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UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING
A SMALL FUNCTION WITH THEIR DERIVATIVES

Abhijit Banerjee

Abstract. Using the notion of weakly weighted sharing we prove two uniqueness theorems
concerning meromorphic functions sharing a small function with their derivatives, the first of which
will improve all the results recently obtained by Lin-Lin [7] and thus provide a better answer to
the questions posed by Yu [11] in this regard. Also with the aid of a recently introduced sharing
notion in [1] known as relaxed weighted sharing we supplement one recent result of Lin-Lin [7].

1. Introduction, definitions and results

Let f and g be two non constant meromorphic functions defined in the open
complex plane C. A meromorphic function a is said to be a small function of f
provided that T (r, a) = S(r, f), that is T (r, a) = o(T (r, f)) as r →∞, outside of a
possible exceptional set of finite linear measure. We denote by S(f) the set of all
small functions of f .

If for some a ∈ S(f) ∩ S(g), f − a and g − a have the same set of zeros with
the same multiplicities, we say that f and g share a CM (counting multiplicities),
and if we do not consider the multiplicities then f and g are said to share a IM
(ignoring multiplicities).

We denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r)
denotes any quantity satisfying S(r) = o(T (r)) as r → ∞, outside of a possible
exceptional set of finite linear measure.

Let NE(r, a; f, g) (NE(r, a; f, g)) be the counting function (reduced counting
function) of all common zeros of f − a and g − a with the same multiplicities and
N0(r, a; f, g) (N0(r, a; f, g)) be the counting function (reduced counting function)
of all common zeros of f − a and g − a ignoring multiplicities.

If
N(r, a; f) + N(r, a; g)− 2NE(r, a; f, g) = S(r, f) + S(r, g),
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then we say that f and g share a “CM”. On the other hand if

N(r, a; f) + N(r, a; g)− 2N0(r, a; f, g) = S(r, f) + S(r, g),

then we say that f and g share a “IM”.
In 2003 Yu [11] considered the uniqueness problem of an entire or meromorphic

function when it shares a small function with its derivative. Yu proved the following
two theorems.

Theorem A. [11] Let f be a non-constant entire function, a ∈ S(f) and
a 6≡ 0,∞. If f − a and f (k) − a share 0 CM and δ(0; f) > 3

4 then f ≡ f (k).

Theorem B. [11] Let f be a non-constant non entire meromorphic function,
a ∈ S(f) and a 6≡ 0,∞. If

i) f and a have no common poles,
ii) f − a and f (k) − a share the value 0 CM,
iii) 4δ(0; f) + 2(8 + k)Θ(∞; f) > 19 + 2k,
then f ≡ f (k) where k is a positive integer.

In the same paper Yu [11] posed the following open questions.
(i) Can a CM shared be replaced by an IM shared value in Theorem A?
(ii) Can the condition δ(0; f) > 3

4 of Theorem A be further relaxed?
(iii) Can the condition (iii) in Theorem B be further relaxed?
(iv) Can in general the condition (i) of Theorem B be dropped?

In 2004, P.Liu and Y.X.Gu [8] provided affirmative answers to the last three
questions of Yu [11] and obtained the following results.

Theorem C. [8] Let k ≥ 1 and let f be a non-constant meromorphic function,
a ∈ S(f) and a 6≡ 0,∞. If f − a and f (k) − a share the value 0 CM and f (k) and
a do not have any common poles of same multiplicity and 2δ(0; f) + 4Θ(∞; f) > 5
then f ≡ f (k).

Theorem D. [8] Let k ≥ 1 and let f be a non-constant entire function, a ∈
S(f) and a 6≡ 0,∞. If f − a and f (k) − a share the value 0 CM and δ(0; f) > 1

2

then f ≡ f (k).
To state the next results we require the following definition known as weighted

sharing of values which measure how close a shared value is to be shared IM or to
be shared CM.

Definition 1.1. [3,4] Let k be a nonnegative integer or infinity. For a ∈
C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z0 is an
a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g with
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multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and only
if it is an a-point of g with multiplicity n (> k), where m is not necessarily equal
to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

If a is a small function we define that f and g share (a, l) which means f and
g share a with weight l if f − a and g − a share (0, l).

Though we use the standard notations and definitions of the value distribution
theory available in [2], we explain some definitions and notations which are used in
the paper.

