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SPLINE-WAVELET SOLUTION OF
SINGULARLY PERTURBED BOUNDARY PROBLEM

Desanka Radunović

Abstract. Boundary or interior layers typically appear in singularly perturbed boundary
problems. Solution gradients are very sharp in these regions, and it seems natural to use wavelets
to obtain numerical solution. As layers are usually positioned on boundaries, wavelets have to be
modified appropriately. In this paper the collocation method based on spline-wavelets is derived
and tested on simple linear one-dimensional singularly perturbed boundary problem.

1. Introduction

Singularly perturbed boundary problems appear in many areas of fluid and gas
dynamics (transition from Navier-Stokes to Euler equations in fluid flow models,
semiconductor device simulation, etc). Boundary layers may arise even in very
simple flows modelled by one-dimensional linear singularly perturbed boundary
problem

Lu(x) ≡ ε u′′(x) + p(x)u′(x) + q(x)u(x) = f(x), x ∈ [a, b]

u(a) = u0, u(b) = u1,
(1)

which will be analyzed. Coefficients p(x), q(x) and f(x) are smooth functions.
When perturbation parameter ε, 0 < ε ≤ 1, is very small, close to zero, narrow
regions of sharp gradients of the solution cause difficulties in numerical solving of
such problems. Successful numerical techniques are those which exhibit so called
ε-uniform convergence [3].

Definition 1. A numerical method is said to be ε-uniform of order p on the
mesh Ωm = {xi, i = 0, . . . , m} if there exists a number m0, independent of ε, such
that for all m ≥ m0

sup
0<ε≤1

max
Ωm

|u(x)− um(x)| ≤ C m−p, (2)

where u(x) is the solution of the differential equation, um(x) is the numerical ap-
proximation to u, and C and p are constants independent of ε and m.
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In the construction of ε-uniform methods two approaches have generally been
taken [4]. The first approach is based on fitted finite difference operators applied
on standard meshes. The second successful approach refers to fitted mesh methods,
which apply standard difference operators on piecewise uniform fitted meshes [5].
This multiresolution idea leads naturally to wavelets, as wavelets are just oscillatory
functions with compact support defined on fitted meshes.

2. Multiresolution

Let us clarify the last sentence.

Definition 2. Multiresolution analysis is the decomposition of the Hilbert
space L2(R) to the nested sequence of closed subspaces {Vj}j∈Z , which satisfy the
following relations [2]

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ . . .
⋂

j∈Z

Vj = {0},
⋃

j∈Z

Vj = L2(R)

∀f ∈ L2(R) and ∀j ∈ Z, f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj−1

∀f ∈ L2(R) and ∀k ∈ Z, f(x) ∈ V0 ⇐⇒ f(x− k) ∈ V0

∃ϕ ∈ V0 so that {ϕ(x− k)}k∈Z is the Riesz basis in V0.

Dilatations and translations of the function ϕ(x), so called scaling function,
define bases of all subspaces Vj ,

{ϕj,k(x)}k∈Z , where ϕj,k(x) = ϕ(2−jx− k).

Let us denote by Wj the orthogonal complement of the subspace Vj in the space
Vj−1,

Vj−1 = Vj ⊕Wj , j ∈ Z. (3)

For every k 6= j it is Wk ⊥ Wj , which is the consequence of the relation between
spaces Vj and definition (3).

Bases of all subspaces Wj are defined by dilatations and translations of one
function ψ(x), so called wavelet,

{ψj,k(x)}k∈Z , where ψj,k(x) = ψ(2−jx− k).

