NORM AND LOWER BOUNDS OF OPERATORS ON WEIGHTED SEQUENCE SPACES

R. Lashkaripour and D. Foroutannia

Abstract. This paper is concerned with the problem of finding the upper and lower bounds of matrix operators from weighted sequence spaces $l_p(v, I)$ into $l_p(v, F)$. We consider certain matrix operators such as Cesàro, Copson and Hilbert which were recently considered in [7, 8, 11, 13] on the usual weighted sequence spaces $l_p(v)$.

1. Introduction

We study the norm and lower bounds of certain matrix operators from $l_p(v, I)$ into $l_p(v, F)$ which were considered in [1, 2, 3, 4, 12] on l_p spaces and in [7, 8, 9, 10, 11, 13] on $l_p(v)$ and Lorentz sequence spaces d(v, p), for certain matrix operators such as Cesàro, Copson and Hilbert operators.

If $p \ge 1$ and $v = (v_n)$ is a decreasing non-negative sequence such that $\lim_{n\to\infty} v_n = 0$ and $\sum_{n=1}^{\infty} v_n = \infty$, we define the weighted sequence space $l_p(v)$ as follows:

$$l_p(v) := \left\{ x = (x_n) : \sum_{n=1}^{\infty} v_n |x_n|^p \text{ is finite} \right\}$$

with norm $\|\cdot\|_{p,v}$ which is defined in the following way:

$$||x||_{p,v} = \left(\sum_{n=1}^{\infty} v_n |x_n|^p\right)^{1/p}$$

Let F be a partition of positive integers. If $F = (F_n)$, where each F_n is a finite interval of positive integers and also max $F_n < \min F_{n+1}$ (n = 1, 2, ...), we define the weighted sequence space $l_p(v, F)$ as follows:

$$l_p(v,F) := \left\{ x = (x_n) : \sum_{n=1}^{\infty} v_n |\langle x, F_n \rangle|^p \text{ is finite } \right\},\$$

where $\langle x, F_n \rangle = \sum_{j \in F_n} x_j$. The norm of $l_p(v, F)$ is denoted by $\| \cdot \|_{p,v,F}$ and it is defined as follows:

$$||x||_{p,v,F} = \left(\sum_{n=1}^{\infty} v_n |\langle x, F_n \rangle|^p\right)^{1/p}.$$

AMS Subject Classification: 46A45, 40H05

For $I_n = \{n\}$, $I = (I_n)$ is a partition of positive integers and $l_p(v, I) = l_p(v)$ and $||x||_{p,v,I} = ||x||_{p,v}$.

We write $||A||_{p,v,F}$ for the norm of A as an operator from $l_p(v, I)$ into $l_p(v, F)$, and $||A||_{p,v}$ for the norm of A as an operator from $l_p(v)$ into itself.

We consider the lower bounds L of the form

$$||Ax||_{p,v,F} \ge L||x||_{p,v,I},$$

for all decreasing non-negative sequences x. The constant L is not depending on x. We seek the largest possible value of L, and denote the best lower bound by $L_{p,v,F}$ for matrix operators from $l_p(v, I)$ into $l_p(v, F)$; it is denoted by $L_{p,v}(A)$ when $l_p(v, F)$ and $l_p(v, I)$ are substituted by $l_p(v)$.

The following statements give us some conditions adequate for the operators considered below, ensuring that $||A||_{p,v,F}$ is determined by decreasing, non-negative sequences.

- (1) For all $i, j, a_{i,j} \ge 0$.
- (2) For all subsets M, N of natural numbers having m, n elements respectively, we have

$$\sum_{i \in M} \sum_{j \in N} a_{i,j} \leqslant \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i,j}.$$

(3) $\sum_{i=1}^{\infty} v_i \sum_{j \in F_i} a_{j,1}$ is convergent.

If $A = (a_{i,j})$ is a matrix operator from $l_p(v, I)$ into $l_p(v, F)$ satisfying conditions (1) and (2), then decreasing, non-negative sequences are sufficient to determine the norm of A. Condition (3) ensure that at least finite sequences are mapped into $l_p(v, F)$, see [6].

2. Upper bounds of matrix operators

The purpose of this section is to consider the norm of certain matrix operators from $l_p(v, I)$ into $l_p(v, F)$, the problem analogous to the one considered in [6, 8, 11, 13] on $l_p(v)$ and Lorentz sequence spaces d(v, p) for certain matrix operators such as Cesàro, Copson and Hilbert operators.

