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THE MEASURE OF NONCOMPACTNESS OF MATRIX
TRANSFORMATIONS ON THE SPACES
c?(A) AND 2 (A) (1 <p < o0)

Ivana Stanojevié

Abstract. We study linear operators between certain sequence spaces X and Y when X
is CP(A) or C5(A) and Y is one of the spaces: ¢, co, loo, c(it), co(p), coo(p), that is, we give
necessary and sufficient conditions for A to map X into Y and after that necessary and sufficient
conditions for A to be a compact operator. These last conditions are obtained by means of the
Hausdorff measure of noncompactness and given in the form of conditions for the entries of an
infinite matrix A.

1. Introduction

Let w be the set of all complex sequences, ® be the set of all finite sequences
and X and Y be subsets of w. We write I, ¢ and ¢y for the sets of all bounded,
convergent and null sequences, respectively. By e and e(™ (n € Ny) we denote the

1, k=n
sequences such that: e; = 1 for all k£ and e,(cn) = 0. k£ A sequence (b))
, n.
in a linear metric space X is called Schauder basis if for each x € X, there is a
unique sequence (Ay,),, of scalars with >°°° ( Apby, that is limpy, oo Yoo Apby = 2.

As mentioned in the abstract, the aim of this paper is the characterization of
matrix transformations between some sequence spaces and the main tool in this is
the theory of FK and BK spaces.

An FK space is a complete metric sequence space with the property that
convergence implies coordinatewise convergence; a BK space is a normed FK space.
An FK space X D @ is said to have AK if every sequence x = (z1)32, € X has a
unique representation z =y oo zre®) | that is lim,_ >reo zpe® = x.
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Let z and y be sequences, X and Y be subsets of w and A = (ank)ff:k:o be an
infinite matrix of complex entries. We write

An(x) = ij anp, and A(z) = (An(2))20;

then
A€ (X,Y) if and only if A, (z) converges for all z € X and all n and A(z) € Y.
Furthermore,
XP={acw| ;akxk converges for all x € X }
denotes the f-dual of X. The set X4 = {a € w | Az € X} is called the matrix
domain of A in X. We also write
vy = (zpyp)isy, 2 ' xY ={acw|arecY}

and
M(X,Y)= m 7 'xY ={acw|arecY forallz e X}
zeX
is called the multiplier space of X and Y.

If X D @ is a BK space and a € w we write

o0
lallx = sup{| kzoakwkl [zl =1}

2. The spaces c?(A) and c® (A) (1 < p < co) and their 3-duals

The case when p = 1 was investigated by E.Malkowsky and V.Rakocevié¢ (see
3])-

Let 1 < p and A = (A\p)32, be a non-decreasing sequence of positive reals
tending to infinity. We write

1 n
(AN ={zew] SUp > Aezk — Ag—1zk—a|P < o0}y
n n k=0

3 1 n
AN ={zecw] nhm - > M@k — Ap—1zp—1[P =0},

T An k=0
and
P(A)={zcw]|z—leec)(A) for some l € C}

for the sets of sequences that are A-strongly bounded, A-strongly convergent to
zero and A-strongly convergent, respectively.

We say that a non-decreasing sequence A = (A\g)72, of positive reals tending
to infinity is exponentially bounded if there are reals s and ¢t with 0 < s <t < 1
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such that for some subsequence (Ay(,))p2o of A, we have s < % <t for all v;
such a subsequence (Ay(,))pe is called an associated subsequence. If (k(v))72, is
a strictly increasing sequence of nonnegative integers, then we write K ) for the
set of all integers k with k(v) <k < k(v +1) — 1, and ), and max, for the sum
and maximum taken over all k in K.

In our further consideration, let A = (Ax)32, be an exponentially bounded
sequence of positive reals and (Ay(,));2, be an associated subsequence.