Definition 1.2. [10] For a ∈ C ∪ {∞} and a positive integer p we denote
by Np(r, a; f) the sum N(r, a; f) + N(r, a; f |≥ 2) + · · · + N(r, a; f |≥ p). Clearly
N1(r, a; f) = N(r, a; f).

Definition 1.3. [6] For a positive integer p and a ∈ C ∪ {∞} we put

δp(a; f) = 1− lim sup
r→∞

Np(r, a; f)
T (r, f)

Clearly 0 ≤ δ(a; f) ≤ δp(a; f) ≤ δp−1(a; f) ≤ · · · ≤ δ2(a; f) ≤ δ1(a; f) = Θ(a; f).

In 2004 Lahiri and Sarkar [6] gave some affirmative answers to the first three
questions imposing some restrictions on the zeros and poles of a. But they did not
provide any definite answer corresponding to the question (i) of Yu as mentioned
above. Rather they confined their investigations of sharing of small function up to
weight 2.

Recently Lin and Lin [7] introduced the notion of weakly weighted sharing
which we shall define next.

Definition 1.4. [7] Let f , g share a “IM” for a ∈ S(f) ∩ S(g) and k be a
positive integer or ∞.

(i) N
E

(r, a; f, g |≤ k) denotes the reduced counting function of those a-points of
f whose multiplicities are equal to the corresponding a-points of g, both of
their multiplicities are not greater than k.

(ii) N
0
(r, a; f, g |> k) denotes the reduced counting function of those a-points of

f which are a-points of g, both of their multiplicities are not less than k.

Definition 1.5. [7] For a ∈ S(f) ∩ S(g), if k be a positive integer or ∞ and
N(r, a; f |≤ k)−N

E
(r, a; f, g |≤ k) = S(r, f), N(r, a; g |≤ k)−N

E
(r, a; f, g |≤ k) =

S(r, g), N(r, a; f |≥ k + 1)−N
0
(r, a; f, g |≥ k + 1) = S(r, f), N(r, a; g |≥ k + 1)−

N
0
(r, a; f, g |≥ k + 1) = S(r, g) or if k = 0 and N(r, a; f)−N0(r, a; f, g) = S(r, f),
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N(r, a; g)−N0(r, a; f, g) = S(r, g), then we say f , g weakly share a with weight k.
Here we write f , g share “(a, k)” to mean that f , g weakly share a with weight k.

Obviously if f , g share “(a, k)”, then f , g share “(a, p)” for any integer p,
0 ≤ p < k. Also we note that f , g share a “IM” or “CM” if and only if f , g share
“(a, 0)” or “(a,∞)” respectively.

With the notion of weakly weighted sharing improving the results of Yu [11]
and Liu-Gu [8] recently Lin and Lin [7] proved the following results.

Theorem E. [7] Let f be a non-constant meromorphic function and k(≥ 1),
l(≥ 0) be integers. Also let a ∈ S(f) and a 6≡ 0,∞. Suppose that f −a and f (k)−a
share “(0, l)”. If 2 ≤ l ≤ ∞ and

4 Θ(∞, f) + 2 δ2+k(0; f) > 5 (1.1)

or l=1 and
9 + k

2
Θ(∞, f) +

5
2

δ2+k(0; f) > 6 +
k

2
(1.2)

or l = 0 and
(7 + 2k) Θ(∞, f) + 5 δ2+k(0; f) > 11 + 2k (1.3)

then f ≡ f (k).

In the present paper we shall improve Theorem E by replacing all the conditions
(1.1)–(1.3) by three weaker ones and thus provide a better answer to the first
question of Yu than that of Lin and Lin.

Following theorem is one of the main results of the paper.

Theorem 1.1. Let f be a non-constant meromorphic function and k(≥ 1),
l(≥ 0) be integers a ∈ S(f) and a(z) 6≡ 0,∞. Suppose that f − a and f (k)− a share
“(0, l)”. If 2 ≤ l ≤ ∞ and

3Θ(∞; f) + δ2(0; f) + δ2+k(0; f) > 4 (1.4)

or l = 1 and(
7
2

+
k

2

)
Θ(∞; f) + δ2(0; f) +

1
2
δ1+k(0; f) + δ2+k(0; f) > 5 +

k

2
(1.5)

or l = 0 and

(6 + 2k) Θ(∞; f) + 2 Θ(0; f) + δ2(0; f) + δ1+k(0; f) + δ2+k(0; f) > 10 + 2k (1.6)

then f ≡ f (k).

From Theorem 1.1 we immediately have the following corollary.

