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NORM AND LOWER BOUNDS OF OPERATORS
ON WEIGHTED SEQUENCE SPACES

R. Lashkaripour and D. Foroutannia

Abstract. This paper is concerned with the problem of finding the upper and lower bounds
of matrix operators from weighted sequence spaces lp(v,I) into lp(v, F). We consider certain
matrix operators such as Cesaro, Copson and Hilbert which were recently considered in [7, 8, 11,
13] on the usual weighted sequence spaces Ip(v).

1. Introduction

We study the norm and lower bounds of certain matrix operators from I, (v, I)
into I,,(v, F') which were considered in [1, 2, 3, 4, 12] on [, spaces and in [7, 8, 9, 10,
11, 13] on l,(v) and Lorentz sequence spaces d(v,p), for certain matrix operators
such as Cesaro, Copson and Hilbert operators.

If p > 1 and v = (v,) is a decreasing non-negative sequence such that
lim,, 0o vy, =0 and Y~ | v, = 00, we define the weighted sequence space I,,(v) as
follows:

(v) = {x — (2n): S vn|zal? is finite }

n=1
with norm || - ||, which is defined in the following way:
') l/p
el = (£ valanl?)
n=1

Let F be a partition of positive integers. If F' = (F),), where each F), is a finite
interval of positive integers and also max F,, < min F,,1; (n = 1,2,...), we define
the weighted sequence space [, (v, F') as follows:

(v, F) = {x — (2n): S va|(w, )P s finite }

n=1
where (x, F,) =Y
defined as follows:

jer, Tj- The norm of I, (v, ') is denoted by || - [|,v,r and it is

o 1/1)
el = (5 wlte FP)
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For I,, = {n}, I = (I,,) is a partition of positive integers and I,(v,I) = l,(v) and
[llp0.r = l12lp,0-

We write || Al r for the norm of A as an operator from I, (v, I) into I, (v, F),
and ||A||p,» for the norm of A as an operator from {,(v) into itself.

We consider the lower bounds L of the form
|Az|p,v,F = Ll|zlp,0,1,

for all decreasing non-negative sequences x. The constant L is not depending on z.
We seek the largest possible value of L, and denote the best lower bound by L, ,
for matrix operators from [,(v,I) into l,(v, F); it is denoted by L, ,(A) when
lp(v, F) and {,(v,I) are substituted by [, (v).

The following statements give us some conditions adequate for the operators
considered below, ensuring that ||A||,., r is determined by decreasing, non-negative
sequences.

(1) For all 4,4, a;; > 0.

(2) For all subsets M, N of natural numbers having m,n elements respectively,
we have
m n
> > aij < )

€M jEN i=

ai’j.
1

—

J

(3) X vi EjeFi aj,1 is convergent.

If A = (a; ;) is a matrix operator from I, (v, I') into I,,(v, F') satisfying conditions
(1) and (2), then decreasing, non-negative sequences are sufficient to determine the
norm of A. Condition (3) ensure that at least finite sequences are mapped into
lp(v, F), see [6].

2. Upper bounds of matrix operators

The purpose of this section is to consider the norm of certain matrix operators
from I,(v, I) into (v, F'), the problem analogous to the one considered in [6, 8, 11,
13] on I, (v) and Lorentz sequence spaces d(v,p) for certain matrix operators such
as Cesaro, Copson and Hilbert operators.

PROPOSITION 2.1. Letp > 1 and N > 1. Also, let F; = {N; — N +1,N; —
N+2,...,N;—1,N;} and v, = 1/n®, where 0 < a < 1. If A is a bounded operator
from 1, (v) into itself, then A is a bounded operator from l,(v,I) into I,(v,F') and
also

1Alpoo.r < NP A]p,o.
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Proof. Suppose x € l,(v,I) and y = Az. We have

[e%) l/p
| Azllpor = (z willy, Fi>|p)

1=

oo ] 1/1)
= (Z Z-T,é|Z/Ni—N+1-H/ni—z\wz-i-“' ip>

i=1

2 yn,—nN11l? r 2 yn,—N42lP Y \
< (Z z°‘+) e TJF Z

i=1 =1

)1/p

< Na/p(z |yk| ) Na/p||Apr7v.

This completes the proof. m

In the following, we consider the above statement for p = 1.