PROPOSITION 2.1. Let $p \ge 1$ and $N \ge 1$. Also, let $F_i = \{N_i - N + 1, N_i - N + 2, ..., N_i - 1, N_i\}$ and $v_n = 1/n^{\alpha}$, where $0 < \alpha \le 1$. If A is a bounded operator from $l_p(v)$ into itself, then A is a bounded operator from $l_p(v, I)$ into $l_p(v, F)$ and also

$$||A||_{p,v,F} \leqslant N^{\alpha/p} ||A||_{p,v}$$

48

Proof. Suppose $x \in l_p(v, I)$ and y = Ax. We have

$$\begin{split} \|Ax\|_{p,v,F} &= \left(\sum_{i=1}^{\infty} v_i |\langle y, F_i \rangle|^p\right)^{1/p} \\ &= \left(\sum_{i=1}^{\infty} \frac{1}{i^{\alpha}} |y_{N_i - N + 1} + y_{n_i - N + 2} + \dots + y_{N_i}|^p\right)^{1/p} \\ &\leqslant \left(\sum_{i=1}^{\infty} \frac{|y_{N_i - N + 1}|^p}{i^{\alpha}}\right)^{1/p} + \left(\sum_{i=1}^{\infty} \frac{|y_{N_i - N + 2}|^p}{i^{\alpha}}\right)^{1/p} + \dots + \left(\sum_{i=1}^{\infty} \frac{|y_{N_i}|^p}{i^{\alpha}}\right)^{1/p} \\ &\leqslant N^{\alpha/p} \left(\sum_{k=1}^{\infty} \frac{|y_k|^p}{k^{\alpha}}\right)^{1/p} \leqslant N^{\alpha/p} \|Ax\|_{p,v}. \end{split}$$

This completes the proof. \blacksquare

In the following, we consider the above statement for p = 1.

THEOREM 2.1. Suppose that $A = (a_{i,j})$ is a matrix operator satisfying conditions (1), (2) and (3). If $\sup U_n/V_n < \infty$, where $U_n = u_1 + \cdots + u_n$ and $u_n = \sum_{i=1}^{\infty} v_i \sum_{j \in F_i} a_{j,n}$ and $V_n = v_1 + \cdots + v_n$, then A is a bounded operator from $l_1(v, I)$ into $l_1(v, F)$ and

$$||A||_{1,v,F} = \sup_{n} \frac{U_n}{V_n}.$$

Proof. Let x be in $l_1(v, I)$ such that $x_1 \ge x_2 \ge \ldots \ge 0$ and $M = \sup U_n/V_n$. Then

$$\|Ax\|_{1,v,F} = \sum_{n=1}^{\infty} v_n \langle Ax, F_n \rangle = \sum_{n=1}^{\infty} v_n \left(\sum_{j \in F_n} \sum_{k=1}^{\infty} a_{j,k} x_k \right)$$
$$= \sum_{n=1}^{\infty} u_n x_n = \sum_{n=1}^{\infty} U_n (x_n - x_{n+1}).$$

Since $||x||_{1,v,I} = \sum_{n=1}^{\infty} V_n(x_n - x_{n+1})$, we have $||Ax||_{1,v,F} \leq M ||x||_{1,v,I}$. Therefore

$$\|A\|_{1,v,F} \leqslant M. \tag{I}$$

Further, we take $x_1 = x_2 = \cdots = x_n = 1$ and $x_k = 0$ for all $k \ge n+1$, then $||x||_{1,v,I} = V_n$, $||Ax||_{1,v,F} = U_n$. Hence

$$\|A\|_{1,v,F} \ge M. \tag{II}$$

Applying (I), (II) completes the proof of the theorem. \blacksquare

The Cesàro operator A is defined by y = Ax, where

$$y_n = \frac{1}{n}(x_1 + x_2 + \dots + x_n),$$
 for each *n*.

