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NORM AND LOWER BOUNDS OF OPERATORS
ON WEIGHTED SEQUENCE SPACES

R. Lashkaripour and D. Foroutannia

Abstract. This paper is concerned with the problem of finding the upper and lower bounds
of matrix operators from weighted sequence spaces lp(v, I) into lp(v, F ). We consider certain
matrix operators such as Cesàro, Copson and Hilbert which were recently considered in [7, 8, 11,
13] on the usual weighted sequence spaces lp(v).

1. Introduction

We study the norm and lower bounds of certain matrix operators from lp(v, I)
into lp(v, F ) which were considered in [1, 2, 3, 4, 12] on lp spaces and in [7, 8, 9, 10,
11, 13] on lp(v) and Lorentz sequence spaces d(v, p), for certain matrix operators
such as Cesàro, Copson and Hilbert operators.

If p > 1 and v = (vn) is a decreasing non-negative sequence such that
limn→∞ vn = 0 and

∑∞
n=1 vn = ∞, we define the weighted sequence space lp(v) as

follows:

lp(v) :=
{

x = (xn) :
∞∑

n=1
vn|xn|p is finite

}
,

with norm ‖ · ‖p,v which is defined in the following way:

‖x‖p,v =
( ∞∑

n=1
vn|xn|p

)1/p

.

Let F be a partition of positive integers. If F = (Fn), where each Fn is a finite
interval of positive integers and also maxFn < min Fn+1 (n = 1, 2, . . . ), we define
the weighted sequence space lp(v, F ) as follows:

lp(v, F ) :=
{

x = (xn) :
∞∑

n=1
vn|〈x, Fn〉|p is finite

}
,

where 〈x, Fn〉 =
∑

j∈Fn
xj . The norm of lp(v, F ) is denoted by ‖ · ‖p,v,F and it is

defined as follows:

‖x‖p,v,F =
( ∞∑

n=1
vn|〈x, Fn〉|p

)1/p

.
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For In = {n}, I = (In) is a partition of positive integers and lp(v, I) = lp(v) and
‖x‖p,v,I = ‖x‖p,v.

We write ‖A‖p,v,F for the norm of A as an operator from lp(v, I) into lp(v, F ),
and ‖A‖p,v for the norm of A as an operator from lp(v) into itself.

We consider the lower bounds L of the form

‖Ax‖p,v,F > L‖x‖p,v,I ,

for all decreasing non-negative sequences x. The constant L is not depending on x.
We seek the largest possible value of L, and denote the best lower bound by Lp,v,F

for matrix operators from lp(v, I) into lp(v, F ); it is denoted by Lp,v(A) when
lp(v, F ) and lp(v, I) are substituted by lp(v).

The following statements give us some conditions adequate for the operators
considered below, ensuring that ‖A‖p,v,F is determined by decreasing, non-negative
sequences.

(1) For all i, j, ai,j > 0.

(2) For all subsets M , N of natural numbers having m,n elements respectively,
we have

∑
i∈M

∑
j∈N

ai,j 6
m∑

i=1

n∑
j=1

ai,j .

(3)
∑∞

i=1 vi

∑
j∈Fi

aj,1 is convergent.

If A = (ai,j) is a matrix operator from lp(v, I) into lp(v, F ) satisfying conditions
(1) and (2), then decreasing, non-negative sequences are sufficient to determine the
norm of A. Condition (3) ensure that at least finite sequences are mapped into
lp(v, F ), see [6].

2. Upper bounds of matrix operators

The purpose of this section is to consider the norm of certain matrix operators
from lp(v, I) into lp(v, F ), the problem analogous to the one considered in [6, 8, 11,
13] on lp(v) and Lorentz sequence spaces d(v, p) for certain matrix operators such
as Cesàro, Copson and Hilbert operators.