Corollary 1.1. Let f be a non-constant entire function and k(≥ 1), l(≥ 0)
be integers. Also let a ∈ S(f) and a 6≡ 0,∞. Suppose that f − a and f (k) − a share
“(0, l)”. If 2 ≤ l ≤ ∞ and

δ2+k(0; f) >
1
2
− 1

2
[δ2(0; f)− δ2+k(0; f)] (1.7)
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or l = 1 and

δ2+k(0; f) >
3
5
− 1

5
[2δ2(0; f) + δ1+k(0; f)− 3δ2+k(0; f)] (1.8)

or l = 0 and

δ2+k(0; f) >
4
5
− 1

5
[2Θ(0; f) + δ2(0; f) + δ1+k(0; f)− 4δ2+k(0; f)] (1.9)

then f ≡ f (k).

Conditions (1.7)–(1.9) weaken all the conditions of Theorem E corresponding
to entire functions. Also conditions (1.7) and (1.9) provides respectively the better
answers corresponding to the second and first question of Yu [11] than that given
by Lin and Lin [7].

Now it is clear from Definition 1.1 and Definition 1.5 that weighted sharing
and weakly weighted sharing are respectively scalings between IM, CM and “IM”,
“CM”. Also weakly weighted sharing includes the definition of weighted sharing.

Recently in [1] another sharing notion known as relaxed weighted sharing has
been introduced which is also a scaling between “IM” and “CM” but weaker than
weakly weighted sharing and hence include the same definition. We first require
the following notation.

Definition 1.6. [1] For a ∈ S(f) ∩ S(g) we denote by N(r, a; f |= p; g |= q)
the reduced counting function of common zeros of f−a and g−a with multiplicities
p and q respectively.

We are now at a stage to discuss about the definition of relaxed weighted
sharing.

Definition 1.7. [1] For a ∈ S(f) ∩ S(g) let f , g share a “IM”. Also let k be
a positive integer or ∞. If

∑

p,q≤k
p 6=q

N(r, a; f |= p; g |= q) = S(r)

then we say f , g share a with weight k in a relaxed manner. Here we write f , g
share (a, k)∗ to mean that f , g share a with weight k in a relaxed manner.

Obviously if f , g share (a, k)∗, then f , g share (a, p)∗ for any integer p, 1 ≤
p < k. Also we note that f , g share “(a, 0)” or “(a,∞)” if and only if f , g share
(a, 1)∗ or (a,∞)∗ respectively. We note that f , g share “(a, k)” means they share
(a, k)∗ for k ≥ 1 but not conversely. Also from the definition of relaxed weighted
sharing it is clear that for finite k f , g share (a, k)∗ actually means they share a
“IM” with some restrictions imposed on the common zeros of f − a and g − a up
to multiplicity k. In particular if k = 2 the restrictions are minimum. In the next
theorem we will show that if in Theorem 1.1 f and g share (a, 2)∗ instead of “(a, 0)”
the condition (1.6) can further be weakened. Following theorem is another main
result of the paper.
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Theorem 1.2. Let f be a non-constant meromorphic function and k(≥ 1) be
an integer, a ∈ S(f) and a 6≡ 0,∞. Suppose that f − a and f (k) − a share (0, 2)∗.
If

(4 + k) Θ(∞; f) + Θ(0; f) + δ2(0; f) + δ2+k(0; f) > 6 + k (1.10)

then f ≡ f (k).

We now give some more definitions.

Definition 1.8. [6] Let p be a positive integer and a ∈ C ∪ {∞}.
(i) N(r, a; f |≥ p) (N(r, a; f |≥ p)) denotes the counting function (reduced count-

ing function) of those a-points of f whose multiplicities are not less than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p)) denotes the counting function (reduced count-
ing function) of those a-points of f whose multiplicities are not greater than p.

Definition 1.9. [5] Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g = b) the
counting function of those a-points of f , counted according to multiplicity, which
are b-points of g.

Definition 1.10. [5] Let a, b ∈ C ∪{∞}. We denote by N(r, a; f | g 6= b) the
counting function of those a-points of f , counted according to multiplicity, which
are not the b-points of g.

Definition 1.11. Let a ∈ C ∪ {∞} and m, n be two positive integers. We
denote by N(r, a; f | m ≤ f ≤ n) (N(r, a; f | m ≤ f ≤ n)) the counting function
(reduced counting function) of those a-points of f whose multiplicities are between
m and n.