It is given by the Cesãro matrix $a_{n,k} = \begin{cases} \frac{1}{n}, & \text{for } n \ge k, \\ 0, & \text{for } n < k. \end{cases}$

R. Lashkaripour, D. Foroutannia

THEOREM 2.2. Suppose that A is the Cesàro operator and $p \ge 1$. If $N \ge 1$ and $F_i = \{N_i - N + 1, N_i - N + 2, \dots, N_i - 1, N_i\}$ and $v_n = 1/n^{\alpha}$, where $0 < \alpha < 1$, then A is a bounded operator from $l_p(v, I)$ into $l_p(v, F)$. Also, we have

$$||A||_{1,v,F} \leqslant N^{\alpha} \zeta(1+\alpha),$$

and

$$||A||_{p,v,F} \leq N^{\alpha/p}p^*$$
, for $p > 1$ and $p^* = p/(p-1)$.

Proof. Applying Proposition 5.1 of [8] and Proposition 2.1 the statement follows. \blacksquare

The Copson operator C is defined by y = Cx, where

$$y_n = \sum_{k=n}^{\infty} \frac{x_k}{k}$$
, for all n .

It is given as the transpose of the Cesàro operator: $c_{n,k} = \begin{cases} \frac{1}{k}, & \text{for } n \leq k, \\ 0, & \text{for } n > k. \end{cases}$

Firstly, we obtain the norm of Copson operator as the one from $l_1(v, I)$ into $l_1(v, F)$.

LEMMA 2.1. ([8], Lemma 2.6) If $\alpha > 0$, then

$$\frac{1}{n^{1-\alpha}}\sum_{i=1}^n \frac{1}{i^\alpha}$$

is decreasing with n and tends to $1/(1-\alpha)$ as $n \to \infty$.

As an immediate consequence, we have

THEOREM 2.3. Let C be the Copson operator. If $F_i = \{2i - 1, 2i\}$ and $v_n = 1/n^{\alpha}$, where $0 < \alpha < 1$, then C is a bounded operator from $l_1(v, I)$ into $l_1(v, F)$, and

$$\|C\|_{1,v,F} = \frac{2^{\alpha}}{1-\alpha}.$$

Proof. With the above notation,

$$u_n = \sum_{i=1}^{\infty} v_i (c_{2i-1,n} + c_{2i,n}).$$

Hence, $\frac{u_{2n}}{v_{2n}} = \frac{2^{\alpha}V_n}{n^{1-\alpha}}$ and $\frac{u_{2n-1}}{v_{2n-1}} = \frac{2V_{n-1} - v_n}{(2n-1)v_{2n-1}}$. Applying Lemma 2.1, we have $\sup \frac{u_{2n}}{v_{2n}} = \frac{2^{\alpha}}{1-\alpha}$ and also

$$\frac{u_{2n-1}}{v_{2n-1}} \leqslant \frac{u_{2(2n-1)}}{v_{2(2n-1)}} \leqslant \sup_{n} \frac{u_{2n}}{v_{2n}} = \frac{2^{\alpha}}{1-\alpha}$$

Therefore $||C||_{1,v,F} = \sup \frac{u_n}{v_n} = \frac{2^{\alpha}}{1-\alpha}$. This establishes the proof of the theorem.

In the following theorem a similar result is obtained for the Copson operator for $p \ge 1$.

THEOREM 2.4. Let C be the Copson operator and $p \ge 1$. If $N \ge 1$ and $F_i = \{N_i - N + 1, N_i - N + 2, \dots, N_i - 1, N_i\}$ and $v_n = 1/n^{\alpha}$, where $0 < \alpha < 1$, then C is a bounded operator from $l_p(v, I)$ into $l_p(v, F)$. Moreover, we have

$$||C||_{p,v,F} = \frac{pN^{\alpha/p}}{1-\alpha}.$$

Proof. Applying Theorem 4.2 of [8] and Proposition 2.1, we deduce that

$$||C||_{p,v,F} \leqslant \frac{pN^{\alpha/p}}{1-\alpha}.$$

We now show that the reverse inequality holds. Choose $\varepsilon > 0$ and define r by $\alpha + rp = 1 + \varepsilon$. Let y = Ax and $x_i = 1/i^r$ for all n. Note that (x_i) is decreasing and $x_i \in l_p(v, I)$. Then applying the integral estimate it follows that

$$y_{N_i-N+n} = \sum_{k=N_i-N+n}^{\infty} \frac{1}{k^{1+r}} \ge \frac{1}{r(N_i-N+n)^r},$$

