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SOME CURVATURE CONDITIONS OF THE TYPE 2× 4 ON
THE SUBMANIFOLDS SATISFYING CHEN’S EQUALITY

Ana Hinić

Abstract. Submanifolds of the Euclidean spaces satisfying equality in the basic Chen’s
inequality have, as is known, many interesting properties. In this paper, we discuss on such
submanifolds the curvature conditions of the form E2 · F4 = 0, where E2 is the Ricci or the
Einstein curvature operator, F4 is any of the standard curvature operators R, Z, P, K, C, and E2

acts on F4 as a derivation.

1. Introduction

This paper is a continuation of the paper [21] by M. Petrović-Torgašev and the
present author. Hence, in this paper all definitions, denotations and the properties
from [21] are accepted. Only some necessary definitions and statements from the
mentioned previous paper are briefly repeated.

Let Mn be an n-dimensional submanifold of a Euclidean space Em of dimension
m = n + p (n ≥ 2, p ≥ 1), which we suppose to be ideal in the sense of Chen (see
[5]), thus which satisfies the so called the basic Chen’s equality.

Let R, S, G and τ be respectively the Riemann-Christoffel curvature tensor, the
Ricci tensor, the Einstein tensor and the scalar curvature of Mn. The corresponding
curvature operators in the tangent space T (Mn) are denoted by R(X, Y ) etc.

Besides, we shall consider the next, standard curvature operators on Mn: the
concircular curvature operator Z(X,Y ) (n ≥ 2), the projective curvature operator
P (X,Y ) (n ≥ 2), the Weyl conformal curvature operator C(X, Y ) (n ≥ 3), the
conharmonic curvature operator K(X, Y ) (n ≥ 3), each of them acting in the
tangent space Tx(Mn), where x is a fixed or variable point of Mn.

In the next simple proposition we collect the conditions for a manifold Mn

satisfying Chen’s equality to be flat with respect to different curvature operators.

Proposition. ([15]) If n ≥ 2, then Mn is flat if and only if n = 2 and σ = ab,
or n ≥ 3 and σ = a = b = 0.
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If n ≥ 3, then Mn is of constant curvature if and only if it is flat.
If n ≥ 3, then Mn is conformally flat if and only if n = 3, or n ≥ 4 and

σ = ab.
If n ≥ 3, then Mn if conharmonically flat if and only if it is flat, or n = 3 and

σ = ab + µ2.

In the sequel, for a manifold Mn, we shall consider the curvature conditions
of the form E · F = 0, where E = E2 is one of the operators S, G, F = F4 ∈ M =
{R, Z, P, C, K}, and E2 · F4 is defined as

(E2 · F4(X,Y ))U = E2(F4(X, Y )U)− F4(E2X, Y )U

− F4(X, E2Y )U − F4(X, Y )(E2U),

where X, Y, U ∈ Tx(Mn).
Recall that semisymmetric manifolds are defined by relation R·R = 0, meaning

that

(R(X, Y ) ·R)(U, V )W = R(X, Y )(R(U, V )W )−R(R(X, Y )U, V )W−
−R(U,R(X, Y )V )W −R(U, V )(R(X, Y )W ) = 0,

for all tangent vector fields X, Y, U, V, W on Mn.
The semisymmetric manifolds and similar curvature conditions have been in-

vestigated in many papers (see for instance, [1–3], [7–10], [14–15], [18–21], [23–34]
etc).

2. Main results

Throughout this section, we shall suppose that a submanifold Mn in an Eu-
clidean space Em (m = n + p, p ≥ 1, n ≥ 2), satisfies the basic Chen’s equality,
and we investigate in such submanifolds several curvature conditions of the form
E2 · F4 = 0, where E2 equals S or G, and F4 is one of the operators R, Z, P, K, C.
In general case the operators S ·F4 and G ·F4 do not coincide, so we have to discuss
the corresponding curvature conditions separately.

