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SOME GENERALIZATIONS OF
LITTLEWOOD-PALEY INEQUALITY IN THE POLYDISC

K. L. Avetisyan and R. F. Shamoyan

Abstract. The paper generalizes the well-known inequality of Littlewood-Paley in the poly-
disc. We establish a family of inequalities which are analogues and extensions of Littlewood-Paley
type inequalities proved by Sh. Yamashita and D. Luecking in the unit disk. Some other gener-
alizations of the Littlewood-Paley inequality are stated in terms of anisotropic Triebel-Lizorkin
spaces. With the help of an extension of Hardy-Stein identity, we also obtain area inequalities
and representations for quasi-norms in weighted spaces of holomorphic functions in the polydisc.

1. Introduction

Let Dn = {z = (z1, . . . , zn) ∈ Cn : |zj | < 1, 1 ≤ j ≤ n} be the unit polydisc
in Cn, and Tn = {ξ = (ξ1, . . . , ξn) ∈ Cn : |ξj | = 1, 1 ≤ j ≤ n} be the n-
dimensional torus, the distinguished boundary of Dn. Denote by H(Dn) the set of
all holomorphic functions in Dn. If f(z) = f(rξ) is a measurable function in Dn,
then

Mp(f, r) =
[

1
(2π)n

∫

Tn

|f(rξ)|pdmn(ξ)
]1/p

, r = (r1, . . . , rn) ∈ In,

where 0 < p < ∞, In = (0, 1)n, mn is the n-dimensional Lebesgue measure on Tn.
The collection of holomorphic functions f(z), for which ‖f‖Hp = sup

r∈In

Mp(f, r) <

+∞, is the usual Hardy space Hp. For a radial weight function ω(r) =
∏n

j=1 ωj(rj)
the quasi-normed space Lp

ω (0 < p < ∞) is the set of those functions f(z) measur-
able in the polydisc Dn, for which the quasi-norm

‖f‖Lp
ω

=
(

Cω

∫

Dn

|f(z)|p
n∏

j=1

ωj(|zj |) dm2n(z)
)1/p

is finite. Here dm2n(z) = r dr dmn(ξ) is the Lebesgue measure on Dn, and the
constant Cω is chosen so that ‖1‖Lp

ω
= 1. For the subspace of Lp

ω consisting of
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holomorphic functions let Ap
ω = H(Dn) ∩ Lp

ω. We will write Lp
α, Ap

α instead of
Lp

ω, Ap
ω if ωj(rj) = (1− rj)αj (αj > −1, 1 ≤ j ≤ n).

The classical inequality of Littlewood and Paley for functions holomorphic in
the unit disk D = D1 (see, e.g., [23]) is well known.

Theorem A. (Littlewood-Paley) If 2 ≤ p < ∞, then for any f ∈ Hp(D)
∫

D

|f ′(z)|p(1− |z|)p−1 dm2(z) ≤ C‖f‖p
Hp . (1.1)

Many generalizations and extensions of Theorem A are known, see, for ex-
ample, [1–2, 8–13, 17–22]. The next theorem is Luecking’s [9] generalization of
(1.1).

Theorem B. (Luecking) Let 0 < p, s < ∞. Then
∫

D

|f(z)|p−s|f ′(z)|s(1− |z|)s−1 dm2(z) ≤ C‖f‖p
Hp (1.2)

for any f ∈ Hp(D) if and only if 2 ≤ s < p + 2.

We see that the case 0 < s < 2 is omitted. So, it would be of interest to obtain
analogues of (1.2) for 0 < s < 2.

The present paper is organized as follows. Theorem 1 deals with Luecking’s
integral (1.2) in the polydisc for 0 < s < 2. We obtain a family of inequalities
reducing to the Littlewood-Paley inequality in the limiting case s, p → 2. Note
that the proof of D. Luecking [9] essentially uses some one variable methods which
are not extendible to the polydisc case by a direct iteration. We exploit function
spaces introduced by R. Coifman, Y. Meyer and E. Stein [3] and apply methods
for estimating of Luecking’s integral, which are quite different from those of [9]. In
Theorem 2 we prove another extension of the Littlewood-Paley inequality in terms
of anisotropic Triebel-Lizorkin spaces. Then we consider in Theorem 3 fractional
derivatives of arbitrary order and estimate more general integrals for all 0 < s ≤
p < ∞. We establish in Theorem 4 other analogues of (1.2) by means of general
weight functions ω(r). To this end, we extend to the polydisc the well-known
Hardy-Stein identity. Finally, in Theorem 5 we give a characterization of weighted
spaces Ap

ω on the polydisc with the use of (1.2) type integrals.