for all i and $1 \leq n \leq N$. Therefore

$$\begin{split} \|Ax\|_{p,v,F} &= \left(\sum_{i=1}^{\infty} v_i (y_{N_i-N+1} + y_{N_i-N+2} + \dots + y_{N_i-1} + y_{N_i})^p\right)^{1/p} \\ &\geqslant \left(\sum_{i=1}^{\infty} v_i \left(\sum_{n=1}^{N} \frac{1}{r(N_i-N+n)^r}\right)^p\right)^{1/p} \\ &\geqslant \left(\sum_{i=1}^{\infty} v_i \left(\sum_{n=1}^{N} \frac{N}{r(N_i)^r}\right)^p\right)^{1/p} = \frac{N^{1-r}}{r} \|x\|_{p,v,I} \\ &= \frac{pN^{p-1+\alpha/p}}{1-\alpha+\varepsilon} \|x\|_{p,v,I} \geqslant \frac{pN^{\alpha/p}}{1-\alpha+\varepsilon} \|x\|_{p,v,I}. \end{split}$$

The statement of the theorem follows from the above inequality. \blacksquare

We recall that the Hilbert operator H is defined by the matrix

$$h_{i,j} = \frac{1}{i+j}, \qquad i, j = 1, 2, \dots$$

Let $0<\alpha<1.$ As in the most studies on Hilbert operator, we use the well-known integral

$$\int_0^\infty \frac{1}{t^\alpha(t+c)} \, dt = \frac{\pi}{c^\alpha \sin \alpha \pi}.$$

In the following, we are looking for an upper bound of the Hilbert matrix operator. At first, we consider the case p = 1 and give the exact solution for this problem.

R. Lashkaripour, D. Foroutannia

THEOREM 2.5. Let H be the Hilbert matrix operator, and $F_i = \{2i - 1, 2i\}$ and $v_n = 1/n^{\alpha}$, where $0 < \alpha < 1$. Then H is a bounded operator from $l_1(v, I)$ into $l_1(v, F)$, and also

$$|H||_{1,v,F} = \frac{2^{\alpha}\pi}{\sin\alpha\pi}$$

Proof. Using the usual notation we have

$$u_n = \sum_{i=1}^{\infty} v_i (h_{2i-1,n} + h_{2i,n}) = \sum_{i=1}^{\infty} \frac{1}{i^{\alpha}} \left(\frac{1}{2i-1+n} + \frac{1}{2i+n} \right).$$

Since $u_n \ge \int_1^\infty \frac{1}{t^\alpha} \left(\frac{1}{2t - 1 + n} + \frac{1}{2t + n} \right) dt$ and

$$\int_0^\infty \frac{1}{t^{\alpha}} \left(\frac{1}{2t - 1 + n} + \frac{1}{2t + n} \right) \, dt = \frac{\pi}{2^{1 - \alpha} \sin \alpha \pi} \left(\frac{1}{(n - 1)^{\alpha}} + \frac{1}{n^{\alpha}} \right),$$

and also

$$\int_0^1 \frac{1}{t^\alpha} \left(\frac{1}{2t - 1 + n} + \frac{1}{2t + n} \right) dt \leqslant \frac{2}{n(1 - \alpha)}$$

we have

$$n^{\alpha}u_n \ge \frac{\pi}{2^{1-\alpha}\sin\alpha\pi} \left(1 + \frac{n^{\alpha}}{(n-1)^{\alpha}}\right) - \frac{2n^{\alpha}}{n(1-\alpha)} \ge \frac{2^{\alpha}\pi}{\sin\alpha\pi} - \frac{2}{n^{1-\alpha}(1-\alpha)}.$$

Therefore

$$\|H\|_{1,v,F} = \sup_n n^{\alpha} u_n \geqslant \frac{2^{\alpha} \pi}{\sin \alpha \pi}$$

It was shown in [6] that $||H||_{1,v} = \frac{\pi}{\sin \alpha \pi}$, and so applying Proposition 2.1. we have

$$\|H\|_{1,v,F} \leqslant \frac{2^{\alpha}\pi}{\sin\alpha\pi}.$$

This establishes the proof of the theorem. \blacksquare

We now consider the norm of the Hilbert matrix operator for the general case, when p > 1.