In the simplest case n = 2, we get that R = τ
2B, Z = P = 0, S = τ

2 I, G = 0,
so that G ·R = G · Z = G · P = S · Z = S · P = 0. But, as is easily seen, S ·R = 0
if and only if R1 = 0. So, the case n = 2 is mostly trivial and we shall usually
suppose that n ≥ 3.

If F is one of the operators R,Z, K, C, and (E2 · F )ijk = (E2 · F (ei, ej))ek

(i, j, k = 1, . . . , n), then, by linearity, it is easily seen that E2 · F = 0 if and only if
(E2 · F )ijk = 0 for any choice of indices i, j, k = 1, . . . , n. Moreover, if n ≥ 3, then
by a straightforward calculation, one can see that E2 ·F = 0 if and only if the next
system of equations holds: (E2 · F )121 = (E2 · F )122 = (E2 · F )131 = (E2 · F )133 =
(E2 · F )232 = (E2 · F )233 = (E2 · F )343 = 0. So we obtain a system of equations
which completely describes the curvature condition E2 · F = 0:

α F1 = β F1 = α F2 = β F3 = γ F2 = γ F3 = γ F0 = 0. (1)
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Note that the last equation exists only for n ≥ 4.

Theorem 1. If n ≥ 2, then S · R = 0 if and only if Mn is a totally geodesic
plane, or n = 2 and R1 = 0.

Proof. If Mn is a totally geodesic plane, or n = 2 and R1 = 0, then obviously
S ·R = 0.

Next, suppose that n ≥ 2 and S ·R = 0.
If n = 2 then α = −R1, and equation (S ·R)121 = 0 gives R1 = 0.
If n ≥ 4, then equation (S ·R)343 = 0 gives µ = 0, and consequently α = β =

−R1. Then by equation (S · R)121 = 0 we obtain R1 = 0, σ = ab = −a2, and
immediately σ = a = b = 0, thus Mn is a totally geodesic plane.

Finally, assume that n = 3. Then α = aµ − R1, β = b µ − R1, γ = µ2, and
equations (S · R)133 = 0 and (S · R)233 = 0 give aµ = b µ = 0, and consequently
α = −R1, β = −R1. But then equation (S ·R)121 = 0 also gives R1 = 0. If µ 6= 0,
then a = b = 0, a contradiction. If µ = 0, then a = −b, and σ = ab again gives
σ = a = b = 0, thus M3 is a totally geodesic plane.

In the proof of Theorem 2, we shall need the next lemma which is proved in
[21].

Lemma 1. If n ≥ 3 and Z1 = 0, then Mn is a totally geodesic plane.

Theorem 2. If n ≥ 3, then S · Z = 0 if and only if Mn is a totally geodesic
plane.

Proof. If Mn (n ≥ 3) is a totally geodesic plane, then obviously S · Z = 0.
Next, assume that n ≥ 3, S · Z = 0 and Mn is not totally geodesic. Then by

Lemma 1, Z1 6= 0, and by equations (S · Z)121 = 0 and (S · Z)122 = 0 we obtain
α = β = 0, so that a = ±b, σ = ab + (n − 2) aµ. If now µ = 0, then σ = −a2,
and immediately Mn is a totally geodesic plane, a contradiction. If a = b, then
σ = (2n− 3) a2, and by equation (S ·Z)133 = 0 we obtain γ Z2 = 0. But since then

γ = 4(n− 2) a2, Z2 =
2(n2 − 7n + 8)

n(n− 1)
a2,

we find that a = 0, thus σ = a = b = 0, and Mn is totally geodesic, again a
contradiction.

Theorem 3. If n ≥ 3, then the following conditions are equivalent: (1◦)
S · C = 0; (2◦) G · C = 0; (3◦) Mn is conformally flat.

Proof. The implications (3◦) =⇒ (1◦) and (3◦) =⇒ (2◦) are obvious.
If n = 3, then M3 is conformally flat, so in the sequel we can assume that

n ≥ 4.
(1◦) =⇒ (3◦). Assume that S · C = 0 and Mn is not conformally flat,

thus C1 6= 0 and C2 6= 0. Then by equations (S · C)121 = 0, (S · C)122 = 0 and
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(S · C)232 = 0, we get α = β = γ = 0, so Mn is Ricci flat. But then it must be
totally geodesic, which is a contradiction.