2. Notation and main theorems

We will use the conventional multi-index notations: rζ = (r1ζ1, . . . , rnζn),
dr = dr1 · · · drn, (1 − |ζ|)α =

∏n
j=1(1 − |ζj |)αj , ζα =

∏n
j=1 ζ

αj

j , αq + 1 = (α1q +
1, . . . , αnq + 1) for ζ ∈ Cn, r ∈ In, q ∈ R and a multi-index α = (α1, . . . , αn). Let
Zn

+ denote the set of all multi-indices k = (k1, . . . , kn) with nonnegative integers
kj ∈ Z+. Any inequality (or equality) A ≤ B quoted or proved is to be interpreted
as meaning ’if B is finite, then A is finite, and A ≤ B’. Throughout the paper,
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the letters C(α, β, . . . ), Cα etc. stand for positive constants possibly different at
different places and depending only on the parameters indicated. For A,B > 0
we will write A . B, if there exists an inessential constant c > 0 independent
of variables involved such that A ≤ cB. The symbol A ³ B means A . B and
B . A. For any p, 1 ≤ p ≤ ∞, we define the conjugate index p′ as p′ = p/(p − 1)
(we interpret 1/∞ = 0 and 1/0 = +∞).

For every function f ∈ H(Dn) having a series expansion f(z) =
∑

k∈Zn
+

akrkξk,
where z = rξ, r ∈ In, ξ ∈ Tn, we define the radial fractional integro-differentiation
of arbitrary order α = (α1, . . . , αn), αj ∈ R by

Dαf(z) ≡ Dα
r f(z) =

∑

k∈Zn
+

n∏

j=1

(1 + kj)αj akrkξk.

It is easily seen that Dα
r f(z) = Dα1

r1
Dα2

r2
. . .Dαn

rn
f , where Dαj

rj means the same
operator acting in the variable rj only.

We now formulate the main theorems of the paper. First we establish a fam-
ily of inequalities which are analogues of Littlewood-Paley type inequalities (1.2)
proved by Sh. Yamashita [22] and D. Luecking [9] in the unit disk.

Theorem 1. Let 0 < α < s < 2, s < p. Then for any λ > (p− s)/α∫

Dn

|f(z)|p−s|D1f(z)|s(1− |z|)s−1dm2n(z) .
∥∥f

∥∥p−s

Hλ

∥∥Dα/sf
∥∥s

Hs . (2.1)

Remark 1. Taking p = 2 in (2.1) and formally passing to the limit as s → 2−
and α → +0, we get the classical Littlewood-Paley inequality (1.1) for p = 2 in the
polydisc.

Recall now anisotropic Triebel-Lizorkin spaces on the polydisc, see [5], [11],
[12], [15], [16]]. The function f(z) holomorphic in Dn, is said to belong to the
space F pq

α

(
0 < p < ∞, 0 < q ≤ ∞, α = (α1, . . . , αn), αj ≥ 0

)
, if for some multi-

index β = (β1, . . . , βn), βj > αj the (quasi-)norm

‖f‖F pq
α

=





[∫

Tn

(∫

In

(1− r)(β−α)q−1|Dβf(rξ)|qdr

)p/q

dmn(ξ)
]1/p

, 0 < q < ∞,

[∫

Tn

(
sup
r∈In

(1− r)β−α|Dβf(rξ)|
)p

dmn(ξ)
]1/p

, q = ∞,

is finite. For different β (βj > αj) equivalent norms appear. Many well-studied
function spaces are included in the Triebel–Lizorkin spaces. For p = q the space
F pp

α coincides with the holomorphic Besov space; for q = 2 Hardy-Sobolev spaces
arise, and for q = 2, αj = 0 the space F p2

0 coincides with Hp.

Theorem 2. For any 0 < p < ∞, 0 < q ≤ q1 ≤ ∞, α = (α1, . . . , αn), αj ≥ 0
the following inclusion is continuous

F pq
α ⊂ F pq1

α . (2.2)
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Remark 2. The inclusion (2.2) is proved in [11] in the setting of the unit
ball of Cn. For the polydisc, (2.2) is a generalization of the inclusion F p2

0 ⊂ F p∞
0

proved in [6] as well as of that in [1], where αj = 0 and n-harmonic functions are
considered. In particular, for αj = 0, q = 2, p = q1 the inclusion (2.2) reduces to
(1.1).

In the next theorem the fractional derivative of the first order is replaced by
the same operator Dα of arbitrary order α = (α1, . . . , αn), αj > 0 and more general
integrals are studied.

