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ON THE CONVERGENCE OF FINITE DIFFERENCE SCHEME
FOR ELLIPTIC EQUATION WITH COEFFICIENTS
CONTAINING DIRAC DISTRIBUTION

Bosko S. Jovanovi¢ and Lubin G. Vulkov

Abstract. First boundary value problem for elliptic equation with youngest coefficient
containing Dirac distribution concentrated on a smooth curve is considered. For this problem a
finite difference scheme on a special quasiregular grid is constructed. The finite difference scheme
converges in discrete W3 norm with the rate O(h3/2). Convergence rate is compatible with the
smoothness of input data.

1. Introduction

Problems with concentrated factors arise in different physical applications.
Such problems can be modelled by partial differential equations containing singu-
lar coefficients, e.g. Dirac delta distribution (see [3], [7]). In the present paper
we consider two-dimensional Dirichlet boundary value problem (BVP) with Dirac
distribution involved in the youngest coefficient. The support of Dirac distribution
is a smooth curve S, which splits region 2 into two parts. The solution of BVP
has discontinous derivatives on the interface S and can not be well approximated
by standard difference schemes.

For the numerical solution of the considered problem a five-point finite differ-
ence scheme (FDS) with averaged right hand side and youngest coefficient on special
quasilinear mesh is proposed. The convergence of FDS on generalized solutions of
BVP is proved in discrete Sobolev W3 ;, norm.

Analogous one-dimensional problems were considered in [6] and [11]. A survey
of different numerical methods for the solution of such problems is given in [5].
In particular, in the present paper we improve convergence rate estimate obtained
in [5].
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2. Statement of the problem

In the rectangle Q = (0,1;) x (0,13) we consider the Dirichlet boundary value
problem

—Au+tc(x,y)ds(z,y)u= f(z,y), (x,y)€ u=0, (x,y)el =00, (1)

where S is a smooth curve in 2 and dg(z,y) is Dirac distribution concentrated on
S. We assume that f(x,y) € Wy 1(Q), ¢(2,y) € Loo(S) and 0 < Cy < ¢(x,y) < Cy
almost everywhere in S. We also assume that curve S is defined by equation y =
g(x), where function g(z) satisfies the following conditions: ¢'(z) > 0, ¢’(z) > 0,
g(0) =a, g(l;) =band 0 < a < b < ly. In such a manner S splits domain §2 into
two parts, denoted by Q7 and QF (fig. 1).

Fig. 1 Fig. 2

It can be easily checked that the solution of the BVP (1) satisfies the following
conditions:

0
~Au=f(z,y) in Q" and QT; uw=0 on I} [u]ls =0; {a—z] =cu on S,
s
(2)
where [u]g is the jump of u over S and du/Jv is normal derivative on S.

The convergence of the FDS approximating BVP (1) will be proved under
stronger assumptions on the smoothness of input data, i.e. c(z,y) € W3(S),
F.y) € WE(Q), 5 > 0.

3. Finite difference scheme

In Q we introduce quasiuniform mesh Qj, in the following manner. Let w; =
{z;=1ih : i=0,1,...,n} be a uniform mesh with the step size h =11 /n on [0,1;]
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(on variable x). On [a,b] we define nonuniform mesh &9 = {y; - = g(z;) : i =
+

0,1,...,n}, where m~ = [m} and [a]T is the smallest integer, greater or

equal a. On [0, a] we define uniform mesh wy, = {y; =jk~ : j=0,1,...,m™} with

the step size k= = a/m ™. In analogous manner we set m"™ = m , where

[@] is the integer part of a. On [b,l] we define uniform mesh @3 = {y;1pim- =
b+ jkt : j =0,1,...,m"} with the step size kT = (I3 — b)/m*. We define
Oy =@y US UL, Qp = @1 x @9, Uy = Q. NQ, Ty = QN Qi = {(z,y) €
Qp :0<2<l, 0<y <}, Qop={(z,y) € : 0< <1y, 0<y<lIl} and
Sp=SnNQ, (fig. 2).

We also denote k; = y; —y;—1 and k; = (kj +k;+1)/2. It can be easily checked
that k; < kji1, kj = O(h) and kj 41 —k; = O(h?). For a mesh function v = v(z, y)
defined on Qj, we introduce divided differences vy, vz, vy and vy in a usual way (see
[9]). In the sequel, we shall use the standard denotation of the theory of difference
schemes [9]: v = v = v(z3,y5), k = kj, ky = kj1. o = Va45 = (Vig1,; — vij) /P,
vp = Uiy = (Vi = vieng) /Ry vy = gy = (Vigen = o) /R, vg = Vg =
(’Uij — ’Uiyj_l)/k‘j etc.