Proposition 2.1. Let p > 1 and N > 1. Also, let Fi = {Ni − N + 1, Ni −
N +2, . . . , Ni−1, Ni} and vn = 1/nα, where 0 < α 6 1. If A is a bounded operator
from lp(v) into itself, then A is a bounded operator from lp(v, I) into lp(v, F ) and
also

‖A‖p,v,F 6 Nα/p‖A‖p,v.
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Proof. Suppose x ∈ lp(v, I) and y = Ax. We have

‖Ax‖p,v,F =
( ∞∑

i=1

vi|〈y, Fi〉|p
)1/p

=
( ∞∑

i=1

1
iα
|yNi−N+1 + yni−N+2 + · · ·+ yNi

|p
)1/p

6
( ∞∑

i=1

|yNi−N+1|p
iα

)1/p

+
( ∞∑

i=1

|yNi−N+2|p
iα

)1/p

+ · · ·+
( ∞∑

i=1

|yNi |p
iα

)1/p

6 Nα/p

( ∞∑
k=1

|yk|p
kα

)1/p

6 Nα/p‖Ax‖p,v.

This completes the proof.
In the following, we consider the above statement for p = 1.

Theorem 2.1. Suppose that A = (ai,j) is a matrix operator satisfying con-
ditions (1), (2) and (3). If sup Un/Vn < ∞, where Un = u1 + · · · + un and
un =

∑∞
i=1 vi

∑
j∈Fi

aj,n and Vn = v1 + · · ·+vn, then A is a bounded operator from
l1(v, I) into l1(v, F ) and

‖A‖1,v,F = sup
n

Un

Vn
.

Proof. Let x be in l1(v, I) such that x1 > x2 > . . . > 0 and M = sup Un/Vn.
Then

‖Ax‖1,v,F =
∞∑

n=1
vn〈Ax,Fn〉 =

∞∑
n=1

vn

( ∑
j∈Fn

∞∑
k=1

aj,kxk

)

=
∞∑

n=1
unxn =

∞∑
n=1

Un(xn − xn+1).

Since ‖x‖1,v,I =
∑∞

n=1 Vn(xn − xn+1), we have ‖Ax‖1,v,F 6 M‖x‖1,v,I . Therefore

‖A‖1,v,F 6 M. (I)

Further, we take x1 = x2 = · · · = xn = 1 and xk = 0 for all k > n + 1, then
‖x‖1,v,I = Vn, ‖Ax‖1,v,F = Un. Hence

‖A‖1,v,F > M. (II)

Applying (I), (II) completes the proof of the theorem.
The Cesàro operator A is defined by y = Ax, where

yn =
1
n

(x1 + x2 + · · ·+ xn), for each n.

It is given by the Cesãro matrix an,k =
{ 1

n , for n > k,
0, for n < k.
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Theorem 2.2. Suppose that A is the Cesàro operator and p > 1. If N > 1
and Fi = {Ni−N +1, Ni−N +2, . . . , Ni−1, Ni} and vn = 1/nα, where 0 < α < 1,
then A is a bounded operator from lp(v, I) into lp(v, F ). Also, we have

‖A‖1,v,F 6 Nαζ(1 + α),

and
‖A‖p,v,F 6 Nα/pp∗, for p > 1 and p∗ = p/(p− 1).

Proof. Applying Proposition 5.1 of [8] and Proposition 2.1 the statement fol-
lows.

The Copson operator C is defined by y = Cx, where

yn =
∞∑

k=n

xk

k
, for all n.

It is given as the transpose of the Cesàro operator: cn,k =
{ 1

k , for n 6 k,
0, for n > k.

.

Firstly, we obtain the norm of Copson operator as the one from l1(v, I) into
l1(v, F ).

Lemma 2.1. ([8], Lemma 2.6) If α > 0, then

1
n1−α

n∑
i=1

1
iα

is decreasing with n and tends to 1/(1− α) as n →∞.

As an immediate consequence, we have

Theorem 2.3. Let C be the Copson operator. If Fi = {2i − 1, 2i} and vn =
1/nα, where 0 < α < 1, then C is a bounded operator from l1(v, I) into l1(v, F ),
and

‖C‖1,v,F =
2α

1− α
.

Proof. With the above notation,

un =
∞∑

i=1

vi(c2i−1,n + c2i,n).

Hence,
u2n

v2n
=

2αVn

n1−α
and

u2n−1

v2n−1
=

2Vn−1 − vn

(2n− 1)v2n−1
. Applying Lemma 2.1, we have

sup
u2n

v2n
=

2α

1− α
and also

u2n−1

v2n−1
6

u2(2n−1)

v2(2n−1)
6 sup

n

u2n

v2n
=

2α

1− α
.