Theorem 3. Let 0 < s ≤ p < ∞, αj > 0 (1 ≤ j ≤ n), and f(z) is a
function of Hardy space Hp(Dn), and a function g(z) belongs to the mixed norm
space H(p, s, α), that is

‖g‖s
H(p,s,α) =

∫

In

Ms
p (g, r)(1− r)αs−1 dr < +∞.

Then
1

(2π)n

∫

Dn

|f(z)|p−s|g(z)|s(1− |z|)αs−1 dm2n(z) ≤ ‖f‖p−s
Hp ‖g‖s

H(p,s,α).

In particular, if Dαf ∈ H(p, s, α), then

1
(2π)n

∫

Dn

|f(z)|p−s|Dαf(z)|s(1−|z|)αs−1 dm2n(z) ≤ ‖f‖p−s
Hp ‖Dαf‖s

H(p,s,α). (2.3)

Theorem 4. (i) Let f(z) be a holomorphic function in Dn, 0 < p < ∞,
ωj(rj), j = 1, . . . , n be weight functions positive and continuously differentiable in
[0, 1) such that

ωj(rj)
∂

∂rj
Mp

p (f, r) = o(1) as rj → 1− . (2.4)

Then the following identity holds:
∫

Dn

n∏

j=1

ωj(rj) · f#(z) dm2n(z) = (−1)n

∫

Dn

n∏

j=1

ω′j(rj)
∂n

∂r1 · · · ∂rn
|f(z)|p dm2n(z),

(2.5)
where f#(z) = ∆z1∆z2 . . . ∆zn |f(z)|p, and ∆zj is the usual Laplacian in the vari-
able zj. For the standard weight functions ωj(rj) = (1 − rj)αj (αj > 0) the as-
sumptions (2.4) can be dropped.

(ii) For n = 1 the following improvements of (2.5) are valid: The identity
∫

D

(1− |z|)αf#(z) dm2(z) = α

∫

D

(1− |z|)α−1 ∂

∂r
|f(z)|p dm2(z), p > 0, α > 0,

(2.6)
holds if one of the integrals in (2.6) exists. Here

f#(z) = ∆|f(z)|p = p2|f(z)|p−2|f ′(z)|2. (2.7)
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(iii) The integrals

A(f ; p, α) =
∫

D

|f(z)|p−2|f ′(z)|2(1− |z|)α dm2(z),

B(f ; p, α) =
∫

D

|f(z)|p−1|f ′(z)|(1− |z|)α−1 dm2(z)

are comparable. More precisely,

– If p > 0, α > 0, then

A(f ; p, α) ≤ α

p
B(f ; p, α), (2.8)

where the constant α/p is sharp.

– If p > 0, α > 1, then there exists a constant Cα,p > 0 such that

B(f ; p, α) ≤ Cα,p A(f ; p, α). (2.9)

Remark 3. The inequalities (2.8) and (2.9) for p = 2 are proved in [21].
Their analogues for integers p (p ≥ 2) in the unit disk and in the unit ball of Cn

are proved in [17], [18] in another way.

The next theorem gives a characterization of weighted Bergman spaces Ap
ω on

the bidisc and a representation for (quasi-)norms in Ap
ω with the use of (1.2) type

integrals.

Theorem 5. Let 0 < p < ∞, f(z) ∈ H(D2), ωj(rj) ∈ L1(0, 1), ωj(rj) > 0,
j = 1, 2. Then the following representations are valid:

‖f‖p
Ap

ω(D2)
³ |f(0, 0)|p +

∫

D2

(
∆z1∆z2 |f(z1, z2)|p + ∆z1 |f(z1, 0)|p+

+ ∆z2 |f(0, z2)|p
) 2∏

j=1

hωj (|zj |) dm4(z), (2.10)

‖f‖p
Ap

ω(D2)
+ |f(0, 0)|p =

∥∥f(·, 0)
∥∥p

Ap
ω1

+
∥∥f(0, ·)

∥∥p

Ap
ω2

+

+ Cω

∫

D2
f#(z1, z2)

2∏

j=1

hωj (|zj |) dm4(z),
(2.11)

where Ap
ωj

is the weighted Bergman space in the variable zj, and hωj is the weight
function

hωj

(|zj |
)

=
∫ 1

|zj |

(∫ 1

ρj

ωj(x)x dx

)
dρj

ρj
.

In particular, f ∈ Ap
α(D2) if and only if f# ∈ L1

α+2(D
2) (αj > −1).
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Remark 4. For n = 1 and ω(r) = (1 − r)α (α > −1) and by virtue of
the formula (2.7), the relation (2.10) in the limiting case α → −1 coincides with
Yamashita’s [22] characterization of Hardy spaces Hp(D), while some analogues of
(2.10) and (2.11) for the unit ball of Cn are established in [2], [10], [20].