PROPOSITION 2.1.([4]) The spaces ¢?(A) and 2 (A) are BK spaces. The space
cB(A) is also a BK space with a Schauder basis (")), where c*) = (£)b™), and
b*) is defined by b;k) = { 0 J <k

1, <k

What is the main reason to obtain the [-dual of an arbitrary sequence space
X? (-duals are very important in the characterization of matrix classes (X,Y) since
A € (X,Y) can only hold if A, (x) converges for all z € X and for each n, that is
A, € X8,

1, n>k

and put
0, n<k P

We write E for the matrix with entries e, = {

WP(8) = {a€w| X Man(X loxl)7 < oo}

oo 1
and [lallwe(a) = 22,20 A1) (22, lak|) 7 for 1 <p < oo and ¢ = J25.

THEOREM 2.2. ([1, Theorem 3]) Let 1 < p < 0o, ¢ = ;%7 and the sequence
b= (bn)n be defined by:

v(n)—1 i 1
b, = ZO )\k(y+1)(k(l/ + 1) — k(l/)) a + )\k(y(n)_,_l)(n — k(u(n)) + 1) a,

Then i
(cB(A))7 = ()" (WP(A) N (b™" % co)) s

that is a = (ar)7%g € (B (M) if and only if 3277 A1) (3, [ 2072, 514) 7 < o0
and b(3°72, %)k € co. Furthermore, (cf(A))? = (P(A)? = (§)7' *

(b7 % l))E-
3. Matrix transformations on the spaces cP(A) and cB (A)
We need the following known results.

THEOREM 3.1. (]2, Theorem 1.23]) Let X andY be FK spaces. Then (X,Y) C
B(X,Y), that is, every A € (X,Y) defines a linear operator Ly € B(X,Y) where
Lpx = Az,x € X. If (b(k))z":O is a Schauder basis for X, and Y1 a closed FK
space in Y, then A € (X, Y1) if and only if A € (X,Y) and A(b®)) € Yy for all k.
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THEOREM 3.2. ([4, Proposition 3.2]) Let X D ® and Y be BK spaces. Then
we have A € (X,ls) if and only if

[A]lx = sup [[An[lx < oo
Furthermore, if A € (X,lx) then it follows that | Lall = || A]|%-

Now, let us consider the classes (B (A), o), (P(A), o), (P(A),c), and
(cP(A),cp). Since ¢P(A) has a Schauder basis, we can apply Theorem 3.1 and
obtain conditions for their characterization. ({e} U {c*)} is a Schauder basis for
c?(A)). Hence, we have

A€ (P(N),co) & A (P(A),loe) NACEP) € con Ale) € co,
A€ (P(A),c) & Ae (PA),le) NAC®) e cnAle) € c

What are necessary and sufficient conditions for A to be an element of
(cP(A), Ls)? We give one more useful result.

THEOREM 3.3. ([1, Theorem 4]) Let Y C w be a linear space.
RA(A) € (W (A),Y)
Then A € (®_(A),Y) if and only i .
(2) en (cBe(A),Y) if and only Zf{ Rf(A) eblxcy foralln

Tfk<A) = Z;ik a;f for all n, k and

, where

1 n
W (A)={zcw| v > JzklP < oo}

n k=0

(b) Let lim,, o ’\;:1 > 1. Then A € (cP(A),Y) if and only if

RA(A) € (w§(A),Y)
RAA) € b~ %Ly foralln
Ale) €Y,

where W (A) = {z € w | limp e s S7_ loal? = 0}.

PROPOSITION 3.4. LetY denote any of the spaces ¢, co, loo. If A € (cP(A),Y),
then | Lall = [|All(er(a).e00) and

1
w(1)1),q= L

“

[ All(cr(a),e00) = sUD( ZO Mew1) (O |

=k

Now we have
COROLLARY 3.5.

supy 32 Ak (2] 2 FH) 7} < 00
Ae (B (M) ls) & o .