Definition 1.12. Let f and g be two non-constant meromorphic functions
such that f and g share the value 1 “IM”. Let z0 be a 1-point of f with multiplicity
p, a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting function
of those 1-points of f and g where p > q and by N

(2

E (r, 1; f) the counting function
of those 1-points of f and g where p = q ≥ 2, each point in these counting functions
is counted only once. In the same way we can define NL(r, 1; g), N

(2

E (r, 1; g).

Definition 1.13. Let k be a positive integer and f , g be two non-constant
meromorphic functions such that f and g share the value 1 “IM”. Let z0 be a zero
of f(z)− 1 of multiplicity p and a zero of g(z)− 1 of multiplicity q. We denote by
Nf≥k+1(r, 1; f | g = m) the reduced counting functions of those 1-points of f and
g for which p ≥ k + 1 and q = m.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let F , G be two non-constant meromorphic functions. Henceforth we shall denote
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by H the following function.

H =

(
F
′′

F ′ − 2F
′

F − 1

)
−

(
G
′′

G′ − 2G
′

G− 1

)
. (2.1)

Lemma 2.1. If F , G be share (1, 1)∗ and H 6≡ 0. Then

NE(r, 1; F, G |≤ 1) ≤ N(r, 0; H) ≤ N(r,∞;H) + S(r, F ) + S(r,G).

Proof. Since F , G share (1, 1)∗ it follows that if z0 be a common simple 1-point
of F and G, then in some neighborhoods of z0 we have H = (z − z0)α(z), where
α(z) is analytic at z0. Hence by the first fundamental theorem and Milloux theorem
[2, p. 55] we get

NE(r, 1; F, G |≤ 1) ≤ N(r, 0; H) ≤ N(r,∞;H) + S(r, F ) + S(r,G).

Lemma 2.2. If for two positive integers p, and k, Np(r, 0; f (k) | f 6= 0) denotes
the counting function of those zeros of of f (k) which are not the zeros of f , where a
zero of f (k) with multiplicity m is counted m times if m ≤ p and p times if m > p
then

Np(r, 0; f (k) | f 6= 0) ≤ Nk(r, 0; f)+kN(r,∞; f)−
∞∑

m=p+1
N

(
r, 0;

f (k)

f
|≥ m

)
+S(r, f).

Proof. By the first fundamental theorem and Milloux theorem [2, p. 55] we get

N(r, 0; f (k) | f 6= 0) = N(r, 0;
f (k)

f
) ≤ N(r,∞;

f (k)

f
) + m(r,

f (k)

f
) + O(1)

= N(r, 0; f |< k) + kN(r, 0; f |≥ k) + kN(r,∞; f) + S(r, f)

= Nk(r, 0; f) + kN(r,∞; f) + S(r, f).

Now

Np(r, 0;
f (k)

f
) +

∞∑
m=p+1

N(r, 0;
f (k)

f
|≥ m) = N(r, 0; f (k) | f 6= 0)

≤ Nk(r, 0; f) + kN(r,∞; f) + S(r, f).

The lemma follows from above.

Lemma 2.3. For two positive integers p and k

Np(r, 0; f (k)) ≤ Np+k(r, 0; f)+kN(r,∞; f)−
∞∑

m=p+1
N

(
r, 0;

f (k)

f
|≥ m

)
+S(r, f).

Proof. We note that

Np(r, 0; f (k) | f = 0) = N(r, 0; f | k ≤ f ≤ k + p− 1)

− kN(r, 0; f | k ≤ f ≤ k + p− 1) + pN(r, 0; f |≥ k + p).
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Since using Lemma 2.2 we get

Np(r, 0; f (k)) = Np(r, 0;
f (k)

f
) + Np(r, 0; f (k) | f = 0)

= Nk(r, 0; f) + kN(r,∞; f)−
∞∑

m=p+1
N(r, 0;

f (k)

f
|≥ m)

+ Np(r, 0; f (k) | f = 0) + S(r, f),

the lemma follows.

Lemma 2.4. For two positive integers p and k

Np(r, 0; f (k)) ≤ T (r, f (k))− T (r, f) + Np+k(r, 0; f)−
∞∑

m=p+1
N

(
r, 0;

f (k)

f
|≥ m

)
.