Therefore ‖C‖1,v,F = sup
un

vn
=

2α

1− α
. This establishes the proof of the theorem.
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In the following theorem a similar result is obtained for the Copson operator
for p > 1.

Theorem 2.4. Let C be the Copson operator and p > 1. If N > 1 and
Fi = {Ni −N + 1, Ni −N + 2, . . . , Ni − 1, Ni} and vn = 1/nα, where 0 < α < 1,
then C is a bounded operator from lp(v, I) into lp(v, F ). Moreover, we have

‖C‖p,v,F =
pNα/p

1− α
.

Proof. Applying Theorem 4.2 of [8] and Proposition 2.1, we deduce that

‖C‖p,v,F 6 pNα/p

1− α
.

We now show that the reverse inequality holds. Choose ε > 0 and define r by
α + rp = 1 + ε. Let y = Ax and xi = 1/ir for all n. Note that (xi) is decreasing
and xi ∈ lp(v, I). Then applying the integral estimate it follows that

yNi−N+n =
∞∑

k=Ni−N+n

1
k1+r

> 1
r(Ni −N + n)r

,

for all i and 1 6 n 6 N . Therefore

‖Ax‖p,v,F =
( ∞∑

i=1

vi(yNi−N+1 + yNi−N+2 + · · ·+ yNi−1 + yNi)
p

)1/p

>
( ∞∑

i=1

vi

(
N∑

n=1

1
r(Ni −N + n)r

)p)1/p

>
( ∞∑

i=1

vi

(
N∑

n=1

N

r(Ni)r

)p)1/p

=
N1−r

r
‖x‖p,v,I

=
pNp−1+α/p

1− α + ε
‖x‖p,v,I > pNα/p

1− α + ε
‖x‖p,v,I .

The statement of the theorem follows from the above inequality.

We recall that the Hilbert operator H is defined by the matrix

hi,j =
1

i + j
, i, j = 1, 2, . . .

Let 0 < α < 1. As in the most studies on Hilbert operator, we use the well-known
integral ∫ ∞

0

1
tα(t + c)

dt =
π

cα sin απ
.

In the following, we are looking for an upper bound of the Hilbert matrix operator.
At first, we consider the case p = 1 and give the exact solution for this problem.
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Theorem 2.5. Let H be the Hilbert matrix operator, and Fi = {2i − 1, 2i}
and vn = 1/nα, where 0 < α < 1. Then H is a bounded operator from l1(v, I) into
l1(v, F ), and also

‖H‖1,v,F =
2απ

sin απ
.

Proof. Using the usual notation we have

un =
∞∑

i=1

vi(h2i−1,n + h2i,n) =
∞∑

i=1

1
iα

(
1

2i− 1 + n
+

1
2i + n

)
.

Since un >
∫ ∞

1

1
tα

(
1

2t− 1 + n
+

1
2t + n

)
dt and

∫ ∞

0

1
tα

(
1

2t− 1 + n
+

1
2t + n

)
dt =

π

21−α sin απ

(
1

(n− 1)α
+

1
nα

)
,

and also ∫ 1

0

1
tα

(
1

2t− 1 + n
+

1
2t + n

)
dt 6 2

n(1− α)
,

we have

nαun > π

21−α sin απ

(
1 +

nα

(n− 1)α

)
− 2nα

n(1− α)
> 2απ

sin απ
− 2

n1−α(1− α)
.

Therefore
‖H‖1,v,F = sup

n
nαun > 2απ

sin απ
.

It was shown in [6] that ‖H‖1,v = π
sin απ , and so applying Proposition 2.1. we have

‖H‖1,v,F 6 2απ

sin απ
.

This establishes the proof of the theorem.
We now consider the norm of the Hilbert matrix operator for the general case,

when p > 1.

Theorem 2.6. Suppose that H is the Hilbert matrix operator and p > 1. If
N > 1 and Fi = {Ni −N + 1, Ni −N + 2, . . . , Ni − 1, Ni} and vn = 1/nα, where
1− p < α < 1, then H is a bounded operator from lp(v, I) into lp(v, F ). Moreover,
we have

‖H‖p,v,F =
πNα/p

sin[(1− α)π/p]
.