Without loss of generality and to simplify notation, we may assume that n = 2
everywhere below in the proofs.

3. Preliminaries and proof of Theorem 1

Let us introduce some more notation i order to formulate several auxiliary
lemmas. In what follows, for a fixed δ > 1 let Γδ(ξ) = {z ∈ D : |1−ξz| ≤ δ(1−|z|)}
be the admissible approach region whose vertex is at ξ ∈ T. For any arc I ⊂ T of
the length |I| define the Carleson square over I to be ¤I =

{
z ∈ D; z

|z| ∈ I, 1−|z| ≤
1
2π |I|

}
. Following [3], consider the functions

Ap(f)(ξ) =
(∫

Γδ(ξ)

|f(z)|p
(1− |z|)2 dm2(z)

)1/p

, p < ∞,

A∞(f)(ξ) = sup{|f(z)|; z ∈ Γδ(ξ)},

Cp(f)(ξ) = sup
I⊃ ξ

(
1
|I|

∫

�I

|f(z)|p
1− |z| dm2(z)

)1/p

, p < ∞, ξ ∈ T.

Lemma C. ([3], [12]) For any functions f(z) and g(z) measurable in the unit
disk

∫

D

|f(z)|
1− |z| dm2(z) .

∫

T

(∫

Γδ(ξ)

|f(z)|
(1− |z|)2 dm2(z)

)
dm(ξ), (3.1)

∫

D

|f(z)||g(z)|
1− |z| dm2(z) .

∫

T

Ap(f)(ξ)Cp′(g)(ξ) dm(ξ), 1 < p ≤ ∞,
(3.2)

where dm(ξ) = dm1(ξ) is the Lebesgue measure on the circle T.

For a proof of Lemma C see [3, pp. 313, 316, 326], [12, Th. 2.1].

Lemma D. ([3], [12]) For 0 < q < ∞, α > 0, β > 0 and a function f(z)
measurable in the unit disk∥∥∥∥Cq

(|f(z)|(1− |z|)α
)∥∥∥∥

q

L∞
³ sup

w∈D
(1− |w|)β

∫

D

|f(z)|q(1− |z|)αq−1

|1− wz|β+1
dm2(z). (3.3)

For a proof of Lemma D including estimates of Carleson measures see [12, pp.
736–737], and also [4, Ch. VI, Sec. 3].

Define a version of Lusin’s area integral (see, e.g., [23])

S(f)(ξ) =

(∫

Γδ(ξ)

|D1f(z)|2 dm2(z)

)1/2

, ξ ∈ T, δ > 1.

Lemma E. (Lusin [23]) If f ∈ H(D), 0 < p < ∞, then ‖S(f)‖Lp(T) ³ ‖f‖Hp .



Some generalizations of Littlewood-Paley inequality in the polydisc 103

We now turn to the proof of Theorem 1. Denote by L the integral on the
left-hand side of (2.1) and write

L =
∫

D

(1− |z2|)s−1

[∫

D

|f(z)|p−s|D1f(z)|s(1− |z1|)s−1 dm2(z1)
]

dm2(z2). (3.4)

Denote also the inner integral in (3.4) by J . Choosing any α, 0 < α < s, we
estimate J by Lemma C:

J =
∫

D

|D1f(z)|s(1− |z1|)s−α · |f(z)|p−s(1− |z1|)α dm2(z1)
1− |z1|

.
∫

T

A2/s

(
|D1f(z)|s(1− |z1|)s−α

)
(ξ1) · C(2/s)′

(
|f(z)|p−s(1− |z1|)α

)
(ξ1) dm(ξ1)

≤
∥∥∥C(2/s)′

(
|f(z)|p−s(1− |z1|)α

)∥∥∥
L∞

∫

T

A2/s

(
|D1f(z)|s(1− |z1|)s−α

)
(ξ1) dm(ξ1).

(3.5)

Estimate the last integral separately:

J1 ≡
∫

T

A2/s

(
|D1f(z)|s(1− |z1|)s−α

)
(ξ1) dm(ξ1)

=
∫

T

[∫

Γδ(ξ1)

|D1f(z)|2(1− |z1|)−2α/sdm2(z1)

]s/2

dm(ξ1).

