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ON PSEUDO-SEQUENCE COVERINGS,
π-IMAGES OF METRIC SPACES

Ying Ge

Abstract. In this paper, we prove that a space X is a pseudo-sequence-covering, π-image
of a metric space if and only if X has a point-star network consisting of wcs-covers, which answers
a conjecture posed by Lin affirmatively. As an application of this result, we have that a space is a
pseudo-sequence-covering, π-image of a separable metric space is characterized as a sequentially-
quotient, π-image of a separable metric space.

1. Introduction

A study of images of metric spaces under certain π-mappings is an important
question in general topology [2, 5, 7, 8, 13]. In recent years, sequence-covering
(resp. pseudo-sequence-covering, sequentially-quotient), π-images of metric spaces
cause attention once again [4, 10, 16, 17]. Lin proved that a space is a sequence-
covering (resp. sequentially-quotient), π-image of a metric space if and only if it
has a point-star network consisting of cs-covers (resp. cs∗-covers) [10]. However,
the following question is still open.

Question 1.1. What is a similar characterization of a pseudo-sequence-
covering, π-image of a metric space?

Note that sequence-covering mapping =⇒ pseudo-sequence-covering mapping
=⇒ (if the domain is metric) sequentially-quotient mapping. Lin raised the follow-
ing conjecture in a personal communication.

Conjecture 1.2. There exists a class of covers, which is between cs-covers
and cs∗-covers, such that a space is a pseudo-sequence-covering, π-image of a metric
space if and only if it has a point-star network consisting of such covers.

On the other hand, Tanaka and Ge proved that every space with a point-star
network consisting of point-countable cs∗-covers is a pseudo-sequence-covering, π-
image of a metric space [17]) More precisely, Lin obtained the following result.
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Theorem 1.3. [10] A space is a pseudo-sequence-covering (or sequentially-
quotient), s and π-image of a metric space if and only if it has a point-star network
consisting of point-countable cs∗-covers.

In this paper, we introduce wcs-covers, which are between cs-covers and cs∗-
covers, and prove that a space is a pseudo-sequence-covering, π-image of a metric
space if and only if it has a point-star network consisting of wcs-covers, which gives
an affirmative answer to Conjecture 1.2. Moreover, we establish a relation between
point-countable wcs-covers and point-countable cs∗-covers and generalize Theorem
1.3. As an application of these results, we prove that a space is a pseudo-sequence-
covering, π-image of a separable metric space if and only if it is a sequentially-
quotient, π-image of a separable metric space.

Throughout this paper, all spaces are assumed to be Hausdorff, and all map-
pings are continuous and onto. N denotes the set of all natural numbers. Let X be
a space and let A be a subset of X. We say that a sequence {xn : n ∈ N}∪{x} in X
converging to x is eventually in A if {xn : n > k}∪{x} ⊂ A for some k ∈ N. Let P
be a family of subsets of X and let x ∈ X.

⋃P, st(x,P) and (P)x denote the union⋃{P : P ∈ P}, the union
⋃{P ∈ P : x ∈ P} and the subfamily {P ∈ P : x ∈ P}

of P, respectively. If f : X −→ Y is a mapping, f(P) = {f(P ) : P ∈ P}.

2. π-images of metric spaces

Definition 2.1. Let (X, d) be a metric space, and let f : X −→ Y be a
mapping. f is called a π-mapping [13], if for every y ∈ Y and for every neighborhood
U of y in Y , d(f−1(y), X − f−1(U)) > 0.

Remark 2.2. Recall that a mapping f : X −→ Y is a compact mapping (resp.
an s-mapping), if f−1(y) is a compact subset (resp. a separable subset) of X for
every y ∈ Y . It is clear that every compact mapping from a metric space is an s-
and π-mapping.

Definition 2.3. Let f : X −→ Y be a mapping.

(1) f is called a pseudo-sequence-covering mapping [6] if for every convergent
sequence S in Y , there exists a compact subset K of X such that f(K) = S ∪ {y},
where y is the limit point of S;

(2) f is called a sequentially-quotient mapping [1] if for every convergent se-
quence S in Y , there exists a convergent sequence L in X such that f(L) is a
subsequence of S;

(3) f is called a compact-covering mapping [12] if for every compact subset C
of Y , there exists a compact subset K of X such that f(K) = C;

(4) f is called a sequence-covering mapping [14] if for every convergent sequence
S in Y , there exists a convergent sequence L in X such that f(L) = S.