Proof. Applying Theorem 3.2 in [8] and Proposition 2.1, we deduce that

‖H‖p,v,F 6 πNα/p

sin[(1− α)π/p]
.
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To show the reverse inequality, take r = (1−α)/p, so that α + rp = 1. Fix M , and
let

xj =
{ 1

jr , for j 6 M ,

0, for j > M .

Then (xj) is decreasing and
∑∞

j=1 vjxj =
∑M

j=1
1
j . Also, let y = Hx. By routine

methods (we omit the details), one finds that
n∑

i=1

vi(yNi−N+1 + yNi−N+2 + · · ·+ yNi−1 + yNi
)p >

> πN1−r

sin rπ

M∑
i=1

1
i
− g(r) > πNα/p

sin[(1− α)π/p]

M∑
i=1

1
i
− g(r),

where g(r) is independent of M . Clearly, the required statement follows.

3. Lower bounds of matrix operators

In this part of the study we are looking for the lower bounds of matrix operators
considered in Section 2.

Let p > 1 and A be a matrix operator with non-negative entries. If y = Ax
and v is a decreasing sequence, then for each non-negative sequence x, we have

‖Ax‖p
p,v,F =

∞∑
i=1

vi

( ∑
j∈Fi

yj

)p

>
∞∑

i=1

vi

∑
j∈Fi

yp
j

>
∞∑

i=1

viy
p
i = ‖Ax‖p

p,v.

It follows that Lp,v,F (A) > Lp,v(A).

Corollary 3.1. Suppose that A is the Cesàro operator and p > 1. If vn =
1/n, then Lp,v,F (A) > 1.

Proof. If we apply Theorem 4 in [7], we deduce that Lp,v(A) = 1 and so we
have the statement.

The Copson matrix is an upper triangular matrix. We will solve the lower
bound problem through the next statement. In fact, we characterize a class of
operators for which the lower bound constant is equal to one.

Theorem 3.1. Suppose that A is an upper triangular matrix, i.e. an,k = 0
for n > k, and

∑k
n=1 an,k = 1 for all k (in other words, A is a quasi-summable

matrix). Let p > 1 and v = (vn) be a non-negative decreasing sequence. Then
Lp,v,F (A) = 1.

Proof. If we apply Proposition 2 in [7], we have Lp,v(A) = 1. Hence
Lp,v,F (A) > Lp,v(A) = 1. Since 1 ∈ F1 and Ae1 = e1, we deduce that

‖Ae1‖p,v,F = ‖e1‖p,v,I = v1.

This completes the proof of the theorem.
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We now generalize Theorem 1 of [7] for certain matrix operators from lp(v, I)
into lp(v, F ) and deduce the lower bound for the Hilbert matrix operator.

Lemma 3.1. [7] Let p > 1. Suppose that (aj), (xj) are non-negative sequences
and (xj) is decreasing and tends to 0. Write An =

∑n
j=1 aj (with A0 = 0), and

Bn =
∑n

j=1 ajxj. Then:

(i) Bp
n −Bp

n−1 > (Ap
n −Ap

n−1)x
p
n for all n;

(ii) if
∑∞

j=1 ajxj is convergent, then
( ∞∑

j=1

ajxj

)p

>
∞∑

n=1
Ap

n(xp
n − xp

n+1).

Corollary 3.2. If (xj) is a non-negative decreasing sequence and Xn =
x1 + · · ·+ xn, then for each n, Xp

n −Xp
n−1 > [np − (n− 1)p]xp

n.

Theorem 3.2. Suppose that p > 1 and A = (ai,j) is a matrix operator from
lp(v, I) into lp(v, F ) with non-negative entries. Write rj,i =

∑i
k=1 aj,k and

Si =
∞∑

n=1
vn

( ∑
j∈Fn

rj,i

)p

.

Then Lp
p,v,F (A) = inf

n

Sn

Vn
.

