A-polytabloid
associated with J. Let S , be the subspace of M% generated by €y Where
w € W. Then SJ’J/ is called a generalized Specht module. A useful system {J; J’}
in ® is called a good system if d U N¥ =@ for d € Dy then { d.J } appears with

non-zero coefficient ine; ;. If {J; J'}is a good system, then S77 is irreducible [7].

3. Specht modules for finite reflection groups

In this section we show how to construct irreducible modules for finite reflection
groups.

By [7], if ¥; and ¥4 are W-conjugate subsystems of ®, then the corresponding
Specht modules S2' and S22 are isomorphic. Hence, it is important to choose
a representative from the set of W-conjugate subsystems. We now give a natural
method to choose the representative.

Let ® be a root system with simple system 7 = {a1, @a,... ,a,} and o, 5 € ®
such that « = Y"1 | a;o and B =31 | b,

“a < @ if and only if for some 4, a; = b; for j < i and a; < b;”.

Clearly this is a total ordering on ®. If ¥; and ¥, are WW-conjugate subsystems of
® with simple systems J; = {vy,va,... , v} and Jo = {ug,ua, ... ,u;}, respectively,



108 M. Baser, S. Halicioglu

then
“Wy < W, if and only if for some 4, v; = u; for j < ¢ and v; < u;”.

It is also easy to see that this is a total ordering on the set of W-conjugate subsys-
tems. From now on, we consider the maximum subsystem according to the order
< as a representative of W-conjugate subsystems. In the case A;, maximum sub-
systems are A;, + Ay, + -+ A;,, where (I; +1,l2+1,... ,ls + 1) is a partition of
[+1.

ExaMPLE 3.1. Let ® = A, with simple system 7 = {1 = 1 — e2,a0 =
€2 — €3,3 = €3 — €4,y = €4 — e5}. In this case, we have three W(A,)-conjugate
subsystems of type 2A1, that is, U1 = 2A; J; = {a1, a3}, Uy = 2A}; J, =
{a1, 4} and V3 = 2Al1,; J3 = {2, a4}. The Dynkin diagrams for Uy, Uy, U3 and
corresponding compositions

\111 = 2A1, Jl = {011,043} Oﬁ@*@*@ )\1 = (2,2, ].)
1 2 3 4

\I’z = 2A,1, JQ = {01,0/4} O ® ® O )\1 = (2,1,2)
1 2 3 4

Uy = 2A/1/, J3z = {(12,(14} ®707 &O A = (1,2,2)
1 2 3 4

Since W3 < Ws <« ¥y, the maximum subsystem is ¥; and corresponding composition
is Ay = (2,2,1) which is a partition of 5.
Let W is a subsystem of ® with simple system J and V¥ is the maximum
subsystem of VW-conjugate subsystems. Let J be the ordered set
{Jl, JQ, ey Jr; Jl, J2, . .,JS},

satisfying (2.6), wJ = {wJy,wa, ... ,wl, ; wJ{,wJé,... ,wJ;} for w € W and
let 7Ta = {wJ | w € W}. Now we can give our principal definition.

DEFINITION 3.2. Let ¥ and U’ be subsystems of ® with simple system J and

J' respectively. J = {J,J'} is called irreducible system in ® if
’ /l

1) W) NW(J) = (&) and W(JH) N W(J ) = (e},

(i) If dU MW" = ) then there exist ¢ € W(J') and p € W(J) such that d = op
for d € Dy.

By [7], if J is an irreducible system in ® then |[Ta| = |W|.

REMARK 3.3. If J is an irreducible system in ® and d € Dy N Dy then dJ is

irreducible system in .

DEFINITION 3.4. Let J be an irreducible system in ®. Then the elements of
Ta are called A-tableauz, the J and J' are called the rows and the columns of J,
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respectively. The subgroups W(J) and W(J ") are called the row group and the
column group of J, respectively.

DEFINTTION 3.5. Two A-tableaux J and K are row-equivalent, written J ~ K,
if there exists w € W(J) such that K = w.J. The equivalence class which contains
the A-tableau J is {J} and is called a A-tabloid.

Let 7ao be the set of all A-tabloids. It is clear that the number of distinct
elements in 74 is W : W(J)] and by (2.5) we have

TA:{{dj}|d€Dq/}.
The group W acts on 7o according to
W(®) X A — A, (o, {wJ}) — oc{wJ} = {ow]}

This action is well defined, for if {w;J} = {w2J}, then there exists p € W(w;J)
such that pwiJ = wyJ. Hence since opo ' € W(owyJ) and owsJ = opwiJ =
(opo~ 1) (owrJ), we have {ow1J} = {owaJ}.

Now if K is arbitrary field, let M* be the K-space whose basis elements are
the A-tabloids. Extend the action of W on 74 linearly on M*, then M* becomes
a KW-module. Then we have the following lemma.