Proof. Since

N(r, 0; f (k)) ≤ T (r, f (k))− T (r, f) + N(r, 0; f) + S(r, f),

it follows that

Np(r, 0; f (k)) ≤ T (r, f (k))−T (r, f)+N(r, 0; f)−
∞∑

m=p+1
N

(
r, 0; f (k) |≥ m

)
+S(r, f).

But
∞∑

m=p+1
N

(
r, 0; f (k) |≥ m

)
=

∞∑
m=p+1

N
(
r, 0; f (k) | f = 0 |≥ m

)

+
∞∑

m=p+1
N(r, 0;

f (k)

f
|≥ m),

where by N(r, 0; f (k) | f = 0 |≥ m) we mean the reduced counting function of those
zeros of f (k) with multiplicities not less than m which are also the zeros of f . Also

N(r, 0; f)−
∞∑

m=p+1
N(r, 0; f (k) | f = 0 |≥ m) = Np+k(r, 0; f)

the lemma follows.

Lemma 2.5. Let f , g share (1, 2)∗. Then

NL(r, 1; f) + 2NL(r, 1; g) + N
(2

E (r, 1; f)−Nf≥3(r, 1; g |= 1)

≤ N(r, 1; g)−N(r, 1; g) + S(r).

Proof. Let z0 be a 1-point of f with multiplicity p and a 1-point of g with
multiplicity q. For each possible value of q, possible values of p is always ≥ 0.
Since f , g share (1, 2)∗ implies f , g share “(1, 0)”, the sum of the reduced counting
functions corresponding to the 1 points of g for which p = 0 are S(r). Also from
the definition of relaxed weighted sharing we note that the sum of the reduced
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counting functions corresponding to the common 1 points of f and g for which (i)
q = 1, p = 2 and (iii) q = 2, p = 1 are S(r), the lemma follows.

Lemma 2.6. Let f , g share (1, 2)∗. Then

NL(r, 1; f)+Nf≥3(r, 1; g |= 1) ≤ N(r, 0; f)+N(r,∞; f)−
∞∑

p=3
N

(
r, 0;

f
′

f
|≥ p

)
+S(r).

Proof. Using Lemma 2.2 we get

NL(r, 1; f) + Nf≥3(r, 1; g |= 1) = N(r, 1; f |= 2; g = 1) + 2N(r, 1; f |≥ 3) + S(r)

= 2N(r, 1; f |≥ 3) + S(r)

≤ N2(r, 0; f
′ | f = 1) + S(r) ≤ N2(r, 0; f

′ | f 6= 0) + S(r)

≤ N(r, 0; f) + N(r,∞; f)−
∞∑

p=3
N

(
r, 0;

f
′

f
|≥ p

)
+ S(r).

Lemma 2.7. [9] Let f be a non-constant meromorphic function and let

R(f) =
∑n

k=0 akfk

∑m
j=0 bjf j

be an irreducible rational function in f with constant coefficients {ak} and {bj}
where an 6= 0 and bm 6= 0 Then

T (r,R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.
Lemma 2.8. [2, p. 68] Suppose that f is meromorphic and transcendental in

the plane and that
fnP = Q

where P and Q are differential polynomials in f and the degree of Q is at most n.
Then

m{r, P} = S(r, f) as r → +∞.

3. Proofs of the theorems

Proof of Theorem 1.1. Let F = f
a and G = f(k)

a . Then F − 1 = f−a
a and

G − 1 = f(k)−a
a . Since f − a and f (k) − a share “(0, l)” it follows that F , G share

“(1, l)” except the zeros and poles of a(z). Now we consider the following cases.
Case 1. Let H 6≡ 0.
Subcase 1.1. l ≥ 1. Since H has only simple poles from (2.1) it can be easily

calculated that

N(r,∞; H) ≤ N(r,∞;F ) + NL(r, 1;F ) + NL(r, 1; G) + N(r, 0; F |≥ 2)+

+ N(r, 0; G |≥ 2) + N0(r, 0;F
′
) + N0(r, 0; G

′
) + N(r, 0; a) + N(r,∞; a), (3.1)



130 A. Banerjee

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′
which are

not the zeros of F (F − 1) and N0(r, 0; G
′
) is similarly defined. Let z0 be a simple

zero of F − 1 and G− 1 but a(z0) 6= 0,∞. Then z0 is a zero of H. So

N(r, 1; F |≤ 1) = N(r, 1; G |≤ 1) + S(r)

≤ N(r, 0; H) + N(r,∞; a) + N(r, 0; a) + S(r)

≤ N(r,∞; H) + S(r). (3.2)

From (3.1) and (3.2) we get

N(r, 1;G) ≤ N(r, 1; G |≤ 1) + N(r, 1;F |≥ 2) + S(r)

≤ N(r,∞; F ) + NL(r, 1; F ) + NL(r, 1;G) + N(r.0;F |≥ 2)

+ N(r.0; G |≥ 2) + N(r, 1; F |≥ 2) + N(r, 0; F
′
) + N(r, 0; G

′
) + S(r).