The measure of noncompactness of matrix transformations 69

COROLLARY 3.6.
Sup,, 32— Me(w4+1) (22, 1 2252k %P)é} < 00
A€ (PN, l) & supy, |b E;’ik%| < 00
sup,, | Yo peg ank| < oo.
COROLLARY 3.7.
SUP, g ko) (0, | 252, S2[1) 1} < o0

b Yoo R <
Ae(@(h)0) & { el dim X <00

limy, o0 D peg @nk = @ for some a

lim,, 00 Z;‘;k a)\”f = qy, for each k.

COROLLARY 3.8.

gy L

D S0 Mty (5, | 3357 S211) 7} < oo
supy, |y E;ik aﬂj
limy, o0 D g @nk =0

. o0 QAnj
lim,,— oo Zj:k ALJJ =

< o0

A€ (P(A),c) &

We have seen transformations (X,Y’) and their necessary and sufficient condi-
tions but in the cases when Y is one of the classical sequence spaces, i.e. {s, ¢, Cg-
In our further studies, we will find necessary and sufficient conditions for classes:

(P(A), coo(p))s (P(A); co(m)), (P(A), c(p)), (Bo(A), coo(r))-
Let us put

1
All(Xew(u) = S a — Ay — 1 An_1)|
Al (X 0 (1)) mllz%(NmCrgl,lof’m} ”um ngivm(un tn-14n-1)D)

where X is an arbitrary FK space and p = (u,)22, is a nondecreasing sequence of
positive reals tending to infinity.

THEOREM 3.9. ([3, Corollary]) A € (X, coo(p)) if and only if [|Al|(x,co () <
oo for some D > 0. Further, if {b(®)}}, is basis of X, then

1Al (x,co0 (n)) < 00 for some D >0
Ae (X,cp) limm_,oo(ﬁ PO i An (B5)) = i1 A1 (B3)]) = 0

for all k.
A€ (X,c(p)) if and only if

| Al (x,co (u)) < 00 for some D >0

(3l €C) hmm—wo(i Z:znzo ‘UnAn(b(k) —lg) — Un—lAn—l(b(k) —lp)]) =0
for all k.
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Finally, if X is p-normed and A € (X,Y) for Y € {coo(u),co(u), c(p)}, then,
for

All7 = I nAn - Mn— An— *
AN e ) Sll_p(NmCH{lg?f_,m} IIMm ngv (1 fin—1An-1)[")

we have [|Al{x . ) < 1Lall < 4IAlTx . )-

COROLLARY 3.10. A € (B (A), cool(p)) if and only if || Al (A),co () < 005
where

ANl (e (A) o0 () =

o0

up{, xS e (Sl 3 (i 3 S e 35 508,

m>0 NmC{O 7m} v=0 n€Nm j=k

As we said before, if X is a BK space and a € w then we put
o0
lall* = Sup{\kzoakwkl [zl =1},

provided the term on the right side exists and is finite. This is the case whenever
a € XP. Hence, we have one more condition for A4, € & (A))?, namely
&)

lim (b > %) =0.

Let us mention that we could obtain the same conditions also by means of Theorem
3.3.

COROLLARY 3.11. A € (cP(A), coo(t)) if and only if | All ez, (A),co (u)) < OO
i.e.

S~ an; = Gno1y(q) )
sup{  max Z Me(v+1) (2w |#1n > (b 20 T = pn Zk TH)19) e} < oo
]:

m>0 ch{o 7m v=0 neEN,, i=k

and supy, |b Zj’;k a/\ﬂ| =0 and

sup - Z ‘:u'n Zank Hn—1 Zan—l,k| < 0.
k

Hm n=0

COROLLARY 3.12. A € (cP(A), co(p)) if and only if | All ez (a),co (u)) < 00 and
supy, |bx Z;‘;k %| =0 and

Supi Z ‘:U/nzank_,un lzan 1k| < 00,

m n=0

hm( Z|,Uznz - Hn— IZ nl]‘) 07

m—o0 umn 0 =k

lim (— Z |n Z Gy~ 1 3 1 4]) = 0.

