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A SPECTRALITY CONDITION FOR INFINITESIMAL
GENERATORS OF COSINE OPERATOR FUNCTIONS

Amina Sahovié¢ and Fikret Vajzovié

Abstract. We will give a necessary and sufficient condition for the infinitesimal generator
of a strongly continuous cosine operator function C(t), such that ||C(t)|] < 1 for all t € R on
a reflexive, strictly convex (complex) Banach space with a Gateaux differentiable norm to be a
spectral scalar type operator with the spectral family of hermitian bounded linear projectors.

1. Introduction

Strongly continuous semi-groups of spectral bounded operators on a Banach
space and their infinitesimal generators in particular were considered by many au-
thors (see e.g. [1], [2], [6]). In this paper we will consider the strongly continuous
cosine operator function C(t), such that ||C(¢)|| < 1 for all ¢ € R on a reflexive
strictly convex (complex) Banach space with a Gateaux differentiable norm, and
we will prove (Theorem 3.1) that a necessary and sufficient condition for its infini-
tesimal generator to be the spectral scalar type operator with the spectral family of
hermitian bounded linear projectors is that all operators C(t), t € R are hermitian
operators.

First, we recall some notations and basic notions. Let X be a complex Banach
space, and let B(X) denote the complex Banach algebra of all bounded linear
operators on X.

DEFINITION 1.1. A function C: R — B(X) (R = (—o00, +0)) satisfying

a) C(0) = I (I — the identity operator on X),

b) C(t+s)+C(t—s)=2C(t)C(s), t,s€R
is called a cosine operator function on X. It is strongly continuous if the vector-
valued function C(t)z is strongly continuous on R for each z € X. If, in addition,
there exists a constant M (M > 1) such that ||C(¢)|| < M for all ¢ € R, then the
strongly continuous cosine operator function C(t) is said to be bounded.

Throughout this paper, C(t) is a bounded strongly continuous cosine operator
function such that ||C(¢)|] <1 for all ¢ € R. The infinitesimal generator A of C(¢)
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is defined by Az = lim;— 2(C(t)x — z)/(t?) for all z € X for which the last limit
exists. It is known that A is a closed operator with dense domain D(A) in X. The
spectrum of operator A is a subset of (—o0, 0].

Let us consider the function (-,-): X x X — R defined by

o e+ tyll — =]

\0 ; , z,y € X. (1.1)

() = el -1
DEFINITION 1.2. The norm of (the normed linear space) X is said to be
[z + tyl| — [|=|

t
DEFINITION 1.3. The normed linear space X is said to be strictly convez if
Iz +yll = ||z|| + [lyll = x = ay for some real a > 0 and all z,y € X.

Gateauz differentiable if }in(l) exists for every z,y € X.

DEFINITION 1.4. A densely defined closed linear operator B is said to be
hermitian if
(x,+iBz) =0, x € D(B), (1.2)
and if the spectrum of B is real.

It can be shown that the last definition and the following one are equivalent if
the norm of X is Gateaux differentiable.

DEFINITION 1.5. A densely defined linear operator A: X — X is said to be
hermitian if iA is the infinitesimal generator of a group of isometries.

We will need the following theorem (proved in [5]).

THEOREM 1.6. Let X be a reflexive strictly conver complex Banach space
with a Gateaux differentiable norm, and let C(t) be a bounded strongly continuous
cosine operator function on X. If all operators C(t), t € R are hermitian, then the
residual spectrum of the infinitesimal generator of C(t) is an empty set.

2. Family of operators F,, a >0

Family F,, a > 0 was introduced in [10] as

Fox = lim F, oz, re€X, a>0, (2.1)
a\,0
where
a+tiu B _
aa:c*—/ du/ AR(MN?, A) + AR(N?, A)]d, A=a+iy, i=+—1
a+10

Here the resolvent of A is denoted by R(A\2, A), i.e., R(\2, A) = (\21-A)~! € B(X).
This is a family of bounded linear operators for every bounded strongly continuous
cosine operator function.