(3.3)

By the second fundamental theorem, (3.3) and noting that N(r,∞; F ) = N(r,∞; G)
+ S(r) we get

T (r,G) ≤ N(r,∞; G) + N(r, 0;G) + N(r, 1;G)−N0(r, 0; G
′
) + S(r,G)

≤ 2N(r,∞; F ) + N(r, 0;G) + N(r, 0; G |≥ 2) + N(r, 0; F |≥ 2)

+ NL(r, 1; F ) + NL(r, 1; G) + N(r, 1; F |≥ 2) + N0(r, 0; F
′
) + S(r).

(3.4)

While l ≥ 2 using Lemma 2.2 we obtain

NL(r, 1; F ) + NL(r, 1; G) + N(r, 1; F |≥ 2) + N0(r, 0; F
′
)

≤ N(r, 1;F |≥ 3) + N(r, 1; F |≥ 2) + N0(r, 0; F
′
)

≤ N2(r, 0; F
′ | F 6= 0) ≤ N(r, 0; F ) + N(r,∞;F ) + S(r).

(3.5)

Using (3.5) and Lemma 2.4 we get from (3.4)

T
(
r, f (k)

)
≤ 3 N(r,∞; f) + N2(r, 0; f) + N2(r, 0; f (k)) + S(r)

≤ 3 N(r,∞; f) + N2(r, 0; f) + T (r, f (k))− T (r, f) + N2+k(r, 0; f) + S(r)

that is
T (r, f) ≤ 3 N(r,∞; f) + N2(r, 0; f) + N2+k(r, 0; f) + S(r)

and hence it follows that

3Θ(∞; f) + δ2(0; f) + δ2+k(0; f) ≤ 4,

which contradicts (1.4).
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While l = 1 (3.5) changes to

NL(r, 1; F ) + NL(r, 1; G) + N(r, 1; F |≥ 2) + N0(r, 0; F
′
)

≤ N(r, 1;F |≥ 3) + N(r, 1; G |≥ 3) + N(r, 1; F |≥ 2) + N0(r, 0; F
′
)

≤ N2(r, 0;F
′ | F 6= 0) +

1
2
N2(r, 0;G

′ | G 6= 0)

≤ N(r, 0;F ) + N(r,∞; F ) +
1
2
N(r, 0; G) +

1
2
N(r,∞;G) + S(r).

(3.6)

Using (3.6) and Lemma 2.4 we get from (3.4)

T
(
r, f (k)

)
≤ 7

2
N(r,∞; f) + N2(r, 0; f) + N2(r, 0; f (k)) +

1
2

N(r, 0; G) + S(r)

≤ 7
2

N(r,∞; f) + N2(r, 0; f) + T (r, f (k))− T (r, f) + N2+k(r, 0; f)

+
1
2

N(r, 0; f (k)) + S(r). (3.7)

Now from (3.7) using Lemma 2.3 with p = 1 we get

T (r, f) ≤
(

7
2

+
k

2

)
N(r,∞; f)+N2(r, 0; f)+N2+k(r, 0; f)+

1
2

N1+k(r, 0; f)+S(r),

from which it follows that
(

7
2

+
k

2

)
Θ(∞; f) + δ2(0; f) +

1
2

δ1+k(0; f) + δ2+k(0; f) ≤ 5 +
k

2
,

which contradicts (1.5).