It follows, from (3) for j = 0, that the scaling function ϕ(x) (“father wavelet”) is
the solution of the dilatation equation

ϕ(x) =
N∑

k=0

c(k)ϕ(2x− k), (4)

and that the wavelet ψ(x) (“mother wavelet”) can be expressed by the wavelet
equation

ψ(x) =
∑
k

d(k) ϕ(2x− k). (5)
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By recursion of the relation (3), we obtain following orthogonal decomposition
of the space Vj−1

Vj−1 = Wj ⊕ · · · ⊕WJ−1 ⊕WJ ⊕ VJ , j < J. (6)

So, the approximation fj−1(x) ∈ Vj−1 of a function f(x) ∈ L2(R) can be expressed
in a multiresolution form

fj−1(x) =
∑

k∈Z
aJ,k ϕJ,k(x) +

J∑
l=j

∑
k∈Z

bl,k ψl,k(x), (7)

i.e. as a sum of the coarse approximation (first sum) and details on various levels
of resolution (double sum). When j → −∞ the expression (7) is equal to f(x) in
L2 sense, as, according to the definition 2, Vj−1 → L2 in (6).

3. Spline-wavelets

If coefficients c(k) in the dilatation equation (4) are chosen to be binomial
coefficients of the order N , the scaling function ϕ(N)(x) is B-spline of the order
(N − 1), defined on the integer division ∆ = {xk = k, k ∈ Z}. The compact
support of B-spline ϕ(N)(x) is the interval [0, N ].

Theorem 1. [6] The following recursion is valid

ϕ
(N)
k (x) =

x− k

N − 1
ϕ

(N−1)
k (x) +

k + N − x

N − 1
ϕ

(N−1)
k+1 (x), N = 2, 3, . . . ,

ϕ
(1)
k (x) = ℵ[k, k+1)(x) =

{
1, k ≤ x < k + 1
0, otherwise,

(8)

where ϕ
(N)
k (x) ≡ ϕ(N)(x− k).

Wavelet bases are defined on an infinite domain. To derive spline-wavelet
approximation of the solution of the problem (1), which is defined on the interval,
we have to modify scaling functions and wavelets on the boundaries of the interval.
We shall call a boundary spline every spline whose compact support do not whole
belong to the observed interval. Without lost of generality, we shall define interior
and boundary splines on the integer division {xk = k, k = 0, . . . , M} of the interval
[0,M ].

Theorem 2. [1] Quadratic boundary splines, which form spline basis on [0,M ]
together with interior quadratic B-splines ((8), for N = 3), are

ϕ
(3)
−2(x) = (1− x)2 ℵ[0, 1)(x),

ϕ
(3)
−1(x) =

(
2x− 3

2
x2

)ℵ[0, 1)(x) +
1
2
(2− x)2 ℵ[1, 2)(x)

ϕ
(3)
M−2(x) = ϕ

(3)
−1(M − x), ϕ

(3)
M−1(x) = ϕ

(3)
−2(M − x).

(9)
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Fig. 1. Quadratic splines

Suppose that the length of the interval is even integer, M = 2m. For shortness, let
us denote the scaling function on the finer resolution level by uk(x) ≡ ϕ(2x−k+N),
and the scaling function on the coarser resolution level by vk(x) ≡ ϕ(x − k + N).
If we express interior quadratic splines (8) and boundary splines (9) in the form of
the dilatation equation (4),

vk(x) =
2m+N−1∑

l=1

p(k, l)ul(x), k = 1, . . . , m + N − 1, (10)

for N = 3, coefficients p(k, l) are given, up to the scaling factor, by nonzero elements
of row vectors

p(1, 1 : 2) = ( 4 2 )

p(2, 2 : 4) = ( 2 3 1 )

p(k, 2k − 3 : 2k) = ( 1 3 3 1 ) ,

p(m + 1, 2m− 1 : 2m + 1) = ( 1 3 2 )

p(m + 2, 2m + 1 : 2m + 2) = ( 2 4 )

Transformation matrix P = {p(k, l)} is a rectangular matrix whose dimension is
(m + 2)× (2m + 2).