In [5] it is proved that the limit in (2.1) exists for € X and a > 0, and that

For = %/0 (Siiat> C(2 — 7/ <Smt> <2t>xdt (2.2)

Since ||C(t)]| < 1 for all t € R, (2.2) implies that || F,|| < a for all @ > 0 and that
the function a — F, is strongly continuous on [0, 4+00).
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Let us note some further properties of operators Fy, a > 0 (proved in [5]):

i) lim_ sz =z, z€X. (2.3)
i) FoFpe = FyFao =2 [ Fuedu+ (b—a)Foz, z€X, 0<a<b. (2.4)
ili) AF,z = F,Az for all z € D(A) and (2.5)

AF,x = —a*F,z+ [ (6u—2a)F,z du = [[(a—u)u?], dF,x for all z € X .(2.6)

iv) C(t)Fox = — [;'[(a — u) cos ut]), dF,x =
= cosatF,z+ [ [(a—u)cosut]l], Fuzdufora>0,t € Rand z € X.(2.7)
o] 3 2 _ )\2
v) R(\2, A)x = 2/ ZiFux du for all z € X and A € C, Re A > 0. (2.8)
o (u?+22)?

vi) Define X, = F,(X) for all a > 0. Then X, C X, follows from 0 < a < b.
Moreover, subspaces X,, a > 0 are invariant relative to A and C(t) for all
t € R.
From (2.3) it follows that (J,> X, is dense in X. The operator f(A) is defined

on Uazo X4 by
f(A)Fux = f(—a*)F,z + /a[(a —u)f(—u®)) Furdu, z€X, a>0, (2.9)
0

where f(—u?) is two times continuously differentiable for u > 0. (The last assump-
tion ensures the existence of the integral in (2.9)). One readily shows that the
definition (2.9) is correct, i.e. that F,z = F,y for some a,b > 0, z,y € X implies
J(A)Fax = f(A)Fpy (see [8]).

From (2.9) it follows that

f(AF,x = — /Oa[(a —u)f(—u?)], dF,, zeX, a>0. (2.10)

(The last integral is an abstract Stieltjes integral.)

In order to prove the main result of this paper, we have to formulate and
prove some facts. First, let us give the definition (2.1) of operators F,, a > 0 in

the following form

Fox := lim Eu@x du, e X,

a0 Jo
where .
. 1 a+iu _ _
By = — [AR(A2, A) + AR(N?, A)]x dA
T Jakio (2.11)

2 [ inut
=— / e_“th(t)x dt, A= a+ iy,
0

T
for each u > 0 and a > 0, x € X.

LEMMA 2.1. limg o Ey.o(A + u2D)z exists for every x € D(A).

Proof. Since |C(t)|| < 1 for all t € R, by definition (2.11), it is easy to see that
operators E,, o, are bounded. Also, it is easy to see that the function (u, ) — E, o,
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x € X is r times continuously differentiable on I (in the strong operator topology)
for all » = 1,2,.... The set I consists of all (u,«) such that 0 < ¢ < a < @,
0 <u < a, where ¢ > 0, @ > 0 and a > 0 are arbitrary, but fixed. Also, it is easy
to see that for each z € X and (u, o) € T

E 2 [T
Ma} = —f/ e~ sinut C(t)x dt, (2.12)
Ja T Jo
0L, 2 /+00 e~ cosut C(t)x dt (2.13)
== u x dt. .
ou T Jo

2

d
Using the relation —C(t)z = AC(t)x = C(t)Ax, x € D(A), (2.12) and (2.13), we

dt?
obtain
0Fu.q 2 0Fu.q 0Fu.q
TU’(A +u?l)z = —_az + aQTU’m - QUQTO;.T}, (2.14)
Euo 2 Eua Eu,a
OF.. (A+u21):c:ffu:c+a26 : x+2uaa —x, (2.15)

Oa T o ou
for x € D(A) and (u,«) € I.
From (2.12) and (2.13) for all x € X and (u,a) € I, we get

< M||z|| and

8Eua
Ha’x < M|z,

oo

OFy o
o—2x
ou

where M = 2/m. Therefore, from (2.15) we obtain

for x € D(A), (u,) € I. But, then the relation B, 5(A+u>I)x — Ey ,(A+u?l)z =

E,
0 ;’a (A+u?Dz

< K||z||, where the constant K = M (3a + &),

K 8Eu (e . . al ~
/ 9a At u?Ia do implies [|(Eu,p — Euy)(A+ u*Dz|| < Kllz|| |y = 6] — 0
s

(8,7 — 0) for all (u,3), (u,7v) € I, x € D(A). Hence, lim, o EA’u7a(A+u2I)x exists
for x € D(A). This proves the lemma. m

Using the relation (Fy, — nf; b—u)""tdF,, which is valid for 0 < a < b
and for each n =1,2,... (proved in [5]), we easily get
b
Git(Fv=Fa) _ T 4 it/ et gp, =1 —/ (e*C=a)Y dF,, (2.16)

forall0<a<bandteR.