THEOREM 2.1. Suppose that A = (a; ;) is a matriz operator satisfying con-
ditions (1), (2) and (3). If supU,/V, < oo, where U, = u; + -+ + uy, and
Uy = Zz 1 Vi Z]EF ajn and Vy, = v1+---+vy, then A is a bounded opemtor from
ly(v,I) into Iy (v, F) and

U,
Al = s 32

Proof. Let « be in I3 (v,I) such that 1 >z > ... > 0 and M = sup U, /V,,.
Then

118

Az||1,0,F =

3
Il
_

onlAz, Fy) = 3 vn( >3 aj,kxk)

n=1 JjeF, k=1

I
18
£
3

8

3

I
18

Un(Zp — Tpg1)-
1

3
Il
-

n

Since ||z|1,0,1 = > pey Vi(zn — Znt1), we have || Az, r < M| z|/1,0,1- Therefore

|All1,0,F < M. )

Further, we take 1 = 29 = --- = x,, = 1 and a2, = 0 for all k > n + 1, then
/10,1 = Vi [|A2[[1,0,F = Uy. Hence

[All10,7 = M. (II)
Applying (I), (II) completes the proof of the theorem. m
The Cesaro operator A is defined by y = Az, where

1
Yn = — (@1 + T2+ -+ + Tn), for each n.
n

%, forn >k,

It is given by the Cesaro matrix a, , =
& Y ok {0, for n < k.
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THEOREM 2.2. Suppose that A is the Cesaro operator and p > 1. If N > 1
and F; = {N; —=N+1,N;—=N+2,....N;—1,N;} and v, = 1/n®, where 0 < o < 1,
then A is a bounded operator from l,(v,I) into l,(v, F). Also, we have

[All1,0,r < N*C(1 + ),

and

|Allp,or < N*Pp*, forp>1 and p* =p/(p —1).

Proof. Applying Proposition 5.1 of [8] and Proposition 2.1 the statement fol-
lows. m

The Copson operator C' is defined by y = Cz, where

Tk

o0
Yn = D —, for all n.
k=n k
. . 3, forn <k,
It is given as the transpose of the Cesaro operator: ¢y, j = .
0, formn > k.

Firstly, we obtain the norm of Copson operator as the one from I;(v,I) into
ll (’U, F)

LEMMA 2.1. ([8], Lemma 2.6) If o > 0, then
1 21

2.

=1

nlfa e

is decreasing with n and tends to 1/(1 — ) as n — oo.
As an immediate consequence, we have

THEOREM 2.3. Let C be the Copson operator. If F; = {2i — 1,2i} and v, =
1/n%, where 0 < a < 1, then C is a bounded operator from ly(v,I) into Iy (v, F),
and

20{
1l-«a

Ic

|1,U,F =

Proof. With the above notation,

o0

Up = Y Vi(C2i—1,n + C2in)-
i=1

U 24V, U2pn— 2Vp—1 —w .
Hence, 2n = 1_” nd 221 = n-l " . Applying Lemma 2.1, we have
Vo M Van—1  (2n— L)vgp
U
sup L and also
Vo, 11—«
U2pn— U(2n— U 2¢
2n—1 < 2(2n—1) < su 2n _ .
Van—1  U2(2n-1) n Uan l—-a
U 2¢

Therefore ||C||1,0,p = sup — =
Up, 1-—

. This establishes the proof of the theorem. m
o



Norm and lower bounds of operators ... 51

In the following theorem a similar result is obtained for the Copson operator
for p > 1.

THEOREM 2.4. Let C' be the Copson operator and p > 1. If N > 1 and
F,={N;—N+1,N;—N+2,...,N; — 1,N;} and v,, = 1/n®, where 0 < o < 1,
then C' is a bounded operator from l,(v,I) into l,(v, F). Moreover, we have

pNa/P
1—a’

1Clp,0,r =

Proof. Applying Theorem 4.2 of [8] and Proposition 2.1, we deduce that

pNe/P
o

1Clp,o. <

We now show that the reverse inequality holds. Choose ¢ > 0 and define r by
a+rp=1+e. Let y = Az and z; = 1/i" for all n. Note that (z;) is decreasing
and z; € l,(v,I). Then applying the integral estimate it follows that

o0 1 1
> ;
k=N:—N+n K17 7 7(N; = N 4n)"

for all 7 and 1 < n < N. Therefore

(%) l/p
|Az||p0,F = (Z V(YN - N1 F YN, N2+ F YN o1+ ym)”)
=1

> (S5 )Y = e

i=1 n=1T
pNpP—1ta/p pNe/P
= > - .
e lelr > Tl

The statement of the theorem follows from the above inequality. m
We recall that the Hilbert operator H is defined by the matrix

