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ON QUASI ALMOST LACUNARY STRONG CONVERGENCE
DIFFERENCE SEQUENCE SPACES DEFINED BY

A SEQUENCE OF MODULI

Vakeel A. Khan and Q. M. Danish Lohani

Abstract. The idea of difference sequence sets, X(4) = {x = (xk) : 4x ∈ X }, where
X = l∞, c or c0 was introduced by Kizmaz [3], and then this subject has been studied and
generalized by various mathematicians. In this article we define quasi almost 4m-Lacunary
strongly P-convergent sequences defined by sequence of moduli and give inclusion relations on
these sequence spaces.

1. Preliminaries

The difference sequence space X(4) was introduced by Kizmaz [3] as follows

X(4) = {x = (xk) ∈ ω : (4xk) ∈ X } for X = l∞, c or c0,

where 4xk = (xk − xk+1) for all k ∈ N.
The difference sequence spaces were generalized by Et and Colak [1] as follows

X(4m) = {x = (xk) ∈ ω : 4mx = (4mxk) ∈ X } for X = l∞, c or c0,

where 4mxk = (4m−1xk −4m−1xk+1).
A sequence of positive integers θ = (kr) is called “lacunary” if k0 = 0, 0 <

kr < kr+1 and hr = kr − kr−1 → ∞ as r → ∞. The intervals determined by θ
will be denoted by Ir = (kr−1, kr) and qr = kr

kr−1
. The space of lacunary strongly

convergent sequence Lθ was defined by Freedman et al. [2] as:

Lθ = {x = (xk) : lim
r

1
hr

∑
k∈Ir

|xk − L| = 0 for some L }.

The double lacunary sequence was defined by E. Savas and R. F. Patterson
[11] as follows: The double sequence θr,s = {(kr, ls)} is called double lacunary if
there exists two increasing sequences of integers such that

k0 = 0, hr = kr − kr−1 →∞ as r →∞
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and
l0 = 0, h̄s = ls − ls−1 →∞ as s →∞.

Let kr,s = krls, hr,s = hrh̄s and θr,s is determined by

Ir, s = { (k, l) : kr−1 < k ≤ kr and ls−1 < l ≤ ls},
qr = kr

kr−1
, q̄s = ls

ls−1
and qr,s = qr q̄s.

Definition 1.1. A function f : [0,∞) → [0,∞) is called modular if
1. f(t) = 0 if and only if t = 0,

2. f(t + u) ≤ f(t) + f(u) for all t, u ≥ 0,

3. f is increasing, and
4. f is continuous from the right at 0.

Let X be a sequence space. Then the sequence space X(f) is defined as

X(f) = {x = (xk) : (f(|xk|)) ∈ X }
for a modulus f ([6],[8],[10]). Kolk [4], [5] gave an extension of X(f) by considering
a sequence of moduli F = (fk) i.e.

X(F ) = {x = (xk) : (fk(|xk|)) ∈ X }.
A double sequence x = (xk,l) has Pringsheim limit L (denoted by P -limx = L)
provided that given ε > 0 there exists N ∈ N such that |xk,l − L| < ε whenever
k, l > N [9]. We shall denote it briefly as “P-convergent”.

Recently Moricz and Rhoades [7] defined almost P-convergent sequences as
follows: A double sequence x = (xk,l) of real numbers is called almost P -convergent
to a limit L if

P - lim
p,q→∞

sup
m,n≥0

1
pq

m+p−1∑
k=m

n+q−1∑
l=n

|xk,l − L| = 0.

In this paper we introduce the following definition.
A double sequence x = (xk,l) of elements of the real vector space w (the

space of bounded sequences) in a real normed space X is said to be quasi almost
P-convergent to a limit L if

∥∥∥∥P - lim
p,q→∞

sup
m,n≥0

1
pq

m+p−1∑
k=m

n+q−1∑
l=n

(xk,l − L)
∥∥∥∥

X

= 0.

Let us denote the above set of sequences as t̄2.
For a sequence F = (fk) of moduli, we define the following sequence spaces:

[Lθr,s ,4m, F, P ] = {x = (xk,l) : P - lim
r,s

1
hr,s

∑
(k,l)∈Ir,s

[fk(‖4mxk+m,l+n−L‖)]pk,l = 0,

uniformly in m and n for some L }.
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[Lθr,s
,4m, F, P ]0 = {x = (xk,l) : P - lim

r,s

1
hr,s

∑
(k,l)∈Ir,s

[fk(‖4mxk+m,l+n‖)]pk,l = 0,

uniformly in m and n for some l }.