Let ¢(u) and ¢(u), u € (—o00,0] be two continuously differentiable (scalar-
valued) functions, and let 0 < a < b < ¢ < d. Then

/ dF/z/; dF_/w dv/ o(u) dF,, (2.17)
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where f; ¢(u) dF, and fcdw(v) dF, are Stieltjes integrals. ((2.17) formally follows
from the identity dF, dF, = dvdF,, 0 < u < wv.)

LEMMA 2.2. Let A(u) be a two times continuously differentiable function on
[0,a], where a > 0 is an arbitrary real number. Then

i Jy Au) dF, _/a l(a - u)ei i Aty ar) dF,x (2.18)
0

u

for each z € X.
Proof. By induction, using (2.16) and (2.17), it can be easily proved that

n—1

Zztk( Uk+1_F n—1 1 Z tj Uj41 — ) wes1 it (u —u
e k=0 =]1- Ze j=k+1 / (e (e ));dFu
ug
(2.19)
for each natural number n, where uy < u; < -+- < un and ¢, (k=0,1,...,n—1)

are arbitrary numbers. Here, we assume that ZJ k+1t (uj41 — u;) = 0 when
k+1>n-—1.

Let now up < uy < -+ < Uy, n € N be a division of the interval [0, a]. Then, by
setting tr, = A(ug) in (2.19) and by taking the limit as maxo<p<n—1(Up+1 —ur) — 0
on both of its sides, we obtain

ei Jo Au)dF, o /a <ei LI dt>’ iF,. (2.20)
0 u

where the integrals in (2.20) converge in the uniform operator topology. From
(2.20) and dF,F, = F,,du+ (a — u)dF, for 0 < u < a (obtained from (2.4)), we
get that relation (2.18) is valid for all € X, a > 0, which proves the lemma. m

The following lemma is proved in [5].

LEMMA 2.3. If C(t) is a bounded strongly continuous cosine operator function
with the infinitesimal generator A, and if all operators C(t), t € R are hermitian,
then operators F, (for each a > 0) are hermitian.

Using Lemma 2.2 and Lemma 2.3, we are able to prove the following proposi-
tion which gives a property of the operator f(A), defined by (2.10).

PROPOSITION 2.4. Let C(t) be a bounded strongly continuous cosine function
with the infinitesimal generator A, and let all operators C(t), t € R be hermit-
ian. If f(—u?) is a real (two times continuously differentiable) function such that
[f(=u?)| <1 (u=>0), then [ f(A)] < 1.

Proof. First, let us remark that for every complex function f(—v?) which is
two times contlnuously differentiable for v > 0, and such that |f(—v?)| = 1 for all
v > 0, a real function A(¢) such that, for each a > 0

i [PA(t)dt

=e'C . f(—u?), u € [0,a], C — a real constant,
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can be found. Namely, it is sufficient to set A(u) = —[ph(u)p1(u) — w2 (u)@] (w)],
where ¢1(u) = Re f(—u?), pa(u) = Im f(—u?). By definition (2.10) of the operator
f(A) and (2.18) (Lemma 2.2), this implies that

i [y Au) dF,

f(AF,z=e"C ¢ “F,x, (2.21)

for every z € X, a > 0.

By assumption, all C(t), ¢ € R are hermitian operators. Then, by Lemma
2.3, all operators Fy, a > 0 are hermitian. Therefore, by Definition 1.5 and (2.21),
we conclude that ||f(A)F,z| = ||Faz|| for all @ > 0 and all # € X. This, and the
property (2.3) of the operators F, show that f(A) is an isometric operator from X
to X. Since we can repeat the same procedure for the function 1/ f(—v?), it follows
that f(A) is an isometric operator from X into X.

Now, let f(—u?) be a function satisfying the assumptions of the Lemma. Let
oi(—u?) = f(—u?) £iy/1— f2(—u?), u € [0,400). Then, functions pi(—u?)
are complex functions (two times continuously differentiable), and such that
|+ (—u?)| = 1, thus the operators ¢4 (A) are isometric operators from X into X
(as we have just proved). This, and f(A) = (p4+(A)+p—(A))/2 imply ||f(A)| < 1,
proving the proposition. m

REMARK. By Proposition 2.4, Cayley transform U of the infinitesimal gen-
erator A of a bounded strongly continuous cosine operator function C(¢) (U :=
(A +4I)(A —4I)~1) is an isometric operator from X into X, because UF,z =

a 2_‘/ )\_ )\ .
_/ {(a—u)u Z} dF,x, for all z € X and a > 0, and’ ! +Z_
0 u A A—1

¢ u

for all real \.
Using the result of Proposition 2.4, we can now prove the following

LEMMA 2.5. If C(t) is a bounded strongly continuous cosine operator function,
and if all C(t), t € R are hermitian operators, then the operators Eq o, a > 0,
o > 0, defined by (2.11) are uniformly bounded (||E, | > 1 for all a > 0, and
a>0).