According to a result of [11, pp. 179, 186] on fractional differentiation and then by
Lemma E

J1 .
∫

T

[∫

Γδ(ξ1)

|Dα/s
r1
D1f(z)|2 dm2(z1)

]s/2

dm(ξ1) .
∥∥D1

r2
Dα/s

r1
f
∥∥s

Hs
z1

, (3.6)

where Hs
z1

means the Hardy space in the variable z1. Combining the inequalities
(3.4)–(3.6), we conclude that

L .
∫

D

(1−|z2|)s−1
∥∥∥C(2/s)′

(
|f(z)|p−s(1−|z1|)α

)
(ξ1)

∥∥∥
L∞

∥∥D1
r2
Dα/s

r1
f
∥∥s

Hs
z1

dm2(z2).

By Fatou’s lemma and Lemma C

L . lim inf
r1→1

∫

T

∫

D

(1− |z2|)s−1
∥∥C( 2

s )′
(|f(z)|p−s(1− |z1|)α

)∥∥
L∞×

×
∣∣D1

r2
Dα/s

r1
f
∣∣sdm(ξ1) dm2(z2)

.
∥∥∥C(2/s)′

(∥∥∥C(2/s)′

(
|f(z)|p−s(1− |z1|)α

)∥∥∥
L∞

(1− |z2|)α
)
(ξ2)

∥∥∥
L∞
×

× lim inf
r1→1

∫

T

∫

T

A2/s

(∣∣D1
r2
Dα/s

r1
f
∣∣s(1− |z2|)s−α

)
(ξ2) dm(ξ2) dm(ξ1) ≡ J2 · J3.
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Let us now evaluate each factor J2 and J3 separately. Applying again the rule
of fractional differentiation [11, pp. 179, 186], Lemma E, Fatou’s lemma and using
the equality Dγ1

r Dγ2
r = Dγ2

r Dγ1
r , we get

J3 = lim inf
r1→1

∫

T

∫

T

[∫

Γδ(ξ2)

∣∣D1
r2
Dα/s

r1
f
∣∣2(1− |z2|)−2α/sdm2(z2)

]s/2

dm(ξ2) dm(ξ1)

. lim inf
r1→1

∫

T

∫

T

[∫

Γδ(ξ2)

∣∣Dα/s
r2
D1

r2
Dα/s

r1
f
∣∣2dm2(z2)

]s/2

dm(ξ2) dm(ξ1)

. lim inf
r1→1

∫

T

∥∥Dα/sf
∥∥s

Hs
z2

dm(ξ1) =
∥∥Dα/sf

∥∥s

Hs .

Estimate now J2 choosing β > 0 large enough:

J2 =
∥∥∥C(2/s)′

(∥∥∥C(2/s)′

(
|f(z)|p−s(1− |z1|)α

)∥∥∥
L∞

(1− |z2|)α

)
(ξ2)

∥∥∥
L∞

.

By Lemma D, the inner norm can be estimated as follows
∥∥∥∥C2/(2−s)

(
|f(z)|p−s(1− |z1|)α

)∥∥∥∥
2/(2−s)

L∞

. sup
w∈D

(1− |w|)β

∫

D

|f(z1, z2)|2(p−s)/(2−s) (1− |z1|)2α/(2−s)−1

|1− wz1|β+1
dm2(z1)

≤ ‖f‖2(p−s)/(2−s)

Hλ
z1

sup
w∈D

(1− |w|)β

∫

D

(1− |z1|)2α/(2−s)−(2/λ)(p−s)/(2−s)−1

|1− wz1|β+1
dm2(z1)

. ‖f‖2(p−s)/(2−s)

Hλ
z1

,

where the inequality |f(ζ)| . ‖f‖Hq (1 − |ζ|)−1/q, ζ ∈ D, and another well-known
inequality ([14, Sec. 1.4.10]) are used. Hence

J2 .
∥∥∥∥C2/(2−s)

(∥∥f
∥∥p−s

Hλ
z1

(1− |z2|)α

)
(ξ2)

∥∥∥∥
L∞

.
[

sup
w∈D

(1− |w|)β

∫

D

∥∥f(z1, z2)
∥∥2(p−s)/(2−s)

Hλ
z1

(1− |z2|)2α/(2−s)−1

|1− wz2|β+1
dm2(z2)

] 2−s
2

. ‖f‖p−s
Hλ(D2)

[
sup
w∈D

(1− |w|)β

∫

D

(1− |z2|)2α/(2−s)−(2/λ)(p−s)/(2−s)−1

|1− wz2|β+1
dm2(z2)

] 2−s
2

.
∥∥f

∥∥p−s

Hλ .

Thus, for any λ > (p− s)/α

L .
∥∥f

∥∥p−s

Hλ

∥∥Dα/sf
∥∥s

Hs .