We shall denote [Lθr,s
,4m, F, P ] and [Lθr,s

,4m, F, P ]0 as [Lθr,s
,4m, F ] and

[Lθr,s ,4m, F ]0, respectively when pk,l = 1 for all k and l. If x is in [Lθr,s ,4m, F ],
we shall say that x is quasi almost lacunary strongly P-convergent with respect to
the sequence of moduli F = (fk). Also note that if F (x) = x, pk,l = 1 for all k and
l then [Lθr,s

,4m, F, P ] = [Lθr,s
,4m] and [Lθr,s

,4m, F, P ]0 = [L0
θr,s

,4m] which are
defined as follows:

[Lθr,s
,4m] = {x = (xk,l) : P - lim

r,s

1
hr,s

∑
(k,l)∈Ir,s

‖4mxk+m,l+n − L‖ = 0,

uniformly in m and n for some L }.

and

[L0
θr,s

,4m] = {x = (xk,l) : P - lim
r,s

1
hr,s

∑
(k,l)∈Ir,s

‖4mxk+m,l+n‖ = 0,

uniformly in m and n }.

Again note that if pk,l = 1 for all k and l then [Lθr,s ,4m, F, P ] = [Lθr,s ,4m, F ]
and [Lθr,s ,4m, F, P ]0 = [Lθr,s ,4m, F ]0.

We define

[Lθr,s ,4m, F ] = {x = (xk,l) : P - lim
r,s

1
hr,s

∑
(k,l)∈Ir,s

[fk(‖4mxk+m,l+n − L‖)] = 0,

uniformly in m and n for some L },

and

[Lθr,s ,4m, F ]0 = {x = (xk,l) : P - lim
r,s

1
hr,s

∑
(k,l)∈Ir,s

[fk(‖4mxk+m,l+n‖)] = 0,

uniformly in m and n }.

Now we extend quasi almost convergent double sequences to a sequence of
moduli as follows: Let F = (fk) be a sequence of moduli and P = (pk,l) be
any factorable sequence of strictly positive real numbers, we define the following
sequence space:

[t̄2,4m, F, P ] = {x = (xk,l) : P - lim
pq

1
p, q

p,q∑
k,l=1,1

[fk(‖4mxk+m,l+n − L‖)]pk,l = 0,

uniformly in m and n for some L }.

If we take F (x) = x, pk,l = 1 for all k and l, then [t̄2,4m, F, P ] = [t̄2,4m].
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2. Main results

Theorem 1. Let θr,s = {kr, ls} be a double lacunary sequence with lim infr qr >
1, and lim infs q̄s > 1. Then for any sequence of moduli F = (fk), [t̄2,4m, F, P ] ⊂
[Lθr,s ,4m, F, P ].

Proof. We need to show that [t̄2,4m, F, P ]0 ⊂ [Lθr,s ,4m, F, P ]0. The general
inclusion follows by linearity. Suppose lim infr qr > 1, and lim infs q̄s > 1; then
there exists δ > 0 such that qr > 1 + δ. This implies hr

kr
≤ δ

δ+1 and hs

ls
≤ δ

δ+1 .
Then for x ∈ [t̄2,4m, F, P ]0, we can write for each m and n

Ar,s =
1

hr,s

∑
(k,l)∈Ir,s

[fk(‖4mxk+m,l+n‖)]pk,l =
1

hr,s

kr∑
k=1

ls∑
l=1

[fk(‖4mxk+m,l+n‖)]pk,l

=
1

hr,s

kr−1∑
k=1

ls−1∑
l=1

[fk(‖4mxk+m,l+n‖)]pk,l

=
1

hr,s

kr∑
k=kr−1+1

ls−1∑
l=1

[fk(‖4mxk+m,l+n‖)]pk,l

=
1

hr,s

ls∑
l=ls−1+1

kr−1∑
k=1

[fk(‖4mxk+m,l+n‖)]pk,l

=
krks

hr,s

(
1

krls

kr∑
k=l

ls∑
l=1

[fk(‖4mxk+m,l+n‖)]pk,l

)

=
kr−1ls−1

hr,s

(
1

kr−1ls−1

kr−1∑
k=l

ls−1∑
l=1

[fk(‖4mxk+m,l+n‖)]pk,l

)

=
1
hr

kr∑
k=kr−1+1

ls−1

hs

1
ls−1

ls−1∑
l=l

ls−1∑
l=1

[fk(‖4mxk+m,l+n‖)]pk,l

=
1
hs

ls∑
l=ls−1+1

kr−1

hr

1
kr−1

kr−1∑
k=l

kr−1∑
k=1

[fk(‖4mxk+m,l+n‖)]pk,l .