Analogous results are derived for cubic splines.
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Theorem 3. [1] Cubic boundary splines, which form spline basis on [0,M ]
together with interior cubic B-splines ((8), for N = 4), are

ϕ
(4)
−3(x) = (1− x)3 ℵ[0, 1)(x),

ϕ
(4)
−2(x) =

(
3x− 9

2
x2 +

7
4
x3

)ℵ[0, 1)(x) +
1
4
(2− x)3 ℵ[1, 2)(x)

ϕ
(4)
−1(x) =

(3
2
x2 − 11

12
x3

)ℵ[0, 1)(x) +
( 7
12

+
1
4
(x− 1)− 5

4
(x− 1)2

+
7
12

(x− 1)3
)ℵ[1, 2)(x) +

1
6
(3− x)3 ℵ[2, 3)(x)

ϕ
(4)
M−3(x) = ϕ

(4)
−1(M − x),

ϕ
(4)
M−2(x) = ϕ

(4)
−2(M − x), ϕ

(4)
M−1(x) = ϕ

(4)
−3(M − x).

(11)

Fig. 2. Qubic splines

Dimension of the transformation matrix P , defined by coefficients p(k, l) in (10) for
N = 4, is (m + 3)× (2m + 3). Nonzero entries of its row vectors, up to the scaling
factor, are

p(1, 1 : 2) = ( 8 4 )

p(2, 2 : 4) = ( 4 6 3
2 )

p(3, 3 : 6) = ( 2 11
2 4 1 )

p(k, 2k − 4 : 2k) = ( 1 4 6 4 1 ) ,
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p(m + 1, 2m− 2 : 2m + 1) = ( 1 4 11
2 2 )

p(m + 2, 2m : 2m + 2) = ( 3
2 6 4 )

p(m + 3, 2m + 2 : 2m + 3) = ( 4 8 )

Now, we shall construct semiorthogonal wavelets ψ
(N)
jk (x) for B-spline scaling

function ϕ(N)(x). Semiorthogonal means that wavelets on the same scale are not
orthogonal, but they are orthogonal to the scaling functions, and also wavelets on
various scales (for various j) are orthogonal between themselves.

Theorem 4. [1] Compactly supported semiorthogonal spline-wavelet ψ(N)(x)
is given by the wavelet equation (5), where scaling function is B-spline ϕ(N)(x) ≡
ϕ

(N)
0 (x) given in (8), and coefficients d(k) are equal to

d(k) =
(−1)k

2N−1

N∑
l=0

(
N

l

)
ϕ(2N)(k − l + 1), k = 0, . . . , 3N − 2. (12)

If we denote, as before, wavelets on the coarser resolution level by wk(x) ≡
ψ(x− k), the wavelet equation has the form similar to (10),

wk(x) =
2m+N−1∑

l=1

q(k, l)ul(x), k = 1, . . . , m. (13)

The coefficients q(k, l) for boundary wavelets (k = 1, . . . , N − 1, and k = m−N +
2, . . . , m,) are calculated from the request that wavelets have to be orthogonal to
the scaling functions on the same resolution level,

(
wk(x), vl(x)

)
= 0 ((·, ·) denotes

scalar product). These coefficients for interior wavelets are calculated from (12).

Theorem 5. Quadratic spline-wavelets, which form wavelet basis on [0,M ]
together with quadratic B-spline scaling functions (8) and (9), are given by wavelet
equation (13) for N = 3. Wavelet coefficients q(k, l) are given, up to the scaling
factor, by nonzero elements of row vectors

q(1, 1 : 6) = ( 4576
15

−5564
15

9934
45

−4166
45

812
45

−28
45 )

q(2, 2 : 8) = ( −338
5

29222
173

−29867
99

21853
75

−7432
53

4147
150

−143
150 )

q(k, 2k − 3 : 2k + 4) = ( 1 −29 147 −303 303 −147 29 −1 )

q(m− 1, 2m− 5 : 2m + 1) = ( 143
150

−4147
150

7432
53

−21853
75

29867
99

−29222
173

338
5 )

q(m, 2m− 3 : 2m + 2) = ( 28
45

−812
45

4166
45

−9934
45

5564
15

−4576
15 )

Q = {q(k, l)} is the rectangular matrix with dimension m× (2m + 2).