M=00" Yl = =0
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COROLLARY 3.13. A € (cP(A),c(p)) if and only if || All (e (A),co(u)) < 00 and
0 anj| _
supy, bk D5y, v | =0 and

1 m
sup — E ‘,un Z Ank — Mn—1 Z a'n—l,k| < 00,
m k k

m n=0
. 1 UL i Anj e Ap—1,j
m (— 3 (a2 % — 1) — paoa (Y0 2554 — 1)) = 0 for some I,
m—00 [bm p=0 j=k 7’ j=k 7

m o0

lim (L > (,un(ioanj —1) - un,l(zoan,l}j —1)) =0 for some l.
i= i=

m=0" flm 7=

4. The Hausdorff measure of noncompactness and
matrix transformations

Let X and Y be metric spaces and f: X — Y. We say that f is a compact
map if f(Q) is a relatively compact subset of Y for each bounded subset @ of X.
(A set K is said to be relatively compact if K is a compact set). In this section, we
will consider an operator L4 with the aim to find conditions for A to be a compact
operator. For this purpose we will use the Hausdorff measure of noncompactness.
Recall that if @ is a bounded subset of a metric space X, then the Hausdorff
measure of noncompactness of () is denoted by x(Q) where

x(Q) =inf{e > 0| Q has a finite e-net in X }

(For properties of x see [5]).
If Q, @1 and Q5 are bounded subsets of a metric space (X, d), then we have

x(Q) = 0 if and only if @ is a totally bounded set,

x(Q) =x(@),
Q1 C Q2 implies x(Q1) < x(Q2),
X(Q1 U Q2) = max{x(Q1), x(Q2)}
and
X(Q1 N Q2) < min{x(Q1), x(Q2)}

If Q, Q1 and @2 are bounded subsets of a normed space X, then we have

X(Q1+ Q2) < x(Q1) + x(Q2),
X(Q+ ) =x(Q) (z € X)

and
x(AQ) = |\ x(Q) for all X € C.

As we can measure the noncompactness of a bounded subset of a metric space,
we can also measure the noncompactness of an operator. Let X and Y be normed
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spaces and A € B(X,Y). The Hausdorff measure of noncompactness of A is defined
by

1]l = x(AK),
where K = {x € X | ||z|| < 1} is the unit ball in X (see [5]). Further, A is compact
if and only if ||A]|, = 0. It holds: ||A|, < ||A|. Let us recall some well-known
results(see [2]) which will be useful for our investigation.

THEOREM 4.1. [Goldenstein, Gohberg, Markus| ([2, Theorem 2.23]) Let X be
a Banach space with Schauder basis {e1,ea, ...}, Q be a bounded subset of X, and
P,: X — X be the projector onto the linear span of {e1,ea,...,e,}. Then we have

*hmsup(sup (I = Po)z]l) < x(Q) <hmsup(sup 11 = Pr)zl),

a4 n—oo ze n—oo &
where a = limsup,,_, . ||I — P,|-

THEOREM 4.2. Let A be an infinite matriz, 1 < p < oo, ¢ = ﬁ and for any
integers n,r, n > r we write

r [e’s) [e’s) s 1
4120 00y = S22 Moiy (S £ 521D
n>r v= v 1=

(M), o) . then || Lally = lim oo [A] ) 0y 0.