1
hij = —, ,j=1,2,...
1+

Let 0 < a < 1. As in the most studies on Hilbert operator, we use the well-known
integral

e 1 T
dt = - .
0o te(t+c) ¢ sin am
In the following, we are looking for an upper bound of the Hilbert matrix operator.
At first, we consider the case p = 1 and give the exact solution for this problem.
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THEOREM 2.5. Let H be the Hilbert matriz operator, and F; = {2i — 1,2i}
and v, = 1/n%, where 0 < a < 1. Then H is a bounded operator from ly(v,I) into
li(v, F), and also

2%m

sinonm’

15

1,0,F —

Proof. Using the usual notation we have

18

Uy =

o
I

> 1 1 1
Vi(h2i—in + hoin) = > = ( ) .

1 i=1 22_1+n+22+n
>~ 1 1 1
Since u,, > / — + dt and
1 9 \2t—-14n 2t4+n
/°° 1 1 n 1 g — T 1 . 1
0 t*\2t—14n 2t+n - 2l-eginar \(n— 1)  ne )’
and also
/11 1 1 2
— + dt < ,
o t*\2t—14n 2t+n n(l — )
we have

T n® 2ne 2% 2
n“u, = 1+ — >

21-aginam (n—1)e n(l—a) ~ sinar  nl-o(1—a)
Therefore
o 2%
[H|[1,0,F = supn®un, > ——.
n sin am
It was shown in [6] that ||H||;, = &/, and so applying Proposition 2.1. we have
2%
|H1,0,Fp < = .
sin am

This establishes the proof of the theorem. m

We now consider the norm of the Hilbert matrix operator for the general case,
when p > 1.

THEOREM 2.6. Suppose that H is the Hilbert matrix operator and p > 1. If
Nzland F;={N;— N+ 1,N,—N+2,....,N; — 1, N;} and v, = 1/n*, where
1—-p<a<l, then H is a bounded operator from l,(v,I) into l,(v, F). Moreover,
we have

TNe/P

()

Proof. Applying Theorem 3.2 in [8] and Proposition 2.1, we deduce that

TNe/P

Hlpwr < —7—7-
1l < o= aj/al
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To show the reverse inequality, take r = (1 — «)/p, so that a4+ rp = 1. Fix M, and

let N
{ 7 for j < M,
x; =
! 0, forj> M.
Then (z;) is decreasing and Zj’;l VT = SM 1 Also, let y = Haz. By routine

j=1j"
methods (we omit the details), one finds that

n
> Vi(YN,—N+1 T YN, —Nt2 o YNi—1 HyN,)P
=1
ler M 1 Na/p

= sinrmw = 1;—9( )>m

M 1
2779

where g(r) is independent of M. Clearly, the required statement follows. m

g(r),

3. Lower bounds of matrix operators

In this part of the study we are looking for the lower bounds of matrix operators
considered in Section 2.

Let p > 1 and A be a matrix operator with non-negative entries. If y = Az
and v is a decreasing sequence, then for each non-negative sequence x, we have

Al = 3o (Z%Y S X

i=1 JEF; =1 jEF;
> Zlviyf = [|Az|i}.,
It follows that Ly, , p(A) > Ly ,(A).

COROLLARY 3.1. Suppose that A is the Cesaro operator and p > 1. If v, =
1/n, then L, , r(A) > 1.

Proof. 1If we apply Theorem 4 in [7], we deduce that L, ,(A) = 1 and so we
have the statement. m

The Copson matrix is an upper triangular matrix. We will solve the lower
bound problem through the next statement. In fact, we characterize a class of
operators for which the lower bound constant is equal to one.

THEOREM 3.1. Suppose that A is an upper triangular matriz, i.e. anp = 0

forn >k, and 22:1 ank = 1 for all k (in other words, A is a quasi-summable

matriz). Let p > 1 and v = (v,) be a non-negative decreasing sequence. Then
L,,r(A) =1

Proof. 1If we apply Proposition 2 in [7], we have L,,(A) = 1. Hence
L,y r(A) > Ly,,(A) =1. Since 1 € F; and Ae; = ey, we deduce that

[Aerllpo,r = llerllpo,r = v1-

This completes the proof of the theorem. m
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We now generalize Theorem 1 of [7] for certain matrix operators from I, (v, I)
into I, (v, F') and deduce the lower bound for the Hilbert matrix operator.