Theorem 6. Cubic spline-wavelets, which form wavelet basis on [0,M ] togeth-
er with cubic B-spline scaling functions (8) and (11), are given by wavelet equation
(13) for N = 4. Wavelet coefficients q(k, l) are given, up to the scaling factor, by
nonzero entries of row vectors

q(1, 1 : 8) = ( 22642 −260258
9

91274
5

−547933
84

66042
19

−45387
59

4387
77

−1485
3232 )
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Fig. 3. Quadratic spline-wavelets

q(2, 2 : 10) =

( −64591
17

113671
10

−185221
11

45219
2

−68345
4

167457
23

−12349
8

16093
141

−833
905 )

q(3, 3 : 12) =

( 4881
427

−7289
77

81806
67 −15124 417353

15
−471341

20
166557

16
−11114

5
23509
143

−1876
1415 )

q(k, 2k − 4 : 2k + 6) =(
1 − 124 1677 − 7904 18482 − 24264 18482 − 7904 1677 − 124 1

)

q(m− 2, 2m− 8 : 2m + 1) =

( 1876
1415

−23509
143

11114
5

−166557
16

471341
20

−417353
15 15124 −81806

67
7289
77

−4881
427 )

q(m− 1, 2m− 6 : 2m + 2) =

( 833
905

−16093
141

12349
8

−167457
23

68345
4

−45219
2

185221
11

−113671
10

64591
17 )

q(m, 2m− 4 : 2m + 3) =

( 1485
3232

−4387
77

45387
59

−66042
19

547933
84

−91274
5

260258
9 −22642 )

Dimension of the transformation matrix Q = {qk,l} is m× (2m + 3).
Previous results can be expressed as discrete spline-wavelet transformation by

matrix relation (
v
w

)
=

(
P
Q

)
u. (14)

Vector u = {uk(x)} is (2m + N − 1)-dimensional vector of approximations on the
finer level, vector v = {vk(x)} is (m+N −1)-dimensional vector of approximations
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Fig. 4. Qubic spline-wavelets

on the coarser level and w = {wk(x)} is m-dimensional vector of details on the
coarser level. P is low-frequency matrix with dimension (m+N−1)×(2m+N−1),
and Q is high-frequency matrix with dimension m× (2m + N − 1).

4. Collocation based on spline-wavelets

The linear one-dimensional singularly perturbed boundary problem (1), with
boundary or interior layers, is solved by the collocation method based on B-spline
or spline-wavelet bases.

B-splines, quadratic or cubic, are defined on the uniform dyadic division of the
interval [a, b], i.e. mesh step is h = (b − a)/2m. By linear transformation of the
interval [a, b] to the interval [0, 2m], all calculations are done on integer divisions,
with the finest resolution level division

∆ = {xk = k, k = 0, . . . , 2m}.
The approximate solution of the transformed problem (1) is searched in a spline
form (only first sum in (7)),

us(x) =
L0−1∑

k=1−N

a0,k ϕ0,k(x) (15)

or in a spline-wavelet form (expression (7)),

uw(x) =
LJ−1∑

k=1−N

aJ,k ϕJ,k(x) +
J∑

j=1

Lj−N∑
k=1−N

bj,k ψj,k(x), (16)



Spline-wavelet solution of singularly perturbed boundary problem 39

where Lj = 2m−j , j = 0, . . . , J . The number of levels J is limited by the request
that on every level it must exist at least one interior spline or wavelet. The total
number L of free parameters aJ,k, bj,k in both options is equal. It depends only on
the number m in division ∆ and the order of the spline N , and does not depend
on the number of resolution levels J ,

L = (LJ + N − 1) +
J∑

j=1

Lj = (LJ + N − 1) + LJ

J−1∑
j=0

2j

= (LJ + N − 1) + LJ(2J − 1) = 2m + N − 1.