Remark 2.4. Every pseudo-sequence-covering mapping from a metric space
is sequentially-quotient [10].
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Definition 2.5. (1) Let P =
⋃{Px : x ∈ X} be a cover of a space X. P is

called a network of X, if for every x ∈ U with U open in X, there exists P ∈ Px

such that x ∈ P ⊂ U , where Px is called a network at x in X.
(2) Let {Pn : n ∈ N} be a sequence of covers of a space X. {Pn : n ∈ N} is

called a point-star network of X [10], if {st(x,Pn) : n ∈ N} is a network at x in X
for every x ∈ X.

Definition 2.6. Let P be a cover of a space X.
(1) P is called a wcs-cover if for every convergent sequence S converging to x

in X, there exists a finite subfamily P ′ of (P)x such that S is eventually in
⋃P ′;

(2) P is called a cs∗-cover [10] if for every convergent sequence S in X, there
exist P ∈ P and a subsequence S′ of S such that S′ is eventually in P ;

(3) P is called a cs-cover of X [18] if for every convergent sequence S in X,
there exists P ∈ P such that S is eventually in P .

(4) P is called a (point-)countable wcs-cover (resp. (point-)countable cs∗-cover,
(point-)countable cs-cover) if P is a wcs-cover (resp. cs∗-cover, cs-cover) and is also
(point-)countable.

Theorem 2.7. For a space X, the following are equivalent:
(1) X is a pseudo-sequence-covering, π-image of a metric space;
(2) X has a point-star network consisting of wcs-covers.

Proof. (1)=⇒(2): Let M be a metric space with a metric d, and let
f : M −→ X be a pseudo-sequence-covering, π-mapping. We write B(a, ε) =
{b ∈ M : d(a, b) < ε} for every a ∈ M , where ε > 0. For every n ∈ N, put
Bn = {B(a, 1/n) : a ∈ M}, and Pn = f(Bn). Then Pn is a cover of X.

Claim 1. {Pn} is a point-star network of X. That is, {st(x,Pn) : n ∈ N} is a
network at x in X for every x ∈ X.

Let x ∈ U with U open in X. Since f is a π-mapping, there exists n ∈ N
such that d(f−1(x),M − f−1(U)) > 1/n. Pick m ∈ N such that m > 2n. It
suffices to prove that st(x,Pm) ⊂ U . Let a ∈ M and let x ∈ f(B(a, 1/m)) ∈ Pm.
We claim that B(a, 1/m) ⊂ f−1(U). If fact, if B(a, 1/m) 6⊂ f−1(U), then pick
b ∈ B(a, 1/m) − f−1(U). Note that f−1(x) ∩ B(a, 1/m) 6= ∅, pick c ∈ f−1(x) ∩
B(a, 1/m). Then d(f−1(x),M −f−1(U)) ≤ d(c, b) ≤ d(c, a)+d(a, b) < 2/m < 1/n.
This is a contradiction. So B(a, 1/m) ⊂ f−1(U), thus f(B(a, 1/m)) ⊂ ff−1(U) =
U . This proves that st(x,Pm) ⊂ U .

Claim 2. Pn is a wcs-cover of X for every n ∈ N.
Let n ∈ N. Suppose S is a sequence in X converging to x ∈ X. Since

f is pseudo-sequence-covering, there exists a compact subset K in M such that
f(K) = S ∪ {x}. Note that f−1(x) ∩ K is compact in M . There exists a finite
subset M ′ of M such that f−1(x) ∩ K ⊂ ⋃

a∈M ′ B(a, 1/n). We can assume that
f−1(x) ∩ B(a, 1/n) 6= ∅ for every a ∈ M ′. Put B = {B(a, 1/n) : a ∈ M ′} and
B =

⋃B, then K −B is compact in M . Put P ′ = {f(B(a, 1/n)) : a ∈ M ′}. Then
P ′ is a finite subfamily of (Pn)x. We prove that S is eventually in

⋃P ′ as follows.
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If not, there exists a subsequence {xk : k ∈ N}∪{x} of S converging to x such that
xk /∈ ⋃P ′ for every k ∈ N. Note that f(K) = S. Thus there exists ak ∈ K − B
such that f(ak) = xk for every k ∈ N. Since K −B is compact in M , there exists
a subsequence {aki

: i ∈ N} of {ak : k ∈ N} such that the sequence {aki
: i ∈ N}

converges to a point a ∈ K −B. Thus f(a) 6= x. This contradicts the continuity of
f . So S is eventually in

⋃P ′. This proves that Pn is a wcs-cover of X.