¢(A),€), then 3T, oo [|AIT) 0y oy < IZally < Timp—oo A1) 0

OO)

c) If Ae (cP(A),leo), then 0 < || Lally <lim, o0 ||A||(cp (A),foc)”

(8), £oc), then 0 < | Lally < limp oo [AGD .0,
Proof. Let us remark that the limits in a), b) and c) exist. Set K = {z €

P (A) | =] < 1}

a) By Theorem 4.1, we have
[Lally = x(AK) = Tim (sup [|(I — P.)Az]]),
T zeK

(P : co — ¢o, Pr(x) = (x0,21,...,2,,0,0,...),a = 1). By Proposition 3.4, we
have ||[Lall = [|A(cr(a),e.)- Now, let Agy = ( x) be the infinite matrix defined
by

. { 0, 0<n<r

Ank =

ank, N >T.
We have HAHEQ)(A = [[A)ll(er(a).0e) = 1L, || and
LA(T) (a:) = A(T)(a:) = (I - P,,«)AJJ

Hence, we have ||L4,,, || = sup,ex (I — Pr)Az| and therefore

I1Zallx = X(AK) = Tim A ),
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b) Let € ¢ (that means that x has a unique representation x = le+ p- ,(zr—
l)e(k) where [ is such that « — le € ¢p), and let us define the projector P,.: ¢ — ¢
by P.(z) =le + > _o(zx — 1)e® (let us remark that a = 2 for P,: ¢ — ¢). Now
we have

§hmsup(sup (I —P)Az|]) < ||Lallyx < hmsup(sup (I —P,)Az|).
r—oo  zeK

As in (a), we can prove that HAHEZZ,(A) 1) = SWPek ||(I — Pr)Az]| and therefore
we have

= hm 0 AN ey < NZally < lim JAND ) .-
¢) (We can prove (d) in the same way.) Let us define P.: {o, — o by

P.(z) = (xo,21,-..,2,0,0,,...). It is obvious that we cannot use Theorem 4.1
because £, has no Schauder basis.

We have AK C P.(AK) + (I — P,)AK ( in case (d), in the definition of K,
cP(A) is replaced by ¢ (A) ). Applying the properties of y, we have

VAK) < X(Po(AK)) + x((I - P)AK) = x((I - P,)AK)
=1 = P)Allx < (I = P)A| < :g}gll(l — B)Az]].
Therefore, by (a):
X(AR) < sup |7 = P) Azl = [Lag, | and 0= [Lally < i [A1D 0 ®
COROLLARY 4.3. (i) If either A € (cP(A),co) or A € (cP(A),c), then Ly is
compact if and only if
Jim A1 ) .y = O
(ii) If A € (B (A), ) or A€ (P(A), L), then L4 is compact if
lim [| A7) =0.

r—00 OO(A) EOQ)

We wonder if the equivalence holds. The following example will give the an-
swer: it is possible for L4 in Theorem 4.2(c) to be compact but

lim, oo [|A[[() ) 0y # O-

EXAMPLE 4.4. Let A = (ank)s%—o be an infinite matrix such that A4, =e
i.e.

k(0)

1, k=k(0)

fink = { 0, K+ k(0).
By Corollary 3.5, A € (c& (A), ) and by Corollary 3.6, A € (¢?(A),{). Further-

more, we obtain

(T) _ s e Anj |q 1
JAICY (yamy =510 5 My (5] 35 %2[0))
n>r =0 v j=k -
RO o0 1 A
=suphy( 3 | X G2 = TR Lo,
n>r k=k(0) j=k k(0)
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Also, putting x = e = (1,1,...), we see that L, is a compact operator. Hence, the
equivalence in (ii) does not hold.

It remains to “measure” the noncompactness of operators A € (X,Y’) where X
is ¢?(A) or ¢E_(A) and Y is one of the spaces coo (1), co(pt), c(p). The next theorem
is of great importance for the mentioned task.

THEOREM 4.5. Let A be an infinite matriz, 1 < p < oo, ¢ = p% and for any

integers m,r € N, m > r, we put

oo
A =5 A X
Al ;lig{chlg% _____ m}ygo k(v+1)

“

oo
X (Z‘M%n > (pn Zk%*ﬂn—l
v 1=

. 1
ca)j0) 1},
nENnm,

j=k

), then lim, o [|A|S) < | Lally < 4lim, o | A[|S.