This completes the proof of Theorem 1.
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4. Proof of Theorems 2 and 3

We begin by proving the inclusion (2.2) for q1 = ∞, i.e.

‖f‖F p∞
α

. ‖f‖F pq
α

. (4.1)

Throughout the proof, Jξ denotes the arc on T centered at ξ ∈ T

Jξ(t) = {η ∈ T; |1− ξ̄η| < t}.
On the torus Tn the symbol Jξ(t) means Jξ(t) = Jξ1(t1) × · · · × Jξn

(tn), ξ =
(ξ1, . . . , ξn) ∈ Tn, t = (t1, . . . , tn). Consider a version of Hardy-Littlewood maximal
function on the circle:

M(ψ)(ξ) = sup
t>0

1
|Jξ(t)|

∫

Jξ(t)

|ψ(η)| dm(η), ξ ∈ T.

It is well known (see, e.g., [23]) that the operator M is bounded in Lp for p > 1.
Let f(rξ) be a function of the space F pq

α on the bidisc. For ε, 0 < ε < min{p, q},
in view of 2-subharmonicity, we can find small numbers c, c′ ∈ (0, 1) such that

|Dβf(rξ)|ε . 1
(1− r)2

∫

Jξ(c(1−r))

r+c′(1−r)∫

r−c(1−r)

|Dβf(tη)|ε dt dm2(η), r ∈ I2, ξ ∈ T2.

A similar argument in the setting of the unit ball of Cn can be found in [11, p.
189].

Then an application of Hölder’s inequality with indices q/ε and q/(q−ε) leads
to

(1− r)ε(β−α)|Dβf(rξ)|ε

. 1
(1− r)2

∫

Jξ(c(1−r))

r+c′(1−r)∫

r−c(1−r)

(1− t)ε(β−α)|Dβf(tη)|εdt dm2(η)

. 1
1− r

∫

Jξ(c(1−r))

( r+c′(1−r)∫

r−c(1−r)

(1− t)q(β−α)−1|Dβf(tη)|qdt

)ε/q

dm2(η).

Denoting

ψ(η1, η2) =
(∫

I2
(1− t)q(β−α)−1|Dβf(tη)|qdt

)ε/q

,

we get

(1− r)p(β−α)|Dβf(rξ)|p .
[

1
1− r

∫

Jξ(c(1−r))

ψ(η1, η2) dm2(η)
]p/ε

.
[

1
|Jξ1(c(1− r1))|

∫

Jξ1 (c(1−r1))

(
1

|Jξ2(c(1− r2))|
∫

Jξ2 (c(1−r2))

ψ(η1, η2)dm(η2)
)

dm(η1)
]p/ε

.
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Taking supremum over all r ∈ I2, and then integrating the inequality in ξ1, ξ2, and
twice applying the boundedness of the Hardy-Littlewood operator M in Lp/ε, we
obtain∫

T2

sup
r∈In

(1− r)p(β−α)|Dβf(rξ)|p dm2(ξ) .
∫

T2

ψp/ε(η1, η2) dm(η1) dm(η2) = ‖f‖p
F pq

α
.

The inclusion (4.1) is proved. The general case 0 < q ≤ q1 < ∞ follows easily from
(4.1). Indeed, an application of Hölder’s inequality with indices q1/q and q1/(q1−q)
gives

‖f‖p

F
pq1
α

=
∫

T2

(∫

I2

(1− r)(β−α)(q1−q)(1− r)(β−α)q−1|Dβf(rξ)|q1−q|Dβf(rξ)|qdr

)p/q1

dm2(ξ)

. ‖f‖pq/q1

F pq
α

(∫

T2

sup
r∈I2

(1− r)p(β−α)|Dβf(rξ)|pdm2(ξ)
)(q1−q)/q1

.

Thus,

‖f‖F
pq1
α

. ‖f‖q/q1

F pq
α
‖f‖(q1−q)/q1

F p∞
α

. ‖f‖q/q1

F pq
α
‖f‖(q1−q)/q1

F pq
α

= ‖f‖F pq
α

,

and this completes the proof of Theorem 2.

Proof of Theorem 3. Assuming that ‖f‖Hp 6= 0, we can apply Jensen’s in-
equality to the integral

1
(2π)n

∫

Tn

|f(rξ)|p−s|g(rξ)|sdmn(ξ)

= Mp
p (f, r)

[
1

Mp
p (f, r)

∫

Tn

∣∣∣∣
g(rξ)
f(rξ)

∣∣∣∣
s

|f(rξ)|p dmn(ξ)
(2π)n

] p
s

s
p

≤ Mp
p (f, r)

[
1

Mp
p (f, r)

∫

Tn

∣∣∣∣
g(rξ)
f(rξ)

∣∣∣∣
p

|f(rξ)|p dmn(ξ)
(2π)n

]s/p

= Mp−s
p (f, r)

[∫

Tn

|g(rξ)|p dmn(ξ)
(2π)n

]s/p

= Mp−s
p (f, r)Ms

p (g, r).