(17)

Free parameters are determined by the collocation method. The error function,
in the case of spline approximation (15), is equal to

Rs(x;a0) = −fT (x)

+
L0−1∑

k=1−N

a0,k

(
ε c2

0 ϕ′′0,k(x) + pT (x) c0 ϕ′0,k(x) + qT (x)ϕ0,k(x)
)

,
(18)

and, in the case of spline-wavelet approximation (16), it is equal to

Rw(x;b1, . . . ,bJ ,aJ) = −fT (x)

+
LJ−1∑

k=1−N

aJ,k

(
ε c2

J ϕ′′J,k(x) + pT (x) cJ ϕ′J,k(x) + qT (x)ϕJ,k(x)
)

+
J∑

j=1

Lj−N∑
k=1−N

bj,k

(
ε c2

j ψ′′j,k(x) + pT (x) cj ψ′j,k(x) + qT (x)ψj,k(x)
)
,

(19)

where cj = Lj/(b − a), bj = {bj,k}k, aJ = {aJ,k}k, and the subscript T denotes
transformed coefficients of the problem (1). Derivatives of splines are calculated by
use of well known relation for the l-th derivative of the B-spline of order (N − 1)
defined on the integer division [6],

(
ϕ(N)(x)

)(l)

=
l∑

k=0

(−1)k

(
l

k

)
ϕ(N−l)(x− k).

The L-dimensional system of linear equations per unknown vector a0 in (18),
or vectors bj , j = 1, . . . , J, and aJ in (19), is obtained from requirements that the
solution satisfies two boundary conditions (1), and that the error function is zero
in collocation points xl, l = 1, . . . , L−2. For the spline problem, relations (15) and
(18) give the system

a0,1−N = u0

L0−1∑
k=1−N

a0,k

(
ε c2

0 ϕ′′0,k(xl) + pT (xl) c0 ϕ′0,k(xl) + qT (xl)ϕ0,k(xl)
)

= fT (xl), l = 1, . . . , L− 2,

a0,L0−1 = u1

(20)
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and for the spline-wavelet problem, from (16) and (19) we obtain the system

aJ,1−N +
J∑

j=1

bj,1−N = u0

LJ−1∑
k=1−N

aJ,k

(
ε c2

J ϕ′′J,k(xl) + pT (xl) cJ ϕ′J,k(xl) + qT (xl)ϕJ,k(xl)
)

+
J∑

j=1

Lj−N∑
k=1−N

bj,k

(
ε c2

j ψ′′j,k(xl) + pT (xl) cj ψ′j,k(xl) + qT (xl)ψj,k(xl)
)

= fT (xl), l = 1, . . . , L− 2.

aJ,LJ−1 +
J∑

j=1

bj,Lj−N = u1

(21)

Form of the first and the last equations in systems (20) and (21) follows from the
fact that only the first and the last splines and wavelets are not equal to zero on
the boundaries. We suppose that these functions are normalized, so that they are
equal to one in relevant boundary point.

The number of collocation points L − 2 = 2m + N − 3 depends on the order
of the spline. For the quadratic spline (N = 3) this number is equal to the number
of intervals, and for the cubic spline (N = 4) it is equal to the number of nodes of
the division ∆.

5. Numerical results

In this section we shall present a few examples, whose approximate solutions
are computed both in spline (15) and spline-wavelet form (16) (for N = 3 and
N = 4), for various numbers of resolution levels and for different distributions
of collocation points. Examples are chosen to be simple, with known solutions,
and, for small values of the parameter ε, they represent convection-diffusion and
reaction-diffusion problems with boundary and interior layers.