Let Hj, be the set of mesh function defined on € which vanish on I';,. We
introduce the inner products

(v, w)p, = Z vwhk and (v, w); = Z vwhk
(z,9)€EQn (%,9)EQn

and the corresponding norms ||v||, and ||v||;,. We also define discrete Sobolev norm
Wi

[ollf, = ol +lolli, iy, = llvallin + llvgll3, -
2,h 2,h 2,h
We define Steklov averaging operators [10, p. 56]:
1 z+h/2 1 yt+ky/2
Ly = [ fend TLiep-¢ [ 7 f@od
x y

—h/2 —k/2

On the mesh Qj we approximate BVP (1) with standard homogeneous FDS
with averaged right hand side and youngest coefficient:

—Apv+av=¢ in Q; v=0 on I}, (3)

where Apv = vzz + vy, ¢ = TATof and a = T1Ts(cdg).

For an internal node x € ) we define elementary cell e = e(z,y) = (z —
h/2,x+h/2) x (y — k/2,y + ki /2). The coefficient « in (3) can be represented in
the following manner (fig. 3):

1
- ds, (z,y) € Sh,

alz,y) = hk/smec () € Sn,
0, (,y) € Qn \ Sh.



118 B. S. Jovanovi¢, L. G. Vulkov

B (x-h/2, y+ki/2)”

(c-hoyts) ko) (cthy+s)
€
F======"|=====-=-- 1
: e 1
: : C (xhy) AGy)
(x-hy) Py ; (x+hy)
! !
(c-hy-k) (xy) (xthyk) D (x-h/2, y-k12)
Fig. 3 Fig. 4

4. Convergence of finite difference scheme

The error z = u — v satisfies the following conditions

—Apz+az=ms+mg+C in Qp; z=0 on I} (4)
where
ou ou
771=T28— —ug, 7]2=T18— — Uy,
Tl@—h/2,9) Yl(@,y—k/2)
C = [TlTQ(C(SS)]U — T]_T2 (C(Ssu)
1
(u/ cdS — cudS), (z,y) € S,
= hi Sne SnNe
0, (z,9) € Qp \ S -

Taking inner product of (4) with z and using summation by parts, we obtain

lzzll3n + llzgll3n + D a2®hk=—(n, zz)1n — (02, 29)on + Y Czhk.
(mvy)esh (wvy)esh

From here, using the discrete analogue of Friedrichs inequality [10, p. 55], we obtain
the a priori estimate

CQ 1/2
et < O {imbn+ el + (2 Sar) | 5)

(z,y)€ESh
In such a way, to obtain the convergence rate estimates for FDS (3) it is sufficient
to estimate the right hand side terms in (5).

Let us first estimate the norm of 7;. For each node (z,y) € Q1 we define the
elementary cell e; = ej(x,y) with vertices A = (x,y), B = (x — h/2,y + k1 /2),
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C=(x—h,y)and D = (x — h/2,y — k/2) (fig. 4). In the case when e; NS = () we
set

N1 = N1 + M2,
ou ke —k = 9%u
7711—T28 — Uz — +4 2920 ’
Tl @n/20) T n/2y)
kp —k_ 0%
M2 = - 13
4 020y | (z—n/2)
ky —k [Ou du

The value 77 in the node (z,y) € Q1 is a bounded linear functional of u € W3 (ey),
s > 2, which vanishes on polynomials of the second degree. Using Bramble-Hilbert
lemma [1], [2] and the methodology proposed in [10] and [4] we easily obtain

Imi(z.y)l < Ch* 2 ulwyeny,  2<s<3. (6)

The value 712(7, y) is a bounded linear functional of 2%(z—h/2,-) € Wg (y—k/2,y+
ki+/2), o > 1/2, which vanishes on constants. Using Bramble-Hilbert lemma we
obtain

ou
< h0'+1/2 el
Ina(z,y)] < C Oz

(xh/Z,-)‘ . 1/2<o<1. (7)
WS (y—k/2,y+h- /2)

Let now e; NS # (). Then the vertex C'= (z — h,y) of e; belongs to S;. By
B’ = (x—h/2,y’) we denote intersection of BD with S, and by B” = (x — h/2,y")
we denote intersection of BD with tangent on S in the point C' (fig. 5). By %" we
denote the distance between B” and D. Finally, we set

m =M1 + M2 + Nz + N4 + M5,

1Y ou

1= 5 (= h/2,7) dj — uz

—k/2 8.’,2

_%;W[%(x—m ") - <w—h/2y W}
tir =g e —h/zy")—g—(f—h/“ &l

11\ (Y ou
== - = —h/2,9)dy
s (k‘ k”) / k)2 ox (1 / 7y) Y,

v 8u N
My = k/ (x —h/2,7)dy,

1 [YTh+/2 gy
= — —h/2,
s Tf/y ax(x /2,7)dy

’
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B (x-h/2, y+ki/2)

(xy+ks/2)
Q
S
C (x-hy) A (x.y)
(xy)
x-h/2,y) 0 (x+h/2,y)
M
D (x-h/2, yk/2) P (xy-k/2)
Fig. 5 Fig. 6
Terms nj; and 7], can be estimated in the same manner as 711 and 7:2:
|7ﬁ1(:1:,y)| < Ch¥? |u|W25(EI) ) 2<s<3. (8)
Ju
Ini>(@,9) < Ch7H2 (= h/2, ->\ . 12<o<1, (9)
* Wg (y—Fk/2,y")

where e} is quadrangle AB”"CD.
We have k& — &” = O(h?), wherefrom follows

. Ju
In7s] < Cn'’? %(x —h/2,)