By the above, X has a point-star network {Pn : n ∈ N} consisting of wcs-
covers.

(2)=⇒(1): Let X have a point-star network {Pn : n ∈ N} consisting of wcs-
covers. For every n ∈ N, put Pn = {Pα : α ∈ Λn}, and Λn is endowed with the
discrete topology. Put

M = {a = (αn) ∈
∏

n∈N

Λn : {Pαn} is a network at some xa in X}.

Then M , which is a subspace of the product space
∏

n∈N Λn, is a metric space with
metric d described as follows.

Let a = (αn), b = (βn) ∈ M . If a = b, then d(a, b) = 0. If a 6= b, then
d(a, b) = 1/ min{n ∈ N : αn 6= βn}.

Define f : M −→ X by choosing f(a) = xa for every a = (αn) ∈ M , where
{Pαn} is a network at xa in X. It is not difficult to check that f is continuous and
onto.

Claim 1. f is a π-mapping.

Let x ∈ U with U open in X. Since Pn is a point-star network of X, there exists
n ∈ N such that st(x,Pn) ⊂ U . Then d(f−1(x),M − f−1(U)) ≥ 1/2n > 0. In fact,
let a = (αn) ∈ M such that d(f−1(x), a) < 1/2n. Then there is b = (βn) ∈ f−1(x)
such that d(a, b) < 1/n, so αk = βk if k ≤ n. Notice that x ∈ Pβn ∈ Pn,
Pαn = Pβn , so f(a) ∈ Pαn = Pβn ⊂ st(x,Pn) ⊂ U , hence a ∈ f−1(U). Thus
d(f−1(x), a) ≥ 1/2n if a ∈ M − f−1(U), so d(f−1(x),M − f−1(U)) ≥ 1/2n > 0.
This proves that f is a π-mapping.

Claim 2. f is a pseudo-sequence-covering mapping.

Let S = {xn : n ∈ N} ∪ {x} be a sequence in X converging to x ∈ X. Since
every Pn is a wcs-cover, for every n ∈ N, there exists a finite subfamily Fn of
(Pn)x such that S is eventually in

⋃Fn. Note that S−⋃Fn is finite. There exists
a finite subfamily Gn of Pn such that S − ⋃Fn ⊂

⋃Gn. Put Fn ∪ Gn = {Pαn :
αn ∈ Γn}, where Γn is a finite subset of Λn. For every αn ∈ Γn, if Pαn ∈ Fn, put
Sαn = S

⋂
Pαn , otherwise, put Sαn = (S − ⋃Fn) ∩ Pαn . It is easy to see that

S =
⋃

αn∈Γn
Sαn and {Sαn : αn ∈ Γn} is a family of compact subsets of X. Put

K = {(αn) ∈ ∏
n∈N Γn :

⋂
n∈N Sαn 6= ∅}. Then

(i) K ⊂ M and f(K) ⊂ S: Let a = (αn) ∈ K, then
⋂

n∈N Sαn 6= ∅. Pick
y ∈ ⋂

n∈N Sαn ; then y ∈ ⋂
n∈N Pαn . Note that {Pαn : n ∈ N} is a network at y

in X if and only if y ∈ ⋂
n∈N Pαn . So a ∈ M and f(a) = y ∈ S. This proves that

K ⊂ M and f(K) ⊂ S.
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(ii) S ⊂ f(K): Let y ∈ S. For every n ∈ N, pick αn ∈ Γn such that y ∈ Sαn
.