Subcase 1.2. l = 0. In this case F and G share “(1, 0)” except the zeros and
poles of a(z). Let z0 be a common simple zero of F − 1 and G − 1. By a simple
calculation we see that z0 is a zero of H and hence (3.2) is replaced by

NE(r, 1; F,G |≤ 1) ≤ N(r,∞; H) + S(r). (3.8)

So from (3.1), (3.8) we note that

N(r, 1; F ) + N(r, 1;G) ≤ NE(r, 1; F, G |≤ 1) + N
(2

E (r, 1;F )

+ NL(r, 1; F ) + NL(r, 1; G) + N(r, 1;G) + S(r)

≤ N(r,∞; f) + N(r, 0; F |≥ 2) + N(r, 0; G |≥ 2) + N
(2

E (r, 1; F )

+ 2NL(r, 1; F ) + 2NL(r, 1; G) + N(r, 1;G) + N0(r, 0; F
′
)

+ N0(r, 0;G
′
) + S(r)

≤ N(r,∞; f) + N(r, 0; F |≥ 2) + N(r, 0; G |≥ 2) + 2NL(r, 1; F )

+ NL(r, 1; G) + N(r, 1; G) + N0(r, 0;F
′
) + N0(r, 0; G

′
) + S(r).

(3.9)
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Using Lemma 2.2 for p = 1 we obtain

2 NL(r, 1; F ) + NL(r, 1; G) ≤ 2N(r, 1; F |≥ 2) + N(r, 1; G |≥ 2) + S(r)

≤ 2 N(r, 1; F
′ | F 6= 0) + N(r, 1; G

′ | G 6= 0) + S(r)

≤ 2N(r, 0;F ) + 3 N(r,∞; f) + N(r, 0;G) + S(r). (3.10)

By the second fundamental theorem (3.9) and (3.10) we obtain

T (r, F ) + T (r,G) ≤ N(r,∞;F ) + N(r,∞; G) + N(r, 0; F ) + N(r, 0;G)

+ N(r, 1; F ) + N(r, 1;G)−N0(r, 0; F
′
)−N0(r, 0; G

′
) + S(r)

≤ N2(r, 0; F ) + N2(r, 0; G) + 6 N(r,∞; f)

+ 2N(r, 0; F ) + N(r, 0;G) + T (r,G) + S(r). (3.11)

Hence using Lemma 2.3 for p = 2 and also for p = 1 we get from (3.11)

T (r, f) ≤ N2(r, 0; f) + 2 N(r, 0; f) + N2+k(r, 0; f) + N1+k(r, 0; f)

+ (6 + 2k) N(r,∞; f) + S(r),

that is

(6 + 2k) Θ(∞; f) + δ2(0; f) + 2 Θ(0; f) + δ2+k(0; f) + δ1+k(0; f) ≤ 10 + 2k,

which contradicts with (1.6).

Case 2. Let H ≡ 0.

On integration we get from (2.1)

1
F − 1

≡ C

G− 1
+ D, (3.12)

where C, D are constants and C 6= 0. If there exist a pole z0 of f with multiplicity
p which is not a pole and zero of a(z), then z0 is the pole of F with multiplicity p
and the pole of G with multiplicity p + k. This contradicts (3.12). So

N(r,∞; f) ≤ N(r, 0; a) + N(r,∞; a) = S(r, f),

and hence N
(
r,∞; f (k)

)
= S(r, f). So

Θ(∞; f) = 1.

From (1.4), (1.5) and (1.6) we know respectively

δ2(0; f) + δ2+k(0; f) > 1, (3.13)

δ2(0; f) +
1
2
δ1+k(0; f) + δ2+k(0; f) >

3
2

(3.14)

and
δ2(0; f) + 2 Θ(0; f) + δ1+k(0; f) + δ2+k(0; f) > 4. (3.15)

Suppose D 6= 0.
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From (3.12) we can deduce

f (k)

a
=

(C −D)
f

a
+ D + 1− C

−D
f

a
+ D + 1

. (3.16)

From (3.16) we have

−Dff (k) = a((C −D)f + a(D + 1− C))− a(D + 1)f (k). (3.17)
Hence using Lemma 2.8 we obtain from (3.17)

T
(
r, f (k)

)
= m

(
r, f (k)

)
+ N

(
r,∞; f (k)

)
= S(r, f).

Using Lemma 2.7 from (3.12) we get
T (r, F ) = T (r,G) + O(1).

Since a is a small function it follows that

T (r, f) = T
(
r, f (k)

)
+ S(r, f) = S(r, f),

which is absurd. Hence D = 0 and so from (3.12) we get G − 1 ≡ C (F − 1). If

C 6= 1, then G ≡ C

(
F − 1 +

1
C

)
and

N(r, 0; G) = N

(
r, 1− 1

C
; F

)
.