Example 1. The convection-diffusion boundary problem

ε u′′(x) + u′(x) = 0, u(0) = 0, u(1) = 1, (22)

has the solution

u(x) =
1− e−x/ε

1− e−1/ε
,

with the boundary layer at the left boundary, as

lim
ε→0

lim
x→0

u(x) 6= lim
x→0

lim
ε→0

u(x).

Example 2. The convection-diffusion boundary problem

ε u′′(x) + 2xu′(x) = 0, u(−1) = −1, u(1) = 2, (23)
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has the interior layer in the turning point x = 0, as the solution tends to

lim
ε→0

u(x) =
{ −1, x < 0

2, x > 0
.

Example 3. The reaction-diffusion boundary problem

ε u′′(x)− u(x) = 0, u(0) = u(1) = 1, (24)

has the solution with boundary layers at both boundaries,

u(x) =
e−x/

√
ε + e−(1−x)/

√
ε

1 + e−1/
√

ε
.

As it was expected, numerical solutions obtained by splines and by spline-
wavelets of the same type, for the same division of the interval, are identical. In
both cases calculations are numerically stable, and condition numbers of linear
systems (20) and (21) (Tab. 1) do not grow with decreasing of the small parameter
or increasing of the dimension of the system for the optimal choice of collocation
points (which will be elaborated later).

ε\h 2−2 2−3 2−4 2−5 2−6

2−6 1.06e + 002 2.47e + 002 7.59e + 002 2.61e + 003 1.02e + 004
2−7 3.54e + 002 2.54e + 002 6.21e + 002 1.84e + 003 5.85e + 003
2−8 1.54e + 003 9.33e + 002 6.46e + 002 1.65e + 003 4.79e + 003
2−9 6.29e + 003 4.31e + 003 2.44e + 003 1.71e + 003 4.52e + 003

Table 1. Condition numbers

The optimal choice of collocation points are division points in cubic case and
middle points of division intervals in quadratic case. In both cases the matrix of
the system (20) is a three-diagonal matrix (Fig. 5(a)). The matrix of the system
(21) is also sparse with multi-diagonal blocks, where the number of blocks is equal
to the number of resolution levels (Fig. 5(b)). The last block corresponds to spline
coefficients on the coarsest level, and the others correspond to wavelet coefficients on
all resolution levels. Fig. 5(c) and Fig. 5(d) represent one resolution level matrices
of the system (21) in the quadratic and cubic case, respectively.

Although the system (21) is more complex, the advantage of this approach is
the possibility of data compression, as a lot of components of the solution vector are
negligible. Fig. 6(a) shows magnitude of coefficients in the wavelet representation
(16) for the convection problem (22), while Fig. 6(b) shows magnitude of coefficients
in the spline representation (15) for the same example.

A few words about the optimal choice of the uniform distribution of collocation
points, which gives the best accuracy. In the cubic case, the best result is obtained
when collocation points are the division points, so that the ends of the interval are
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Fig. 5 Matrices assigned to spline and spline-wavelet bases

also collocation points. Every other choice takes with less weight the first boundary
basis function, the only one which is different from zero in the relevant end point.
Figure 7 represents the numerical solution of the example 3 for ε = 2−10, obtained
by use of cubic spline-wavelets and 65 collocation points, which (a) include ends,
(b) are far from ends at least for half of the division interval.

In the quadratic case, on the contrary, the best choice is when collocation points
are middle points of division intervals. In this case, the ends are not collocation
points. The instability grows when we approach with collocation points to division
points, as the second derivative of the quadratic spline is discontinuous in these
points. The worst option is when ends are collocation points, when the system of
linear equations (20) or (21) becomes very ill-conditioned, and the calculation error
grows.

Reaction-diffusion problems manifest similar behavior, but they are not so
sensitive to the position of collocation points as convection-diffusion problems are.
The reason is that the width of the boundary layer is of the order

√
ε for these

problems, while it is of the order ε in the case of convection-diffusion problems.
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Fig. 6. Magnitude of wavelet and spline coefficients

Fig. 7. The effect of the collocation points distribution in cubic case

Fig. 8 shows the influence of the collocation points distribution to the numerical
solution of the reaction problem (24) for ε = 10−4. Quadratic spline-wavelets and
32 collocation points are used, when (a) ends are not collocation points, and (b)
ends are collocation points.