LEMMA 3.1. [7] Let p > 1. Suppose that (a;), (x;) are non-negative sequences
and (x;) is decreasing and tends to 0. Write A, = 37_ a; (with Ag = 0), and
B, = Z?Zl a;x;. Then:

(i) BE — B | > (AP — AP )P for all n;

(i) if 272, aja; is convergent, then

0o P 00 v
(Sam) > £ aper - o)
j:

n=1

COROLLARY 3.2. If (z;) is a non-negative decreasing sequence and X, =
x1+ -+ Ty, then for eachn, XP — XP | > [nP — (n — 1)P]aP.

n—1

THEOREM 3.2. Suppose that p > 1 and A = (a; ;) is a matriz operator from
lp(v,I) into l,(v, F) with non-negative entries. Write rj; = >, _ a; and

foe) p
Si = Z Un( Z Tj@) .
n=1

JEFR

Sn
A) =inf 2"
(4) = inf -

Proof. Let z be in l,(v,I) such that 1 > z2... > 0 and m = inf S, /V,,.
Applying Lemma 3.1, we have y? > > ¥ (af — b ). Hence

,n

Then Lg,v,F

el = S (S w) 2SS (5 m) @ -

n=1 GEF, n=1 =1 \jEF,

I
™o

s
I
-

Si(x} — forl)-

Since ||z? ., ; = 202 Valah — 7 ), we deduce that

1Az[l} , o = mlll., ;-

Therefore L, , p(A) = m.
Further, we take 1 = 29 = --- =z, = 1 and z = 0 for all k > n + 1; then
=N} = Vo and [|Az|f} , » = Sy. Hence

prvﬁp(A) < m.

This establishes the proof of the theorem. m

Notg 3.1. For p > 1, the last part of Theorem 3.2 shows that [[A[? o >

sup,, Sn/Va, but I,(v, F') = I,(v) when F; = {i} and equality does not hold (see [8]).
Write
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and

oo p P
Sp =8, —Sp-1 = Z (% |:< Z Tj,n) - ( Z Tj,n—l) :|7
=1 JEF; JEF;

where S, = s1 + -+ 4+ s,. For p = 1, we have t, = s,. It is elementary that
inf,,(S,/V,) = inf,(sn/v,). We now apply Lemma 3.1 to deduce the following
result.

PROPOSITION 3.1. If A satisfies all conditions mentioned in Theorem 3.1 and
(@i ;) decreases with j for each i, then

Ly s (AP > inf[n? — (n — 1)7) 2

n U,n'

Proof. It follows from Corollary 3.2 that
P P P
(Z ij) - ( > ’"j,n1> > [n? — (n—l)p]< 2 aj,n) :
JEF, JEF; JEF;

o2 0= (=171 £ (£ ain) = = (0= 1)t

i=1 \jEF;

Thus

and so we have the statement. m

In the following statement we consider the lower bound constant for the Hilbert
operator H.

THEOREM 3.3. Suppose that H is the Hilbert operator, and p > 1. Let F; =
{2i —1,2i} and v, = 1/n*, where 0 < a < 1. Then
) 1

Ly, r(H)? > —_
por B2 2 et 172

~ Proof. Let B, ={i € Z: (k—1)n <i< kn}, where k > 1. If i € Ej, then
(£)*(2i +n)P < k*(2kn +n)P. Since Ej, has n members,

1 n? 1

nPJrDt*l > _ )
ieB 1220+ n)P T k*(2kn+n)P  ko(2k +1)P
Hence . - .
pta—1
" Z k) C A e Eh T 1)
and also

1 x 1
fppro-ly =y -
mtn Z o2kt n)p = ke (2k 1 1)

We now apply Proposition 3.1 and with the above notation,

i:: (21—11+n+2iin>p’
— (n = 1)fIn*

and L, p(H)P > inf, [nP
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Since n? — (n — 1)? > nP~1, we have

) ta1 &1 1 1 \*
Ly p(H) > i+t 3 -

Zie\2i—1+n  2i+n
> 9P ipf pPpto—1 = ; — 9P i ;
n i=1 k'a(Qk + n)p k=1 ka(Qk + 1)p

This completes the proof of the theorem. m

As mentioned in Theorem 3 in [7], we have

()Y = 3 ot
L,,(H)? = —_—.
7 =1 k(b +1)P
Therefore we have shown that Ly, r(H) > L, (H).
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