LEMMA 3.6. The KW-module M* is a cyclic KW-module generated by any
one tabloid and dimg M = [W : W(J)].

Proof. See [7]. m

Now we proceed to consider the possibility of constructing a KWV-module which
corresponds to the Specht module in the case of symmetric groups. In order to do
this we need to define a A-polytabloid.

DEFINITION 3.7. Let J be an irreducible system in ®. Let
Kj= Z s(o)o and ey = K ;{J}
agew(J")
Then ey is called the generalized A-polytabloid.
If w e W(®), then
wKj = Z s(o)wo = Z s(o)(wow Hw = { Z s(o)o}
cew(J") seW(J") ceW(wJ')
Hence, for all w € W(®), we have
wej = kg{w]} = e—7. (3.1)
Let S7 be the subspace of M4 generated by e,7 where w € W. Then by

(3.1) S7 is a KW-submodule of M?, which is called a generalized Specht module.
Then we have the following theorem.
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THEOREM 3.8. The KW-module S is a cyclic submodule generated by any
A-polytabloid.
Proof. Straightforward. m

LEMMA 3.9. Let J be an irreducible system in ® and let d € Dy. If {dJ}
appears in ey then it appears only once.

Proof. As in Lemma 3.10 [7]. =m
COROLLARY 3.10. If J be an irreducible system in ®, then ey # 0.

LEMMA 3.11. Let J be an irreducible system in ® and let d € Dy. Then the
following conditions are equivalent:

(i) {dJ} appears with non-zero coefficient in ey,

(ii) there exists o € W(J') such that o{J} = {dJ},

(iii) there exists p € W(J) and 0 € W(J') such that d = o p,
(iv) dU N U = 0.

Proof. The equivalence of (i) and (ii) follows directly from the formula

ey = Z o)o{J}
eWwW(J

(ii) = (iii). Suppose that there exists o € W(.J J') such that o{ J } = {dJ }.
Then we have 0=1 d{ J } = {J }. By the definition of equivalence there exists
p € W(J) such that o1 d J = p J . Then p to~1d € W(J+) N W(J +). Since
{J,J'} is an irreducible system in ® then d = o p , where o € W(J' ) and p € W(J).

(iii) = (ii). Let d = op, where o € W(J') and p € W(.J). Since p € W(.J),
pJ = J then {dJ} = {opJ} = {oJ}.

(i) = (iv). Let a € dV. If {dJ} appears in e; then by (i) = (iii) d = op,
where o € W(J') and p € W(J). Then a € op¥. Since p € W(J), then a€ol
and o 'a € . But UNWU = (), then o 'a & ¥'. Since 0 € W(J'), 0¥ = T then
a ¢ v’

(iv) = (i). By definition of irreducible system. m

LEMMA 3.12. Let J be an irreducible system in ® and let d € Dy . [fd\I/ﬁ\IJ/ #*
0, then kz{dJ} = 0.
Proof. As in Lemma 3.18 [7]. =

LEMMA 3.13. Let J be an irreducible system in ® and let d € Dy.

(i) If {dJ} does not appear in ey then kj{dJ} = 0.

(ii) If {dJ} appears in e; then there exists o € W(J') such that k;{dJ} =
s(o)ey.

Proof. See Lemma 3.20 [7]. m
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COROLLARY 3.14. Let J be an irreducible system in ®. If m € M* then kym
is a multiple of e 5.

We now define a bilinear form (, ) on M* by setting
. L {J}= (K}
@y ={y 5o
0, {J}#{K}.
This is a symmetric, non-singular, W-invariant bilinear form on M?.

Now we can prove James’ submodule theorem in this general setting.

THEOREM 3.15. Let J be an irreducible system in ®. Let U be submodule of
MA. Then either S’ CU or U C STt

Proof. If u € U then

(weg) =(u, Y slo)o{)= D (s(o)o tu,{J}) = (xyu, {T}).

cewW(J") ceW(J')

But by Corollary 3.14 x ju = ey, for some A € K. If A # 0 for some u € U, then
ey € U, that is, 87 C U. However, if A =0 for all u € U, then (u,ez) = 0, that is,
UCS' . m

We can now prove our principal result.

THEOREM 3.16. Let J be an irreducible system in ®. The KW-module
T 7l
s7/87n s’
is zero or wrreducible.