(2◦) =⇒ (3◦). Assume that n ≥ 4, G ·C = 0 and Mn is not conformally flat,
thus R1 6= 0. Then equations (G · C)121 = 0, (G · C)122 = 0 and (G · C)343 = 0
immediately give α0 = β0 = γ0 = 0. Hence, Mn is Einstein, which yields that Mn

is a totally geodesic plane, a contradiction.
In the proof of Theorem 4, we shall need another lemma which is also proved

in [21].

Lemma 2. If n ≥ 3 and K1 = K2 = 0, then Mn is conharmonically flat.

Theorem 4. If n ≥ 3, then the following conditions are equivalent: (1◦)
S ·K = 0; (2◦) G ·K = 0; (3◦) Mn is conharmonically flat.

Proof. The condition (3◦) obviously implies (1◦) and (2◦).
(1◦) =⇒ (3◦). Assume that n ≥ 3 and S ·K = 0.
If n ≥ 4, then by equation (S·K)343 = 0 we get µ = 0, hence K2 = −R1/(n−2),

α = β = −R1, while equation (S ·K)131 = 0 gives R1 = 0, so that Mn is a totally
geodesic plane.

Let n = 3. Then

K1 = K2 = −R1 + µ2, α = aµ−R1, β = b µ−R1, γ = µ2.

If K1 6= 0, then by the first, second and the fifth equation we get α = β = γ, and
hence µ = 0, R1 = 0. But this means that M3 is totally geodesic. If K1 = 0, then
by Lemma 2, M3 is conharmonically flat.

(2◦) =⇒ (3◦). Suppose that G · K = 0. If K2 6= 0, then by equations
(G · K)131 = 0, (G · K)232 = 0, (G · K)133 = 0, we get α0 = β0 = γ0 = 0, so
that Mn is Einstein. But then it must be totally geodesic, which contradicts to
K2 6= 0. Hence, K2 = 0, i.e. R1 = (n − 2)µ2. If in addition, K1 = 0, then
Mn is conharmonically flat by Lemma 2. Assuming that K1 6= 0, by equations
(G ·K)121 = 0, (G ·K)122 = 0, we find α0 = β0 = 0, thus

(n− 2) aµ−R1 = (n− 2) b µ−R1 =
τ

n
. (2)

From the first equation in (2) we get a = ±b. If µ = 0, then R1 = 0, and Mn is
totally geodesic, which contradicts to K1 6= 0. Hence µ 6= 0, which implies a = b.
Then R1 = −2(n−2) a2, and equation (2) easily get µ = 0, which is a contradiction
again.

This completes the proof.

Theorem 5. If n ≥ 3, then following conditions are equivalent: (1◦) G ·R = 0;
(2◦) G · Z = 0; (3◦) Mn is a totally geodesic plane.

Proof. The condition (3◦) obviously implies (1◦) and (2◦).
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(1◦) =⇒ (3◦). Assume that n ≥ 3 and G ·R = 0.

If µ = 0, then R1 = σ + a2, τ = −2R1, α0 = −n− 2
n

R1, so that equation

(G · R)121 = 0 immediately gives σ = a = 0. Then b = 0 too, so Mn is a totally
geodesic plane. Next, assume that µ 6= 0, and Mn is not totally geodesic. Note
that γ0 can be written as

γ0 =
2σ + (n− 2) a2 + (n− 2) b2 + 2(n− 3) ab

n
.

Since σ ≥ 0, and the expression (n − 2) a2 + (n − 2) b2 + 2(n − 3) ab ≥ 0 (n ≥ 3),
and equals zero if and only if a = b = 0, we have that γ0 > 0 since Mn is not
totally geodesic. Now, using the equations (G · R)133 = 0, (G · R)233 = 0, we
find a µ = b µ = 0, hence by adding (a + b) µ = µ2 = 0, thus µ = 0, which is a
contradiction.