La(y—k/2,y")
Using inequality [§]

1/2

lellza0.0) < Ce’ = llellwzo,1) s O0<e<l, 71>1/2 (10)

and applying imbedding theorem, from here follows

ou
iy gChHa(xh/Z,-)H §0h||u|\WT+a/2(Q,), T>1/2. (11)
. W (0,y") ’
Analogously
. Ju ou
i < €| et = 2. <cn|ghe—n/2)
u La(y"y') r W1 (0,y')
< Chllullyrrsrzg- (12)

and

. ou
il < C | Gte = /2.

P
<Ch H—“(x —h/2, )H
Loy sy ht/2) Oz W3 (4 )

< Ol ullygss2 (13)

(@t)”

where 7 > 1/2.
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From (6)—(9) and (11)—(13) after summation over the mesh €2y, and application
of imbedding theorem, we immediately obtain the estimate

Il < €7 (lullwg oy + lullwg o) + € (lullygeaegg )+

# lullggenragany) + OB (lullygonr ey + lulygoors gy )
where 2 < s <3,1/2 <0 <1 and 7 >1/2. Setting
c+3/2=174+3/2=s5€(2,5/2)
and using obvious inequalities
hcr+1 h- 1/2 hsfl h3/2 < hsfl
(for h < 1 and s < 5/2), one finally obtains
Imln < €0 (lulwg ooy + lullwgon) . 2<s<5/2  (14)
In an analogous manner:

Im2llon < o7 (lullwsom) + lullws o), 2<s<5/2.  (15)

Now, let us estimate (. Let us consider the node (z,y) = (24, g(z;)) € Sy and

the corresponding arc PQ = S Ne(x,y) (fig. 6). The length of PQ is equal to
z+h/2

l= V1+[¢'(7)]?dz, where g(zg) =y — k/2.

Zo

Obviously, I = O(h). On PQ we introduce the local system of coordinates, taking
P as the zero point and denoting by

U:/w VIF @i, 2 € (vo,x+h/2)

the distance from P to point (z’, g(z')) € SNe. Let us denote u(o) = u(z’, g(z’)).
Also, let u(o.) = u(z,g(z)) be the value of the function w in the point M =

(z,9(x)), and My — the middle point of the arc PAQ (corresponding to the value
o =1/2). It can be easily checked that [/2 — o, = O(h?) and a(z,y) = O(h™1).
The value ¢ = ((z,y) can be represented in the following way

= [ o) N =G+ 6+ G,

where

G=1 /[c )~ e(1/2)] [u(o.) — u(o)]do,

_e(12) l
=2k / [u(o) — ull/2) do = - e(1/2) [u(o) — u(l/2)]

l
C(}llf) /0 (l/2) — u(o)] do.
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We have

wherefrom follows
e
s

de

<Ch 2
Gl <C 35

lullcsy < Ch™ 1/2
Ly(Sne)

lullwz(sy, — (16)
Loy (Sne)

where as usual [[ul|c(s)y = max, y)es [u(z,y)], and

G| < CRY? g; o % » <Cn/? g; o lullwes) - (17)
Analogously we obtain
7 du ou
ol =[gear [ Groao] < Clelows |55
< Cllellwgsy llullwz sy - (18)
From (18), using (10) one obtains
Gl < Chllellwasy llullwes) - (19)

Finally, from integral representations

c(l/2) V2 du c(l/2) 12
/ // Z(0') do’ do / // / T3 (0") do” do' do
2 do

we immediately obtain

ou

IGs] < Ch7 2 elles) 35 < Ch Y lellwy sy lullwz sre) (20)
L2 Sﬁe)
and
1/2 u 1/2
Gl = Ch lellos) || 52 S Ch= lellwg sy lullwzsne) - (21)
2(SNe)

From (16), (18) and (20) by summing over S;, we obtain

e 1/2
( Z = h/‘c) < Chllellwes) lullwg(s) - (22)

(z,y)ESH

Analogously, from (17), (19) and (21) follows

C2 1/2 9
> ) <O ey bl (23)

(z,y)€Sh
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From (22) and (23) by interpolation one obtains

¢\ :
(X Sm) <on i w2555 @)
(

o
,y)ESh
Finally, from (5), (14), (15) and (24) we obtain the following assertion:

THEOREM 1. Under previous assumptions FDS (3) converges and the following
convergence rate estimate holds

Izllwy, < Ch571(HUHWf(Q*)+HU”W§(Q+)+HC”W§(S‘) ||UHW;*1(S)) , 2<s<5/2

(25)

Estimate (25) is compatible with the smoothness of generalized solution of
BVP (1).
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