Proof. Let a,b,a > 0 be arbitrary, but fixed. Then, by (2.7), we have

. 2 [ in at
E,oFpr = 7/ efath(t)Fbx dt
0

™

2 > t b
—_= / e*atsmt“ dt / [(b— u) cos ut], dF,x
0 0

T
b 0
2 t t
:f/ {@u)./ = twdt i,z

0 T Jo u (2.22)

5 2 [ __;sinatcosut
for each z € X. Set f(—u®) := — et —F dt for u € [0,b]. Clearly, the

T Jo

function f(—u?) is infinitely differentiable.
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Furthermore, since
I /OO oot sin at cos ut di— { %arctg et + %arctg ‘”O:“, for a > u,
0

t —% arctg “—% + %aretg a'o*:“, for a < u,

and thus |I| < 7/2, we have |f(—u?)| < 1 for u € [0,b]. By Proposition 2.4, (2.22)
and (2.10), this implies that ||E,q| < 1 for each a,a > 0, proving the lemma. m

3. A spectral operator

The following theorem is proved in [9].

THEOREM A. Suppose X is a real Banach space. Then the “Riesz representa-
tion theorem” holds: Given 6 € X™* there exists x5 € X such that

lzs]l = (1]l and (zs,y) =05(y) forally € X
if and only if X is reflexive with a Gateaux differentiable norm. Furthermore, x5
is unique (and the mapping § — x5 is continuous from the norm topology on X* to
the weak topology on X ) if and only if X is also strictly conver.
Recall, in this paper, X is a complex Banach space. Set

(z,y) := (z,y) — iz, iy). (3.1)
Then the similar theorem (i.e., Theorem A with (-, ) instead of (-, -)) holds. Hence,
if X is a (complex) reflexive strictly convex Banach space with a Gateaux differen-
tiable norm, then for each fixed € X, (x,y) is a continuous linear functional in y
and [(z,y)| < [[z]| - ly[l, =,y € X.

We will need the following theorem (proved in [5]).

THEOREM B. A necessary and sufficient condition for the real number —a? to
be an eigenvalue of the infinitesimal generator A of a bounded strongly continuous
cosine operator function C(t) is that there exists a vector zg € D(A), xg # 0 such
that

{ (a —ap)xo, a> ag,
Fal‘o =
07 0 S a S ag,
where Fy, a > 0 is the corresponding family defined by (2.1).
2

Such vector x( is said to be an eigenvector belonging to the eigenvalue —ag.

Now we can prove the main result of this paper.

THEOREM 3.1. Let X be a reflexive strictly convexr Banach space with a
Gateaux differentiable norm, and let C(t) be a bounded strongly continuous co-
sine operator function on X. The infinitesimal generator A of C(t) is a spectral
scalar type operator with the spectral family of hermitian bounded linear projectors
if and only if all C(t), t € R are hermitian operators.

Proof. Let all C(t), t € R be hermitian operators. First, we will prove that

for each a > 0, limy~ o Ea’ax exists for each x € X (the operators EA’G’Q are defined
by (2.11)), and that operators defined for each a > 0 by

F,z:= lim E,Lax, reX (3.2)
a\,0

are uniformly bounded and || E,|| <1 (for all a > 0).
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By Lemma 2.1, lima~ o Fu.o(A + a2I)z exists for each z € D(A). Hence, the
claim is valid in the case when —a? belongs to the resolvent set of A, because in
this case the set of all (A + a®I)z, z € D(A) is X. In the case when —a? belongs
to the continuous spectrum of A, the set (A +a?I)[D(A)] is dense in X. Therefore,
Lemmas 2.1 and 2.5 and the Banach-Steinhaus theorem imply that lima~ o EA’a’ax
exists for each = € X, the operator E, is bounded and || E,| < 1. By Theorem 1.6,
the residual spectrum of the operator A is empty. So, it only remains to be shown
that lima~ o Ex.02 (= Ex2) exists for each € X if —\2 is an eigenvalue of A.