Coo

, then Slim, o A < || Lally < 4lim, o [ A

Coo

(a) If A € (cP(A), colp)
(b) If A € (cP(A), c(n))

() If A€ ("(A), coo(), then 0 < ||Lally < 4lim, o0 [ A[IE2.

(d) If A € (B (A), coo(p)), then 0 < | Lally < 4lim, o [|A]|.

Proof. (a) Let P, : co(uz — ¢o(u) be defined by P,.(z) = (29,21, ..., 2:,0,0,...)

(this is possible because cg(u) has AK and every © = (1) € co(p) has a unique
representation x = 37 (z))e®)). We have (see [4])

(I = P)z|| = (0,0, .., 0,21, 2rs0, .. )| = {(I — Pz € colp),p = 1}
r+k
> pimy — pj1wial)

1 k
=sup(— > |pjzj — pj—175-1]) = supy(

E Mk j=0 Hr+k j=r+1
1 r+k
= sup(——(|ttr41241 = O+ D= |pjz; — pj—1wj-1]))
ko Hrik j=r+2
1 r+k
= sup(——(lpr1zrial + 20 |u5z; — pj—125-1l))-
ko Hr+k j=r+2

Since

ltrs1Zr 1] < |prp1Zr1 — pree |+
+ | pry — pp—1Zr_1| + -+ |1z — poxo| + ool

it follows
r+k r+k
lrpizria| + 30 uymy — pyamgal < 30 lpywy — pyawjal,
j=rt2 3=0
(—1 =0) and

1 rtk
2 sy = py=atj—al-
J:

(I = Pp)z| <sup
k Hr+k
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As we know, ||z| = sup, H%Z?:o lpjz; — pj—1zi—1| for @ = (xp)r € co(p) and
therefore we have
(I = Pr)z|| < |lz[|.
That implies ||[I — P.|| < 1. Since I — P, is a projector, ||[I — P.|| > 1 and finally,
|[I — P.|| = 1. Let K be defined as in Theorem 4.2. By Theorem 4.1, we have
[Lally = x(AK) = 1imsup(sgg (I — Pr)Ax]]).

T—00 x

For given € > 0, there is € K such that
€
I(T = By > (T = Po)A] - &,

ie.
n

1
sup — > |puidir — pi1 A x| > ||[(I - P)A[ - 5. (*)

n Hn i=r41

In the proof, we need the next lemma.

LEmMMA ([2]) Let ag,a1,...a, € C. Then,

n

<4 .
D larl <4 max > al

k=0 keEN

By (), there is an integer k(x) > r such that

1 k(a:) €
> wiAiw — iy Aiax| > [|(I = Pr) Al = 5.
Pk (z) i=r+1 2
By the lemma, we have
5 e - s Accas] <4 |5 widie — i Aiaal
iAiT — pi—1 A2 < max iAiT — fi—1A4i-1%
i=r+1 : fit ! NC{r+1,....k(x)} ieN‘u fimt '

and therefore

1
4 max 2A2$— i— Ai, x Z
NC{r+Lok(2)} uk@)'%}v“ pim1 izl
1 k=
> Yo pidiz — pia Aiaz| > (1= P)A| —e ()
Pk (z) i=r+1

So, for arbitrary € > 0 and = € K we obtain that (xx) holds. Hence, (¥%) holds for
each r and we have

1
I— Pr A S 4 su max —_— zAz — M- Ai, . X % X%
0= P)Al < tsupl x| 5 i =g dial) ()

By (* * %) and the definition of ||L4||y, we have

1
L <4 lim (su max — A — i1 A ,
IEal <4 i fwpl a3 s = e Aial)

Le. |Lally < 4lim, o [ AL
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We have proved the righthand side in (a). It remains to prove the lefthand
one. Suppose that x € K, r € N, k> rand N, C {r+1,...,k}. Then we have