Proof. Let x be in lp(v, I) such that x1 > x2 . . . > 0 and m = inf Sn/Vn.
Applying Lemma 3.1, we have yp

i >
∑∞

n=1 rp
i,n(xp

n − xp
n+1). Hence

‖Ax‖p
p,v,F =

∞∑
n=1

vn

( ∑
j∈Fn

yj

)p

>
∞∑

n=1
vn

∞∑
i=1

( ∑
j∈Fn

rj,i

)p

(xp
i − xp

i+1)

=
∞∑

i=1

Si(x
p
i − xp

i+1).

Since ‖x‖p
p,v,I =

∑∞
n=1 Vn(xp

n − xp
n+1), we deduce that

‖Ax‖p
p,v,F > m‖x‖p

p,v,I .

Therefore Lp,v,F (A) > m.
Further, we take x1 = x2 = · · · = xn = 1 and xk = 0 for all k > n + 1; then

‖x‖p
p,v,I = Vn and ‖Ax‖p

p,v,F = Sn. Hence

Lp,v,F (A) 6 m.

This establishes the proof of the theorem.
Note 3.1. For p > 1, the last part of Theorem 3.2 shows that ‖A‖p

p,v,F >
supn Sn/Vn, but lp(v, F ) = lp(v) when Fi = {i} and equality does not hold (see [8]).
Write

tn =
∞∑

i=1

vi

( ∑
j∈Fi

aj,n

)p

,
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and

sn = Sn − Sn−1 =
∞∑

i=1

vi

[( ∑
j∈Fi

rj,n

)p

−
( ∑

j∈Fi

rj,n−1

)p]
,

where Sn = s1 + · · · + sn. For p = 1, we have tn = sn. It is elementary that
infn(Sn/Vn) > infn(sn/vn). We now apply Lemma 3.1 to deduce the following
result.

Proposition 3.1. If A satisfies all conditions mentioned in Theorem 3.1 and
(ai,j) decreases with j for each i, then

Lp,v,F (A)p > inf
n

[np − (n− 1)p]
tn
vn

.

Proof. It follows from Corollary 3.2 that
( ∑

j∈Fi

rj,n

)p

−
( ∑

j∈Fi

rj,n−1

)p

> [np − (n− 1)p]
( ∑

j∈Fi

aj,n

)p

.

Thus

sn > [np − (n− 1)p]
∞∑

i=1

( ∑
j∈Fi

aj,n

)p

= [np − (n− 1)p] tn

and so we have the statement.
In the following statement we consider the lower bound constant for the Hilbert

operator H.

Theorem 3.3. Suppose that H is the Hilbert operator, and p > 1. Let Fi =
{2i− 1, 2i} and vn = 1/nα, where 0 < α < 1. Then

Lp,v,F (H)p >
∞∑

k=1

1
kα(k + 1/2)p

.

Proof. Let Ek = {i ∈ Z : (k − 1)n < i 6 kn}, where k > 1. If i ∈ Ek, then
( i

n )α(2i + n)p 6 kα(2kn + n)p. Since Ek has n members,

np+α−1 ∑
i∈Ek

1
iα(2i + n)p

> np

kα(2kn + n)p
=

1
kα(2k + 1)p

.

Hence
np+α−1

∞∑
k=1

1
kα(2k + n)p

>
∞∑

k=1

1
kα(2k + 1)p

,

and also
inf
n

np+α−1
∞∑

k=1

1
kα(2k + n)p

=
∞∑

k=1

1
kα(2k + 1)p

.

We now apply Proposition 3.1 and with the above notation,

tn =
∞∑

i=1

1
iα

(
1

2i− 1 + n
+

1
2i + n

)p

,

and Lp,v,F (H)p > infn[np − (n− 1)p]nαtn.
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Since np − (n− 1)p > np−1, we have

Lp,v,F (H)p > inf
n

np+α−1
∞∑

i=1

1
iα

(
1

2i− 1 + n
+

1
2i + n

)p

> 2p inf
n

np+α−1
∞∑

i=1

1
kα(2k + n)p

= 2p
∞∑

k=1

1
kα(2k + 1)p

.

This completes the proof of the theorem.
As mentioned in Theorem 3 in [7], we have

Lp,v(H)p =
∞∑

k=1

1
kα(k + 1)p

.

Therefore we have shown that Lp,v,F (H) > Lp,v(H).
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