Put a = (αn), then a ∈ K and f(a) = y. This proves that S ⊂ f(K).
(iii) K is a compact subset of M : Since K ⊂ M and

∏
n∈N Γn is a compact

subset of
∏

n∈N Λn, we only need to prove that K is a closed subset of
∏

n∈N Γn. It
is clear that K ⊂ ∏

n∈N Γn. Let a = (αn) ∈ ∏
n∈N Γn −K. Then

⋂
n∈N Sαn = ∅.

There exists n0 ∈ N such that
⋂

n≤n0
Sαn = ∅. Put W = {(βn) ∈ ∏

n∈N Γn : βn =
αn for n ≤ n0}. Then W is open in

∏
n∈N Γn and a ∈ ∏

n∈N Γn. It is easy to see
W ∩K = ∅. So K is a closed subset of

∏
n∈N Γn.

By (i), (ii) and (iii), f is a pseudo-sequence-covering mapping.
By the above, X is a pseudo-sequence-covering, π-image of a metric space.

Are the conditions in Theorem 2.7 equivalent for a space to be a sequentially-
quotient, π-image of a metric space? This question is still open (see [10, Question
3.1.14], for example). Recently, Lin gave a sequentially-quotient, π-mapping f
from a metric space such that f is not pseudo-sequence-covering. This also shows
that a point-star network consisting of cs∗-covers need not be a point-star network
consisting of wcs-covers. But, we have the following result.

Lemma 2.8. Let P be a cover of a space X.
(1) If P is a wcs-cover, then P is a cs∗-cover.
(2) If P is a point-countable cs∗-cover, then P is a wcs-cover.

Proof. (1) holds by Definition 2.6. We only need to prove (2).
Let P be a point-countable cs∗-cover of X. Let S = {xn : n ∈ N} ∪ {x} be

a sequence converging to x ∈ X. Since P is point-countable, put (P)x = {Pn :
n ∈ N}. Then S is eventually in

⋃
n≤k Pn for some k ∈ N. If not, then for

any k ∈ N, S is not eventually in
⋃

n≤k Pn. So, for every k ∈ N, there exists
xnk

∈ S −⋃
n≤k Pn. We may assume n1 < n2 < · · · < nk−1 < nk < nk+1 < · · · .

Put S′ = {xnk
: k ∈ N} ∪ {x}, then S′ is a sequence converging to x. Since P is a

cs∗-cover, there exist m ∈ N and a subsequence S′′ of S′ such that S′′ is eventually
in Pm. Note that Pm ∈ (P)x. This contradicts the construction of S′.

Corollary 2.9. Let X be a space. Then the following are equivalent:
(1) X is a pseudo-sequence-covering, s- and π-image of a metric space;
(2) X is a sequentially-quotient, s- and π-image of a metric space;
(3) X has a point-star network consisting of point-countable wcs-covers;
(4) X has a point-star network consisting of point-countable cs∗-covers.

Proof. (1)⇐⇒(2)⇐⇒(4) from Theorem 1.3. (3)⇐⇒(4) from Lemma 2.8.

3. π-images of separable metric spaces

Recall that a space is called a cosmic-space [12] if it has a countable network.
It is known that a space is a cosmic-space if and only if it is an image of a separable
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metric space [12]. We characterize cosmic-spaces by π-images of separable metric
spaces.

Proposition 3.1. For a space X, the following are equivalent:

(1) X is a cosmic-space;

(2) X has a point-star network consisting of countable covers;

(3) X is a π-image of a separable metric space;

(4) X is an image of a separable metric space.

Proof. We only need to prove that (1)=⇒(2)=⇒(3).

(1)=⇒(2). Let P = {Pn : n ∈ N} be a countable network of a cosmic-space X.
For every n ∈ N, put Pn = {Pn} ∪ {Pk − Pn : k ∈ N}. Then {st(x,Pn) : n ∈ N}
is a network at x in X for every x ∈ X. In fact, for every x ∈ U with U is open
in X, since P is a network of X, there exists n ∈ N such that x ∈ Pn ⊂ U . Note
that st(x,Pn) = Pn, thus st(x,Pn) ⊂ U . So {Pn : n ∈ N} is a point-star network
consisting of countable covers.

(2)=⇒(3). Let X have a point-star network {Pn : n ∈ N} consisting of
countable covers. For every n ∈ N, put Pn = {Pα : α ∈ Λn} with Λn endowed with
the discrete topology. Put

M = {a = (αn) ∈
∏

n∈N

Λn : {Pαn} is a network at some xa in X}.