Even when we make optimal choice of collocation points, the numerical solu-
tion will be poor, specially in the layer, if the number of collocation points is not
adequate. It means, the less is parameter ε more collocations points, i.e. more
basis functions, we need.

Fig. 9 illustrates a behavior of the numerical solution of the problem (22),
obtained by cubic spline-wavelets. First two figures, (a) and (b), show the solutions
for ε = 10−2 and ε = 10−3 for the same mesh parameter h = 2−6. Other two figures,
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Fig. 8. The effect of the collocation points distribution in quadratic case

Fig. 9. The influence of small parameter and mesh size

(c) and (d), illustrate the dependance of the solution from the grid parameter,
(h = 2−7 and h = 2−8), for the same small value of parameter ε = 10−3. Reaction-
diffusion problems are not so sensitive to the values of small parameter, i.e. the
same accuracy can be obtained with the greater mesh parameter h for the same
value of the small parameter ε.

Numerical estimates give that the order of accuracy is about two for both kinds
of splines and both kinds of problems, although numerical tests show that uniform
errors are less when we use cubic spline-wavelets. Tables 2 and 3 show that the
method is not ε-uniform convergent, in the sense of Definition 1.
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ε\h 2−3 2−4 2−5 2−6 2−7 2−8

1 2e− 4 4e− 5 1e− 5 2e− 6 6e− 7 2e− 7
0.1 6e− 2 1e− 2 3e− 3 7e− 4 2e− 4 5e− 5
0.01 9e− 1 1e + 0 2e + 0 1e− 1 2e− 2 5e− 3
0.001 8e + 0 2e + 0 9e− 1 6e− 1 6e− 1 2e− 1
0.0001 8e + 1 2e + 1 5e + 0 1e + 0 7e− 1 6e− 1
0.00001 8e + 2 2e + 2 5e + 1 1e + 1 3e + 0 1e + 0

Table 2. Uniform errors for problem (22) in cubic case

ε\h 2−3 2−4 2−5 2−6 2−7 2−8

1 6e− 4 2e− 4 4e− 5 1e− 5 2e− 6 5e− 7
0.1 1e− 1 3e− 2 8e− 3 2e− 3 5e− 4 1e− 4
0.01 3e + 0 1e + 0 4e− 1 1e− 1 3e− 2 7e− 3
0.001 1e + 2 2e + 1 7e + 0 3e + 0 5e− 1 4e− 2
0.0001 1e + 4 2e + 3 2e + 2 4e + 1 2e + 1 7e + 0
0.00001 1e + 6 1e + 5 2e + 4 3e + 3 4e + 2 1e + 2

Table 3. Uniform errors for problem (22) in quadratic case

6. Conclusion

We can see that, used for solving singularly perturbed boundary problems,
spline and spline-wavelet approximations of the same type give identical results.
The advantage of splines is a simpler system of linear equations (three-diagonal),
and the advantage of spline-wavelets is a significant possibility of data compression.

The accuracy for fixed mesh depends on the type of the problem (convective
or reactive), on the order of spline (quadratic or cubic) and on the distribution of
collocation points. Convective problems are more sensitive to the value of small
parameter, so we need finer mesh to get the same accuracy as in the case of reactive
problems. Better results are obtained by cubic splines for both types of problems.
Best results in the case of convective problems are obtained when collocation points
are mesh points, while, in the case of reactive problems, best results are obtained
when collocation points are middle interval points.

Numerical order of convergence for both types of splines is about two, but
scheme is not ε-uniform (Definition 1). A future work will go towards construc-
tion of ε-uniform schemes by use of different types of wavelets and their various
modifications on boundaries.
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