THEOREM 2.6. Suppose that H is the Hilbert matrix operator and p > 1. If $N \ge 1$ and $F_i = \{N_i - N + 1, N_i - N + 2, ..., N_i - 1, N_i\}$ and $v_n = 1/n^{\alpha}$, where $1 - p < \alpha < 1$, then H is a bounded operator from $l_p(v, I)$ into $l_p(v, F)$. Moreover, we have

$$||H||_{p,v,F} = \frac{\pi N^{\alpha/p}}{\sin[(1-\alpha)\pi/p]}$$

Proof. Applying Theorem 3.2 in [8] and Proposition 2.1, we deduce that

$$\|H\|_{p,v,F} \leqslant \frac{\pi N^{\alpha/p}}{\sin[(1-\alpha)\pi/p]}.$$

To show the reverse inequality, take $r = (1 - \alpha)/p$, so that $\alpha + rp = 1$. Fix M, and let

$$x_j = \begin{cases} \frac{1}{j^r}, & \text{for } j \leq M, \\ 0, & \text{for } j > M. \end{cases}$$

Then (x_j) is decreasing and $\sum_{j=1}^{\infty} v_j x_j = \sum_{j=1}^{M} \frac{1}{j}$. Also, let y = Hx. By routine methods (we omit the details), one finds that

$$\sum_{i=1}^{n} v_i (y_{N_i-N+1} + y_{N_i-N+2} + \dots + y_{N_i-1} + y_{N_i})^p \ge \\ \ge \frac{\pi N^{1-r}}{\sin r\pi} \sum_{i=1}^{M} \frac{1}{i} - g(r) \ge \frac{\pi N^{\alpha/p}}{\sin[(1-\alpha)\pi/p]} \sum_{i=1}^{M} \frac{1}{i} - g(r),$$

where g(r) is independent of M. Clearly, the required statement follows.

3. Lower bounds of matrix operators

In this part of the study we are looking for the lower bounds of matrix operators considered in Section 2.

Let $p \ge 1$ and A be a matrix operator with non-negative entries. If y = Axand v is a decreasing sequence, then for each non-negative sequence x, we have

$$\|Ax\|_{p,v,F}^{p} = \sum_{i=1}^{\infty} v_i \left(\sum_{j \in F_i} y_j\right)^{p} \ge \sum_{i=1}^{\infty} v_i \sum_{j \in F_i} y_j^{p}$$
$$\ge \sum_{i=1}^{\infty} v_i y_i^{p} = \|Ax\|_{p,v}^{p}.$$

It follows that $L_{p,v,F}(A) \ge L_{p,v}(A)$.

COROLLARY 3.1. Suppose that A is the Cesàro operator and $p \ge 1$. If $v_n = 1/n$, then $L_{p,v,F}(A) \ge 1$.

Proof. If we apply Theorem 4 in [7], we deduce that $L_{p,v}(A) = 1$ and so we have the statement.

The Copson matrix is an upper triangular matrix. We will solve the lower bound problem through the next statement. In fact, we characterize a class of operators for which the lower bound constant is equal to one.

THEOREM 3.1. Suppose that A is an upper triangular matrix, i.e. $a_{n,k} = 0$ for n > k, and $\sum_{n=1}^{k} a_{n,k} = 1$ for all k (in other words, A is a quasi-summable matrix). Let $p \ge 1$ and $v = (v_n)$ be a non-negative decreasing sequence. Then $L_{p,v,F}(A) = 1$.

Proof. If we apply Proposition 2 in [7], we have $L_{p,v}(A) = 1$. Hence $L_{p,v,F}(A) \ge L_{p,v}(A) = 1$. Since $1 \in F_1$ and $Ae_1 = e_1$, we deduce that

$$Ae_1|_{p,v,F} = ||e_1||_{p,v,I} = v_1.$$

This completes the proof of the theorem. ■

We now generalize Theorem 1 of [7] for certain matrix operators from $l_p(v, I)$ into $l_p(v, F)$ and deduce the lower bound for the Hilbert matrix operator.

LEMMA 3.1. [7] Let $p \ge 1$. Suppose that (a_j) , (x_j) are non-negative sequences and (x_j) is decreasing and tends to 0. Write $A_n = \sum_{j=1}^n a_j$ (with $A_0 = 0$), and $B_n = \sum_{j=1}^n a_j x_j$. Then:

- (i) $B_n^p B_{n-1}^p \ge (A_n^p A_{n-1}^p) x_n^p$ for all n;
- (ii) if $\sum_{j=1}^{\infty} a_j x_j$ is convergent, then

$$\left(\sum_{j=1}^{\infty} a_j x_j\right)^p \geqslant \sum_{n=1}^{\infty} A_n^p (x_n^p - x_{n+1}^p).$$

COROLLARY 3.2. If (x_j) is a non-negative decreasing sequence and $X_n = x_1 + \cdots + x_n$, then for each n, $X_n^p - X_{n-1}^p \ge [n^p - (n-1)^p]x_n^p$.