Note that Λn is countable for every n ∈ N . Then M , which is a subspace of the
product space

∏
n∈N Λn, is a separable metric space with the metric d defined as

follows.

Let a = (αn), b = (βn) ∈ M . If a = b, then d(a, b) = 0. If a 6= b, then
d(a, b) = 1/ min{n ∈ N : αn 6= βn}.

Define f : M −→ X by choosing f(a) = xa for every a = (αn) ∈ M , where
{Pαn} is a network at xa in X. As in the proof of (2)=⇒(1) in Theorem 2.7, it
is easy to prove that f is a π-mapping. So X is a π-image of a separable metric
space.

Now we discuss pseudo-sequence-covering, π-images of separable metric spaces.

Definition 3.2. [3] Let X be a space, and let x ∈ X. A subset P of X is
called a sequential neighborhood of x if every sequence S = {xn : n ∈ N} ∪ {x}
converging to x is eventually in P .

Definition 3.3. Let P =
⋃{Px : x ∈ X} be a cover of a space X. P is

called an sn-network of X [11], if Px satisfies the following (a), (b) and (c) for
every x ∈ X, where Px is called an sn-network at x in X.

(a) Px is a network at x in X;

(b) if P1, P2 ∈ Px, then P ⊂ P1 ∩ P2 for some P ∈ Px;

(c) every element of Px is a sequential neighborhood of x.
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Remark 3.4. In [9], a sequential neighborhood of x and an sn-network are
called a sequence barrier at x and a universal cs-network respectively.

Lin and Yan proved that a regular space is a sequentially-quotient (or compact-
covering), compact image of a separable metric space if and only if it has a countable
sn-network, and where “regular” cannot be omitted [11]. But, it is possible to relax
“compact” to “π” [4]. Thus we have the following result.

Theorem 3.5. For a regular space X, the following are equivalent:

(1) X is a pseudo-sequence-covering, π-image of a separable metric space;

(2) X is a sequentially-quotient, π-image of a separable metric space;

(3) X has a countable sn-network.

Taking Theorem 3.5 into account, we ask whether “regular” can be omitted.
Furthermore, without requiring the regularity of the spaces involved, are (1) and
(2) equivalent? We answer these questions as follows.

Example 3.6. A space with a countable base is not necessarily a sequentially-
quotient, π-image of a metric space. So “regular” in Theorem 3.5 cannot be omitted.

Proof. Let R be the set of all real numbers, and let τ be the Euclidean topology
on R. Put X = R with the topology τ∗ = {{x} ∪ (D ∩ U) : x ∈ U ∈ τ}, where D
is the set of all irrational numbers. That is, X is the point irrational extension of
R [15, Example 69]. It is easy to check that X is Hausdorff, non-regular [15].

Claim 1. X has a countable base [10, Example 3.13(5)].

Claim 2. X is not a sequentially quotient, π-image of a metric space. In fact,
Lin proved that X is not a symmetric space [10, Example 3.13(5)]. So X is not
a quotient, π-image of a metric space [16]. Note that every sequentially-quotient
mapping onto a first countable space is quotient [1]. Thus X is not a sequentially-
quotient, π-image of a metric space.

The proof of the following proposition is as the proof of Theorem 2.7. We omit
it.

Proposition 3.7. A space is a pseudo-sequence-covering (resp. sequentially-
quotient), π-image of a separable metric space if and only if it has a point-star
network consisting of countable wcs-covers (resp. countable cs∗-covers).

By Lemma 2.8, we have the following corollary.

Corollary 3.8. A space is a pseudo-sequence-covering, π-image of a separa-
ble metric space if and only if it is a sequentially-quotient, π-image of a separable
metric space.

From the proofs of [11, Theorem 4.6, (3)=⇒(2)] and [4, Theorem 2.7, (3)=⇒
(1)], we have the following results without requiring the regularity of the spaces
involved.
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Proposition 3.9. For a space X, the following are true:
(1) If X is a sequentially-quotient, π-image of a separable metric space, then

X has a countable sn-network.
(2) If X has a countable closed sn-network, then X is a compact-covering,

compact image of a separable metric space.
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