Let the set of all eigenvectors belonging to the eigenvalue —\Z be denoted by
L,, and let the set of all z € X for which (y,z) =0 (for all y € Ly,) be denoted
by Lio. Clearly, Lfo is a (closed) subspace of X.

By the Remark after Proposition 2.4, the Cayley transform U of the operator
A is an isometric operator (from X into X). By the definition (3.1), it follows that

(Uz,Uy) = (z,y) forall z,y € X. (3.3)

A2 —i
It is easy to see that —\2 is an eigenvalue of A if and only if /\g n
0

is an eigenvalue

of U, and that Ly, is the set of all eigenvectors belonging to this eigenvalue. From
this and (3.3) it easily follows that the subspace Ly, is invariant relative to the
operator U, and thus it is invariant relative to operators A and C(t), t € R.

Let us show that the set Ly, + RAH%I is dense in X (here, RAH\(%I denotes
the range of A + A2I). If it is not dense, then there is xg € X, 29 # 0 such that

(zo,y) =0 forall y € Ly, + Rayazr- (3.4)

In particular, (xq, (A+M21)z) = 0 for each z € D(A). Thus, (zg, (A+3I)F,z) =0
for all x € X and a > 0, because F,z € D(A). By (2.6)

(A2 — a®)(xo, Fuz) — /Oa(Za — 6u){xg, Fyx)du = 0. (3.5)

Set ¢(a) := (zo, Fux) (z € X is fixed). Now (3.5) becomes (A3 —a?)p(a) — [; (2a—
6u)p(u) du = 0. From this we see that the function ¢(a) is infinitely differentiable
at a for a # A\2. So, differentiating the last equality two times at a, we get (A3 —
a?)¢" (a) = 0. Tt follows p(a) = 0 for 0 < a < Ag (because ¢(0) = ¢’(0) = 0).

On the other hand, (g, F,x) = (a — \g){zg, ) for a > Ao, because %x —

(a — ). So,

0, for 0 < a < )\,
(xo, Fax) = (3.6)
(a — Xo)(zo,z), fora> Ap.
Remark that (zo, Flz) = (a — A} ){zo,x) for a > Ag, n =1,2,.... For n =0 it is

obvious, for n =1,2,..., it is easy to prove by induction. Since

eitFag — o 4 it — t2/ eit(a—u)Fux du, (37)
0
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we have

(zo,e™ax) = (xg, ) + t{xo, i Fyr)—
— t? / cost(a — u)(xg, Fux) du — / sint(a — w)(xo, iFyx) du, (3.8)
0 0

because (z,y) is continuous and linear in y for each z € X.

Since operators Fy, a > 0 are hermitian (by Lemma 2.3), from (3.6) and (3.8)
we get (wg, e Fexg) = ||lzg|%, and thus eFexy = x4 for all t € R and 0 < a < A,
because all e”F @ are isometric operators, and because X is strictly convex. Since

242
etfagy =z + F wxo + F2:z:0 + -+, because F, is a bounded operator, from
P2t
the last cquahty, for 0<a < o, t € R, we get iFyzg + — 5 F23:0 + .-+ =0, thus, by
taking the limit as t — 0,
F,xo=0 for0<a< ). (3.9)

From (3.8) and (3.6) for a > )y we obtain

a

(xo, einax()} = ||zol|? — ¢ / cost(a —u)(u — Xo)|zo|* du,
A

0
because Fy, a > 0 are hermitian. Since f;fo (u—Xo) cost(a—u)du = 75[1—cost(a—
Ao)], from the last equality it follows that

(zo,e™axg) = ||lzo]|? cost(a — Ng) for a > \g and t € R.

- 27
Particularly for ¢t = we have (zg,e 272 “20) = ||zo||?. Hence
a— Ao
;2
laxgta
e To = x9 for a > Ao, (3.10)
because e*fe is an isometric operator for each ¢t € R, and because X is strictly

convex. By (3.7),

27)2 a 2T (q — u)

From this, we see that the function a — F, is differentiable at a for a # ).
Differentiating (3.10) at a we get

jata [ Fy __ Fa
a — /\0 (CL — )\0)2

To+1i——
a—

F F
Thus, by (3.10), - ij‘)O -G _aiz)z —0.