THEOREM 3.2. Suppose that $p \ge 1$ and $A = (a_{i,j})$ is a matrix operator from $l_p(v, I)$ into $l_p(v, F)$ with non-negative entries. Write $r_{j,i} = \sum_{k=1}^{i} a_{j,k}$ and

$$S_i = \sum_{n=1}^{\infty} v_n \left(\sum_{j \in F_n} r_{j,i} \right)^p.$$

Then $L^p_{p,v,F}(A) = \inf_n \frac{S_n}{V_n}$.

Proof. Let x be in $l_p(v, I)$ such that $x_1 \ge x_2 \dots \ge 0$ and $m = \inf S_n/V_n$. Applying Lemma 3.1, we have $y_i^p \ge \sum_{n=1}^{\infty} r_{i,n}^p (x_n^p - x_{n+1}^p)$. Hence

$$\|Ax\|_{p,v,F}^{p} = \sum_{n=1}^{\infty} v_n \left(\sum_{j \in F_n} y_j\right)^{p} \ge \sum_{n=1}^{\infty} v_n \sum_{i=1}^{\infty} \left(\sum_{j \in F_n} r_{j,i}\right)^{p} (x_i^{p} - x_{i+1}^{p})$$
$$= \sum_{i=1}^{\infty} S_i (x_i^{p} - x_{i+1}^{p}).$$

Since $||x||_{p,v,I}^p = \sum_{n=1}^{\infty} V_n(x_n^p - x_{n+1}^p)$, we deduce that

$$||Ax||_{p,v,F}^p \ge m ||x||_{p,v,I}^p$$

Therefore $L_{p,v,F}(A) \ge m$.

Further, we take $x_1 = x_2 = \cdots = x_n = 1$ and $x_k = 0$ for all $k \ge n+1$; then $||x||_{p,v,I}^p = V_n$ and $||Ax||_{p,v,F}^p = S_n$. Hence

$$L_{p,v,F}(A) \leq m.$$

This establishes the proof of the theorem. \blacksquare

NOTE 3.1. For p > 1, the last part of Theorem 3.2 shows that $||A||_{p,v,F}^{p} \ge \sup_{n} S_{n}/V_{n}$, but $l_{p}(v,F) = l_{p}(v)$ when $F_{i} = \{i\}$ and equality does not hold (see [8]). Write

$$t_n = \sum_{i=1}^{\infty} v_i \left(\sum_{j \in F_i} a_{j,n} \right)^p,$$

and

$$s_n = S_n - S_{n-1} = \sum_{i=1}^{\infty} v_i \left[\left(\sum_{j \in F_i} r_{j,n} \right)^p - \left(\sum_{j \in F_i} r_{j,n-1} \right)^p \right],$$

where $S_n = s_1 + \cdots + s_n$. For p = 1, we have $t_n = s_n$. It is elementary that $\inf_n(S_n/V_n) \ge \inf_n(s_n/v_n)$. We now apply Lemma 3.1 to deduce the following result.

PROPOSITION 3.1. If A satisfies all conditions mentioned in Theorem 3.1 and $(a_{i,j})$ decreases with j for each i, then

$$L_{p,v,F}(A)^p \ge \inf_n [n^p - (n-1)^p] \frac{t_n}{v_n}.$$

Proof. It follows from Corollary 3.2 that

$$\left(\sum_{j\in F_i} r_{j,n}\right)^p - \left(\sum_{j\in F_i} r_{j,n-1}\right)^p \ge [n^p - (n-1)^p] \left(\sum_{j\in F_i} a_{j,n}\right)^p.$$

Thus

$$s_n \ge [n^p - (n-1)^p] \sum_{i=1}^{\infty} \left(\sum_{j \in F_i} a_{j,n}\right)^p = [n^p - (n-1)^p] t_n$$

and so we have the statement. \blacksquare

In the following statement we consider the lower bound constant for the Hilbert operator H.