A similar method is applied in the proof of Theorem 4 of [19]. Further, a weighted
integration leads now to

1
(2π)n

∫

Dn

|f(z)|p−s|g(z)|s(1− |z|)αs−1dm2n(z)

≤
∫

In

Mp−s
p (f, r)Ms

p (g, r)(1− r)αs−1dr

≤ ‖f‖p−s
Hp

∫

In

Ms
p (g, r)(1− r)αs−1dr,

and the proof is complete.
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5. Proof of Theorems 4 and 5

We need the next lemma which extends the well-known Hardy-Stein identity
(see, e.g., [7]) to the polydisc.

Lemma 1. Suppose that f(z) ∈ H(Dn), 0 < p < ∞. Then for any r =
(r1, . . . , rn) ∈ In

n∏

j=1

rj · ∂n

∂r1 . . . ∂rn
Mp

p (f, r) =
1

(2π)n

∫

|z1|<r1

· · ·
∫

|zn|<rn

f#(z)dm2n(z), (5.1)

where f#(z) = ∆z1∆z2 . . . ∆zn |f(z)|p, and ∆zj is the usual Laplacian in the vari-
able zj.

Proof. Fix z2 for a moment and apply Green’s formula (see, e.g., [4], [23]) to
the function |f(z1, z2)|p in |z1| < r1:∫

|z1|=r1

∂

∂r1
|f(z1, z2)|pd` =

∫

|z1|<r1

∆z1 |f(z1, z2)|pdm2(z1),

where d` means arc length integration. With respect to the function

ψ(z2) = r1
∂

∂r1

∫

T

|f(r1ξ1, z2)|pdm(ξ1) =
∫

|z1|<r1

∆z1 |f(z1, z2)|pdm2(z1),

we can again apply Green’s formula in |z2| < r2:∫

|z2|=r2

∂

∂r2
ψ(z2)d` =

∫

|z2|<r2

∆z2ψ(z2) dm2(z2).

Combining these equalities, we obtain

r1r2
∂2

∂r1∂r2

∫

T

∫

T

|f(r1ξ1, r2ξ2)|p dm(ξ1) dm(ξ2)

=
∫

|z1|<r1

∫

|z2|<r2

∆z1∆z2 |f(z1, z2)|p dm4(z),

which finishes the proof.

Remark 5. For n = 1 (5.1) coincides with the well-known Hardy-Stein iden-
tity [7] in view of formula (2.7).

Proof of Theorem 4. Lemma 1 enables us to establish another identity

r1r2

∫

T2
∆z1∆z2 |f(z1, z2)|pdm(ξ1) dm(ξ2)

=
∂2

∂r1∂r2

∫ r1

0

∫ r2

0

∫

T2
∆z1∆z2 |f(z1, z2)|pρ1ρ2dm(ξ1) dm(ξ2) dρ1 dρ2

= (2π)2
∂2

∂r1∂r2

[
r1r2

∂2

∂r1∂r2
Mp

p (f, r1, r2)
]

. (5.2)
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First we prove the identity (2.6), i.e. the one variable version. We transform the
left integral of (2.6), integrating by parts and using the identity (5.2):

1
2π

∫

D

(1− |z|)αf#(z)dm2(z)

=
1
2π

∫ 1

0

(1− r)α

[∫ π

−π

∆|f(reiθ)|pdθ

]
r dr

=
∫ 1

0

(1− r)α

[
∂

∂r

(
r

∂

∂r
Mp

p (f, r)
)]

dr

= lim
r→1−

(1− r)α r
∂

∂r
Mp

p (f, r) + α

∫ 1

0

(1− r)α−1 r
∂

∂r
Mp

p (f, r) dr.
(5.3)

If the right-hand side integral in (2.6) or (5.3) exists, then the limit in (5.3) vanishes.
Indeed, by the Hardy-Stein identity, the function r ∂

∂r Mp
p (f, r) is increasing in r ∈

(0, 1). Hence for any ρ ∈ (0, 1)
∫ (1+ρ)/2

ρ

(1− r)α−1 r
∂

∂r
Mp

p (f, r)dr ≥ Cα ρ (1− ρ)α ∂

∂ρ
Mp

p (f, ρ).