1 1
|— > widir — i A < — Y0 A — i1 A ]
Kk ieN, Mk €N,

1k
< — > |midiz — pimaAiaz| < |1 = P Az
Bk i=r41

Since z € K, r € N, k > r were arbitrary, we conclude that for each r and k > r
we have

1
|— > widix — pi1 A || < ||(I — Pr)Ax].
Kk ieN,. ;

Hence , lim,_ ||A||£2 < ||Laly.- Thus we have proved Part (a).
(b) Let © € ¢(u) (that means that = has a unique representation x = le +

S (wr — 1)e®) where [ is such that 2 — le € co(p)). Let us define the projector
k=0

P.: c(p) — c(p) by Po(x) = le+ 3. (xr—1)e® ie. P(z) = (zo,21,...,2r, 1,1,...).
k=0

Similarly as in the case (a) we conclude

||(I_PT)x|| = ||(0707"'707x7‘+1 _l7x7“+2 _l7)||

1 r+k
= sup( lj(zy —1) — pj—1(xj—1 = 1))
k Hr+k j=r+1
1 r+k
= sup( (lprs1(@rpr =D+ X2 iz — pi—1zj—1 — Uy — pi—1)]))
E Mr+k j=r+2
1 r+k

< |l + sup{ (Irp1zra + 20 [Ty — pi—1zj—1])}

ko Hr+k j=r+2
By (a), we have

(1 = Pr)zll < (U] + [|=]|. (o)

We apply a result from [6] and obtain

n

1 2 1
0<||I]—— Z |tk — Mk71$k71| < — Z lpr(xg — 1) — pg—1(Tp—1 — l)|~
Hn k=0 Hn k=0

If n tends to infinity, the righthand side tends to zero (since x —le € ¢o(p)) and we

obtain

.1z
l| = lim — > |ue2k — pe—12x—1]-

n—oo Mn k=0

Hence, |I| < ||z|| and from (¢) we have ||I — P,|| < 2. Applying Theorem 4.2, we
obtain (b).

(c) This part is proved similarly as Theorem 4.2(c), because the space coo(1t)
does not have a Schauder basis either. m



The measure of noncompactness of matrix transformations s

COROLLARY 4.6. (i) If either A € (cP(A),co(p)) or A € (cP(A),c(p)) then

L4 is compact if and only if lim ||A||£2 =0.

(ii) If either A € (B (A), coo(pt)) or A € (cP(A), coo(pt)) then

L4 is compact if lim HAHS;)D =0.

Let us remark that the converse of (ii) does not hold in general. The next
example illustrates this.

EXAMPLE 4.7. Let A = (ank);,—¢ be an infinite matrix as in Example 4.4.
By Corollary 3.10, A € (& (A), coo(1t)) and by Corollary 3.11, A € (¢P(A), coo(t))-
Putting = e = (1,1,...), we see that L4 is a compact operator. On the other
side, we have

o0
Al = m Ak(v41) X
4l iiEN,‘,mc{ri}i,i..,m}{Eo k(1)

< (D= Y (> S s 5 OnLi o)y

v HmneN, =k =k A
; a Ay (l ! S 1 3
= sup max s R q
mr Neom C{r Loy PN &R a Ak(0) Pn—1 Ak(0)
1 1
= Su max )\ L 3 -
Ak(1) 1
=5 Sup max il o
Ak(0) m>r N7-,,,Lc{r+1,m,m}(um ne;\,m(# tn—1))
)\k(l) 1 )\k(l) [hrg1 )\k(l)
= sup — m — Hr = Supl—iz >0
Ak(0) m>r Hm (b = bhr11) Ak(0) m>r( Hom ) Ak(0)

We have lim,_, o, HAHS;)) # 0 and L4 is a compact operator. Hence, the equivalence
in (ii) does not hold.
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