THEOREM 3.3. Suppose that H is the Hilbert operator, and $p \ge 1$. Let $F_i = \{2i - 1, 2i\}$ and $v_n = 1/n^{\alpha}$, where $0 < \alpha < 1$. Then

$$L_{p,v,F}(H)^p \ge \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}(k+1/2)^p}$$

Proof. Let $E_k = \{i \in Z : (k-1)n < i \leq kn\}$, where $k \ge 1$. If $i \in E_k$, then $(\frac{i}{n})^{\alpha}(2i+n)^p \leq k^{\alpha}(2kn+n)^p$. Since E_k has n members,

$$n^{p+\alpha-1} \sum_{i \in E_k} \frac{1}{i^{\alpha}(2i+n)^p} \ge \frac{n^p}{k^{\alpha}(2kn+n)^p} = \frac{1}{k^{\alpha}(2k+1)^p}.$$

Hence

$$n^{p+\alpha-1} \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}(2k+n)^p} \ge \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}(2k+1)^p},$$

and also

$$\inf_{n} n^{p+\alpha-1} \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}(2k+n)^{p}} = \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}(2k+1)^{p}}$$

We now apply Proposition 3.1 and with the above notation,

$$t_n = \sum_{i=1}^{\infty} \frac{1}{i^{\alpha}} \left(\frac{1}{2i-1+n} + \frac{1}{2i+n} \right)^p,$$

and $L_{p,v,F}(H)^p \ge \inf_n [n^p - (n-1)^p] n^{\alpha} t_n.$

Since $n^p - (n-1)^p \ge n^{p-1}$, we have

$$L_{p,v,F}(H)^{p} \ge \inf_{n} n^{p+\alpha-1} \sum_{i=1}^{\infty} \frac{1}{i^{\alpha}} \left(\frac{1}{2i-1+n} + \frac{1}{2i+n} \right)^{p}$$
$$\ge 2^{p} \inf_{n} n^{p+\alpha-1} \sum_{i=1}^{\infty} \frac{1}{k^{\alpha}(2k+n)^{p}} = 2^{p} \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}(2k+1)^{p}}$$

This completes the proof of the theorem. \blacksquare

As mentioned in Theorem 3 in [7], we have

$$L_{p,v}(H)^p = \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}(k+1)^p}.$$

Therefore we have shown that $L_{p,v,F}(H) > L_{p,v}(H)$.

REFERENCES

- [1] G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc. 576 (1996), 1–130.
- [2] G. Bennett, Inequalities complimentary to Hardy, Quart. J. Math. Oxford (2), 49 (1998), 395-432.
- [3] G. Bennett, Lower bounds for matrices, Linear Algebra Appl. 82 (1986), 81–98.
- [4] G. Bennett, Lower bounds for matrices II, Canadian J. Math. 44 (1992), 54-74.
- [5] G. H. Hardy, J. E. Littlewood and G. Polya, *Inequalities*, 2nd ed., Cambridge University Press, Cambridge 2001.
- [6] G. J. O. Jameson, Norms and lower bounds of operators on the Lorentz sequence spaces d(w, 1), Illinois J. Math. 43 (1999), 79–99.
- [7] G. J. O. Jameson and R. Lashkaripour, Lower bounds of operators on weighted l_p spaces and Lorentz sequence spaces, Glasgow Mat. J. 42 (2000), 211–223.
- [8] G. J. O. Jameson and R. Lashkaripour, Norms of certain operators on weighted l_p spaces and Lorentz sequence spaces, J. Inequalities in Pure Appl. Math., Vol. 3, Issue 1, Article 6 (2002).
- [9] R. Lashkaripour, Weighted mean matrix on weighted sequence spaces, WSEAS Transaction on Mathematics, Issue 4, Vol. 3 (2004), 789–793.
- [10] R. Lashkaripour, Transpose of the weighted mean operators on weighted sequence spaces, WSEAS Transaction on Mathematics, Issue 4, Vol. 4 (2005), 380–385.
- [11] R. Lashkaripour and D. Foroutannia, Inequalities involving upper bounds for certain matrix operators, Proc. Indian Acad. Sci. (Math. Sci.), 116 (August 2006), 325–336.
- [12] R. Lyons, A lower bound for the Cesaro operator, Proc. Amer. Math. Soc. 86 (1982), 694.
- [13] J. Pečarić, I. Perić, R. Roki, On bounds for weighted norms for matrices and integral operators, Linear Algebra Appl. 326 (2001), 121–135.

(received 22.10.2006)

Dept. of Math., Sistan and Baluchestan University, Zahedan, Iran *E-mail*: lashkari@hamoon.usb.ac.ir, d_foroutan@math.com