(2◦) =⇒ (3◦). Now assume that n ≥ 3, G · Z = 0, and Mn is not totally
geodesic. Then γ0 > 0, and using the equations (G · Z)133 = 0, (G · Z)233 = 0, we
find that Z2 = Z3 = 0. Hence, a = ±b. If µ = 0, then τ = −2R1 = −2(σ + a2),

α0 = −n− 2
n

R1, Z1 =
(n− 2)(n + 1)

n(n− 1)
R1,

and by equation (G · Z)121 = 0 we get R1 = 0, thus Z1 = 0. But this by Lemma 1
contradicts to assumption that Mn is not totally geodesic. If a = b 6= 0, then

α0 = −(n− 2)(n− 3) a2, σ = (n2 − 5n + 5) a2,

R1 = (n− 1)(n− 4) a2, τ = 2n(n− 1) a2,

Z1 = (n− 2)(n− 3) a2.

But then equation (G · Z)121 = 0 gives α0Z1 = 0, thus (n− 3) a = 0. Since a 6= 0,
we then get n = 3, Z1 = 0, and Lemma 1 gives that M3 is totally geodesic, again
a contradiction.

This completes the proof.
Further, we shall consider conditions of the form E2 · P = 0, where E2 equals

S or G. If n = 2 then P = 0 so that S · P = G · P = 0.
If n ≥ 3, then by a straightforward calculation, it can be seen that E2 ·P = 0,

thus (E2 ·P )ijk = (E2 ·P (ei, ej))ek = 0 for any choice of indices i, j, k = 1, . . . , n if
and only if the following conditions hold: (E2 ·P )121 = (E2 ·P )122 = (E2 ·P )131 =
(E2 · P )133 = (E2 · P )232 = (E2 · P )233 = (E2 · P )343 = 0. Hence, E2 · P = 0 if and
only if the following system of equations holds:

{
α P1 = 0, β P̃1 = 0, α P2 = 0, γ P̃2 = 0,

β P3 = 0, γ P̃3 = 0, γ P0 = 0 (n ≥ 4).
(3)

Discussing this system in the particular cases E2 = S and E2 = G, we get the next
two theorems.
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Theorem 6. If n ≥ 3, then S · P = 0 if and only if one of the following cases
occurs: (1◦) Mn is totally geodesic; (2◦) n = 3, a = b 6= 0 and σ = 3a2.

Proof. It is easy to prove that S · P = 0 if for instance n = 3, a = b 6= 0 and
σ = 3 a2.

Conversely, assume that n ≥ 3 and S · P = 0.
If n ≥ 4, then equation γ P0 = 0 gives that µ = 0, so that equation α P1 = 0

implies R1 = 0, and Mn is a totally geodesic plane.
Next, suppose that n = 3. Then the first and the second equation give that

R1 = ±aµ = ±b µ, and consequently a = ±b. If µ = 0, then R1 = 0, and Mn is
totally geodesic. If a = b, then the first equation implies (σ + a2)(σ − 3a2) = 0. If
σ = a = 0, then M3 is totally geodesic. Otherwise, we have σ = 3a2, so we find
the case (2◦).

Theorem 7. If n ≥ 3, then G · P = 0 if and only if Mn is a totally geodesic
plane.

Proof. Assume that n ≥ 3, G · P = 0 and Mn is not totally geodesic.
If n ≥ 4, then γ0 > 0, and the seventh equation gives µ = 0. Then τ = −2R1,

α0 = −n− 2
n

R1, while the first equation gives R1 = 0, which contradicts to Mn is
not totally geodesic.

Finally, assume that n = 3. From the fourth and the sixth equations, we
obviously get a = ±b. If µ = 0, then the first equation gives R1 = 0, contradicting
to M3 is not totally geodesic. If a = b, then α0 = −(σ + a2)/3, R1 + aµ = σ + a2,
and the first equation again gives σ = a = 0, thus again the same contradiction.

This ends the proof.
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