Proof. Let S7/87 N STt # {0}. We need to show that the KW-module
57787 0 87" is irreducible. Let U/S7 N S7" be a submodule of $7/57 N 57"
Then S7 N SjL CcCUC ST and U = 87 or U = SjﬁSjL by Theorem 3.15. If
U =57 thenU/S'NS7" = §7/57087". U = S'nS7" then U/S7 N7 = {o}.
Thus 57 /57 N ST is irreducible, m

In the case of K = Q or any field of characteristic zero (, ) is an inner product

and S7/S7 N 87 * =~ 87 Thus if for a subsystem ¥ of ® an irreducible system
J can be found, then we have a construction for irreducible KW-modules. Hence
it is essential to show for each subsystem that an irreducible system exists which
satisfies Definition 3.2.

REMARK 3.17. For any root system ® with simple system =, there are two
trivial irreducible system in ®. We can describe immediately the representations
arising in these cases.

If Jy = {m; 0}, then W(J1) = W(®) and W(J;') = (e). So
er, = Y, s(@)o{Ni} = s(e)e{/i} = {Ji}.

aceW (Ji')
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We clearly have S/t = Sples,} = Sp{{/1}} and wez, = w{i} = {/1} = ey, for
all w € W and the identity representation of W is given.

If J, = {0; 7}, then W(.J,) = (e) and Dy, = W(®) = W(J; ). So
ey, = Z s(o)o{Jz} = Z s(o)o{J2}.
a'GW(le) UEW((I))
Hence S7 = Spleyz,} and wey, = s(w)ey, for all w € W. Thus w — sgn(w) for all
w € W, and the corresponding representation leads to the sign character of W.

In the following example, we show that an irreducible system may be con-
structed in the case of the finite reflection group of type I (8).

EXAMPLE 3.18. Let ® = I,(8) with simple system 7 = {a; = ej,as =

cos %Tel + sin %’Teg} and T = {a; = €1, a2 = cos %’el + sin %Teg,a3 = cos ge1 +
Sin§€2,a4 = cos %’rel + sin%“eg,ag, = cos %’Tel + sin %’reg,aﬁ = cos %’rel +
sin %reg,cw = CoS %’Tel + sin %’reg,ag = cos %’Tel + sin %62}. Let e, (1im2)*, Ti7o,

(1172)%, (1172)3, 71, T2 be representatives of conjugate classes Cy, Cy, C3, Cy, Cs,
Cs, C7 respectively of W(I2(8)). The character table of W(I(8)) is given by

Cq Cs Cs Cy Cs Cs Cr
X1 1 1 1 1 1
X2 1 1 1 —1 —1
X3 1 1 -1 1 -1 1 -1
X4 1 1 -1 1 -1 -1 1
X5 2 -2 V2 0 —V2 0 0
X6 2 2 0 -2 0 0 0
X7 2 -2 | =2 0 V2 0 0

The non-conjugate subsystem of I5(8) are:
1. ¥ =I1,(R); J1 = {1, an}

2. Uy = 2A1; Jo = {an, —a}

3. Uy = Ay Jy = {on)

4. Wy =AY Jy = {0}

5. U5 =0; J5 =0

3T

where & = cos Se1 +sin 3z

< ¢2 is the longest root in I(8).
(1) Let U1 = I5(8) be the subsystem of ® with simple system J; = {a1 , as}.

Then Coxeter graph for Wy is
8 8
Q—0——0
— a1 Q9

If W} = () with simple system J; = 0, then {ay,as; 0} is an irreducible system in ®
by Remark 3.17. Thus we have
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C 1 02 C 3 C 4 05 CG C'7
U 1 1 1 1 1 1 1

that is the character xi.

(2) Let Uy = 2A; be the subsystem of ® with simple system Jo = {aa , —a}.
Then Coxeter graph for U5 is

8 8
OO
—a Q1 Qg

In this case, we have not found an irreducible system in ®.

(3) Let ¥3 = A be the subsystem of ® with simple system J; = {a;}. Then
Coxeter graph for U3 is

R°0°®
— & a1 Q3

If Uy = 2A; with simple system J; = {a4, ag}, then {a1;ay,ag} is an irreducible
system in ®. Thus we have

Cl 02 03 04 05 06 C?
o 2 2 0 —2 0 0 0

that is the character xg.

(4) Let U, = A be the subsystem of ® with simple system J; = {a}. Then
Coxeter graph for U, is

8 8

&0

-« a1 o

If ¥, = 2A; with simple system J; = {ovy, s} then {o; ay, ag} is an irreducible
system in ®. Thus we have

01 CQ Cg 04 05 C(6 C"7
U3 2 2 0 —2 0 0 0

that is the character xg.

(5) Let U5 = () be the subsystem of ® with simple system J; = (). Then
Coxeter graph for U5 is

8 8

R

— X1 (g
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If Uy = I,(8) with simple system Jy = {a1, s} then {§; a4, ag} is an irreducible
system in ® by Remark 3.17. Thus we have

Cy Cs Cs Cy Cs Cs Cy

N 1 1 1 1 1 -1 -1
that is the character xs.
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