By the second fundamental theorem and noting that N(r,∞;F ) = S(r, f) we get

T (r, F ) ≤ N(r,∞; F ) + N(r, 0;F ) + N

(
r, 1− 1

C
;F

)
+ S(r,G)

≤ N(r, 0; F ) + N(r, 0;G) + S(r, f).
By Lemma 2.3 for p = 1 we have

T (r, f) ≤ N(r, 0; f) + N
(
r, 0; f (k)

)
+ S(r, f)

≤ N(r, 0; f) + N1+k(r, 0; f) + N(r,∞; f) + S(r, f)

≤ N(r, 0; f) + N1+k(r, 0; f) + S(r, f).
Hence

Θ(0; f) + δ1+k(0; f) ≤ 1. (3.18)
So we have

δ2(0; f) + δ2+k(0; f) ≤ Θ(0; f) + δ1+k(0; f) ≤ 1,

δ2(0; f) +
1
2
δ1+k(0; f) + δ2+k(0; f) ≤ Θ(0; f) + δ1+k(0; f) +

1
2

δ1+k(0; f) ≤ 3
2

and
Θ(0; f) + δ2+k(0; f) + Θ(0; f) + δ1+k(0; f) + δ2(0; f)

≤ 2{Θ(0; f) + δ1+k(0; f)}+ δ2(0; f) ≤ 3.

These contradict (3.13), (3.14) and (3.15). Hence C = 1 and so F ≡ G, that is
f ≡ f (k). This completes the proof of the theorem.
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Proof of Theorem 1.2. Let F = f
a and G = f(k)

a . Then F − 1 = f−a
a and

G − 1 = f(k)−a
a . Since f and f (k) share (a, 2)∗ it follows that f − a and f (k) − a

share (0, 2)∗ and hence F , G share (1, 2)∗ except the zeros and poles of a(z). Now
we consider the following cases.

Case 1. Let H 6≡ 0.
Using Lemmas 2.1, 2.5, 2.6 and (3.1) we note that

N(r, 1; F ) + N(r, 1;G) ≤ NE(r, 1; F, G |≤ 1) + N
(2

E (r, 1;F )

+ NL(r, 1; F ) + NL(r, 1; G) + N(r, 1;G) + S(r)

≤ N(r,∞; f) + N(r, 0; F |≥ 2) + N(r, 0; G |≥ 2) + N
(2

E (r, 1; F )

+ 2NL(r, 1; F ) + 2NL(r, 1; G) + N(r, 1;G) + N0(r, 0; F
′
)

+ N0(r, 0;G
′
) + S(r)

≤ N(r,∞; f) + N(r, 0; F |≥ 2) + N(r, 0; G |≥ 2) + NL(r, 1; F )

+ NF≥3(r, 1; G |= 1) + N(r, 1; G) + N0(r, 0;F
′
)

+ N0(r, 0;G
′
) + S(r)

≤ 2 N(r,∞; f) + N(r, 0;F ) + N(r, 0; F |≥ 2) + N(r, 0;G |≥ 2)

+ T (r,G) + N0(r, 0; F
′
) + N0(r, 0; G

′
) + S(r). (3.19)

By the second fundamental theorem and (3.19) we obtain
T (r, F ) + T (r,G) ≤ N(r,∞;F ) + N(r,∞; G) + N(r, 0; F ) + N(r, 0;G)

+ N(r, 1; F ) + N(r, 1;G)−N0(r, 0; F
′
)−N0(r, 0; G

′
) + S(r)

≤ 4 N(r,∞; f) + N2(r, 0; F ) + N2(r, 0; G)

+ N(r, 0; F ) + T (r,G) + S(r). (3.20)
Hence using Lemma 2.3 for p = 2 we get

T (r, f) ≤ N2(r, 0; f) + N(r, 0; f) + N2+k(r, 0; f) + (4 + k) N(r,∞; f) + S(r),
that is

(4 + k) Θ(∞; f) + δ2(0; f) + Θ(0; f) + δ2+k(0; f) ≤ 6 + k,

which contradicts with (1.10).
Case 2. Let H ≡ 0.
Integrating (2.1) we get (3.12). In this case proceeding in the same way as

done in Theorem 1.1 we can obtain
Θ(∞; f) = 1.

So from (1.10) we get
δ2(0; f) + Θ(0; f) + δ2+k(0; f) > 2. (3.21)

Now again proceeding in the same way as done in Theorem 1.1, from (3.12) we can
obtain D = 0. Again supposing C 6= 1 we get (3.18), which together with (3.21)
leads to a contradiction. Hence C = 1. So from (3.12) we have f = f (k). This
completes the proof of the theorem.
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