Since x ∈ [t̄2,4m, F, P ] the last two terms tends to zero uniformly in m,n in the
Pringsheim sense, thus for each m and n

Ar,s =
krks

hr,s

(
1

krls

kr∑
k=1

ls∑
l=1

[fk(‖4mxk+m,l+n‖)]pk,l

)

=
kr−1ls−1

hr,s
(

1
kr−1ls−1

kr−1∑
k=1

ls−1∑
l=1

[fk(‖4mxk+m,l+n‖)]pk,l) + o(1).

Since hrs = krls − kr−1ls−1 we are granted for each m and n the following:

krls
hrs

≤ 1 + δ

δ
and

kr−1ls−1

hrs
≤ 1

δ
.

The terms
1

krls

kr∑
k=1

ls∑
l=1

[fk(‖4mxk+m,l+n‖)]pk,l
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and
1

kr−1ls−1

kr−1∑
k=1

ls−1∑
l=1

[fk(‖4mxk+m,l+n‖)]pk,l

are both Pringsheim null sequences for all m and n. Thus Ars is Pringsheim.

Theorem 2. Let θr,s = {k, l} be a double lacunary sequence with lim supr qr <
∞, and lim sups q̄s < ∞. Then for any sequence of moduli F = (fk),
[Lθr,s ,4m, F, P ] ⊂ [t̄2,4m, F, P ].

Proof. Since lim supr qr < ∞, and lim sups q̄s < ∞ there exists G > 0 such
that qr < G and q̄s < G for all r and s. Let x ∈ [Lθr,s

,4m, F, P ] and ε > 0. Also
there exist r0 > 0 and s0 > 0 such that for every i ≥ r0 and j ≥ s0 and m and n,

D′
i,j =

1
hij

∑
(k,l)∈Ii,j

[fk(‖4mxk+m,l+n‖)]pk,l < ε.

Let F ′ = max{D′
i,j : 1 ≤ i ≤ r0 and 1 ≤ j ≤ s0} and p and q be such that

kr−1 < p ≤ kr and ls−1 < q ≤ ls. Thus we obtain the following:

1
pq

p,q∑
k,l=1,1

[fk(‖4mxk+m,l+n‖)]pk,l

≤ 1
kr−1ls−1

krls∑
k,l=1,1

[fk(‖4mxk+m,l+n‖)]pk,l

≤ 1
kr−1ls−1

r,s∑
t,u=1,1

(
∑

k,l∈It,u

[fk(‖4mxk+m,l+n‖)]pk,l

)

=
1

kr−1ls−1

r0,s0∑
t,u=1,1

ht,uD′
t,u +

1
kr−1ls−1

∑
(r0<t≤r)∪(s0<u≤s)

ht,uD′
t,u

≤ F ′

kr−1ls−1

r0,s0∑
t,u=1,1

ht,u +
1

kr−1ls−1

∑
(r0<t≤r)∪(s0<u≤s)

ht,uD′
t,u

≤ F ′kr0 ls0r0s0

kr−1ls−1
+ ( sup

t≥r0∪u≥s0

D′
t,u)

1
kr−1ls−1

∑
(r0<t≤r)∪(s0<u≤s)

ht,u

≤ F ′kr0 ls0r0s0

kr−1ls−1
+

1
kr−1ls−1

ε
∑

(r0<t≤r)∪(s0<u≤s)

ht,u

≤ F ′kr0 ls0r0s0

kr−1ls−1
+ εH2.

Since kr and ls both approach infinity as both p and q approach infinity, it follows
that

1
pq

p,q∑

k,l=1,1

[fk(‖4mxk+m,l+n‖)]pk,l → 0, uniformly in m and n.

Therefore x ∈ [t̄2,4m, F, P ].
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As a consequence we obtain

Theorem 3. Let θr,s = {k, l} be a double lacunary sequence with lim infrs qrs ≤
lim suprs qrs < ∞. Then for any sequence of moduli F = (fk), [Lθr,s

,4m, F, P ] =
[t̄2,4m, F, P ].
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