By the Cauchy criterion for convergence

lim
ρ→1−

(1− ρ)α ∂

∂ρ
Mp

p (f, ρ) = 0.

It follows from (5.3) that

1
2π

∫

D

(1− |z|)αf#(z)dm2(z) = α

∫ 1

0

(1− r)α−1 r
∂

∂r
Mp

p (f, r) dr.

Part (ii) of the theorem is proved.
Proceeding to the proof of the inequality (2.8), note that the example f(z) = z

shows the sharpness of the constant α/p. Then the identity (2.6) can be written as
follows

A(f ; p, α) =
α

p

∫ 1

0

∫ π

−π

|f(reiθ)|p−1

(
∂

∂r

∣∣f(reiθ)
∣∣
)

(1− r)α−1r dr dθ. (5.4)

Since
∣∣|f(reiθ)|− |f(ρeiθ)|∣∣ ≤ ∣∣f(reiθ)−f(ρeiθ)

∣∣, we have
∣∣ ∂
∂r |f(reiθ)|∣∣ ≤ ∣∣f ′(reiθ)

∣∣.
Hence, (2.8) follows.

We now turn to the proof of the inequality (2.9). By the Cauchy-Schwarz
inequality,

B(f ; p, α) ≤
√

A(f ; p, α)
(∫

D

|f(z)|p(1− |z|)α−2dm2(z)
)1/2

.

Therefore, it only remains to verify the inequality
∫

D

|f(z)|p(1− |z|)α−2dm2(z) . A(f ; p, α), p > 0, α > 1. (5.5)
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To this end, we integrate by parts to get
p2

2πα
A(f ; p, α) =

∫ 1

0

(1− r)α−1 r
∂

∂r
Mp

p (f, r) dr

= lim
r→1−

(1− r)α−1 r Mp
p (f, r)−

∫ 1

0

Mp
p (f, r) d

(
r(1− r)α−1

)

= lim
r→1−

(1− r)α−1 r Mp
p (f, r) +

1
2π

∫ 1

0

∫ π

−π

|f(reiθ)|p(1− r)α−2(αr − 1) dr dθ.

This equality shows that if A(f ; p, α) exists, then the function f(z) is in the
Bergman space Ap

α−2(D). Consequently limr→1−(1 − r)α−1 Mp
p (f, r) = 0. So,

we get

A(f ; p, α) =
α

p2

∫ 1

0

∫ π

−π

|f(reiθ)|p(1− r)α−2(αr − 1) dr dθ

≥ α(α− 1)
2p2

∫ 1

(α+1)/(2α)

∫ π

−π

|f(reiθ)|p(1− r)α−2dr dθ

≥ C(α, p)
∫

D

|f(z)|p(1− |z|)α−2dm2(z),

and this gives the desired result. Part (iii) of the theorem is proved. Part (i) of the
theorem can be proved from (5.2) similarly, so we omit the details.

Proof of Theorem 5. The integrated Hardy-Stein identity (see Lemma 1)
Mp

p (f, r1, r2) + |f(0, 0)|p = Mp
p (f, 0, r2) + Mp

p (f, r1, 0)+

+
1

(2π)2

∫ r1

0

∫ r2

0

(∫

|z1|<ρ1

∫

|z2|<ρ2

f#(z1, z2)dm4(z)
)

dρ1dρ2

ρ1ρ2

can be integrated again with respect to the measure (2π)2Cω1Cω2ω1(r1)ω2(r2)×
r1r2 dr1 dr2. We thus have

‖f‖p
Ap

ω
+ |f(0, 0)|p = J1 + J2 + J3,

where

J1 =
∥∥f(z1, 0)

∥∥p

Ap
ω1 (D)

= |f(0, 0)|p + 2πCω1

∫ 1

0

M1

(
∆z1 |f(z1, 0)|p, r1

)
hω1(r1)r1dr1,

J2 =
∥∥f(0, z2)

∥∥p

Ap
ω2 (D)

= |f(0, 0)|p + 2πCω2

∫ 1

0

M1

(
∆z2 |f(0, z2)|p, r2

)
hω2(r2)r2dr2.

Besides, a further application of Fubini’s theorem shows that

J3 = Cω1Cω2

∫

I2

[ r1∫

0

r2∫

0

( ∫

|z1|<ρ1

∫

|z2|<ρ2

f#(z1, z2)dm4(z)
)

dρ1dρ2

ρ1ρ2

]
ω(r)rdr

= (2π)2Cω1Cω2

∫ 1

0

∫ 1

0

M1

(
f#(z1, z2), r1, r2

)
hω1(r1)hω2(r2)r1r2dr1dr2.

This completes the proof of Theorem 5.
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