Set v(a) := f(Faxo) (f € X* is fixed). Then we have ¢'(a) = a(p(a)? . By
— Ao
(3.6), this implies p(a) = (a — Ag)f(xo) for @ > Xo. So, for a > Ay we have

f(Fazo) = (a — Xo) f(xo) for each f € X*, thus
Foxg = (a— Xo)xg for a > Ag. (3.11)
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By Theorem B, from (3.9) and (3.11), it follows that xq is an eigenvector belonging
to the eigenvalue —\3 of A. By (3.4), this implies (zg, z¢) = 0. Thus z¢ = 0, which
is a contradiction, finishing the proof that the set Ly, + R 4 21 is dense in X.

It is easy to show that lim~ o E)\O,am exists for each x € Ly,. Since Ly, +
Rayazr is dense in X, Lemmas 2.1 and 2.5, and the Banach-Steinhaus theorem
imply that in the case when —\2 is an eigenvalue of A, lima~ o E,\D,ax exists for
each z € X. Moreover, the operator EAO is bounded and \\EAO || < 1. This completes
the proof of the claim: For each a > 0, limy~ o EA’a)ax exists for each x € X, and
operators E,, a > 0 (defined by (3.2)) are uniformly bounded and || E,|| < 1 for all
a>0.

By the Lemma proved in [7, pp. 384-390] from the existence of these operators,
and because they are bounded, it follows that for each a > 0 there is a bounded
projector E, such that

E,E,=FEyE, =F, for0<a<b (3.12)
Here, the operator F,, a > 0 is defined by
FEpx :=0, r € X,
2 [ - 3.13
E,r:= lim — ¢Eua: du, z€ X, a>0. ( )

oo Jo (a—wu)?+ F?
The existence of the limit in (3.13) for all x € X and a > 0 is proved in [10].
Clearly, | E,|| < 1, for all a > 0, because ||E,z| < ||z| for all u € [0, a]. Hence,
(x, E,x) < ||z, zeX, a>0. (3.14)
Let us show 0 < (x, E,x), x € X, a > 0.

Since all operators C(t), t € R are hermitian, it is easy to see that operators
E,, a > 0 are hermitian; thus ¢“F« (t € R, a > 0) are isometries. On the other
hand, because operators F, are bounded, we can write

) it)2
eltEax — m+itEax+ %Eier...

From this, since E? = E,, a > 0, we get e?®fey = 2 — E,o + ¢ E, 2. Hence
(z,eax) = (x,2) — (x, Eqx) = cost(x, E,x) + sint(z,iE,x).

So, (1—cost){z, E,x) = ||z||? — (x, e Fax), because E, are hermitian. Since ||z||? —
(z,eiFag) > 0 (all e'Fa are isometries, thus (x,eFax) < ||z||?), from the last
equality we have (z, E,x) > 0. This together with (3.14) proves

0< (z,B.z) <|z||>, z€X, a>0. (3.15)
In a similar way, it can be proved that for 0 < a <band z € X

[(Ep — Ea)x|| < |l=], (3.16)
0 < (z, (By — Ea)z) < ||l2]f?, (3.17)
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because operators E,, a > 0 are bounded and (Ey, — E,)" = E, — E,, a < b,
n=1,2,.... Furthermore, we note that lim,_,. E,x =z, x € X (proved in [10]).

If we set X, := E,(X), a > 0, then it is easy to see that X, is a closed subspace
of X, and that X, is invariant relative to all operators A and C(t), t € R, because
A and C(t) commute with E,, a > 0. Set

A= (=b* —a?) and Ep := E, — E, for 0 < a < b,

A = (=b%,0] and Ea = E, for a = 0, and

A = (—o00,—a?) and Ep := I — E, for b = +o0.
Using (3.12), it is easy to verify that

EnEn, = Ean,En, = Eajna, for every two intervals Ay, Ay C (—00, 0].
Note that Ey = 0 denotes the operator such that Eyx = 0 for each x € X.

Set XA := EA(X) and X} := (I — EA)(X). Since EX = Ea, it follows that

x = Eax for each z € Xa, (3.18)
and that Eax = 0 for each z € X\. So, each z € X\ can be written in the form
=1z — FEax. (3.19)

It is easy to verify that Xa and X/ are closed subspaces of X, invariant relative
to the operator A. Let us prove that

o L XA = x9 € X/A (3.20)
If kg L Xa, ie. if (zg,z) = 0 for all z € Xa, then (xg,z0) = (xo,20 — Eaxo +
Eaxo) = (xo, (I — EA)xg), because Earg € Xa. So, ||zol|? = (xo, (I — Ea)xg).
From this, since (zo, (I — Ea)zo) < ||zo|| ||({ — Ea)xol|, it follows that ||zo]| < ||({ —
EA)xol|, which together with ||(I — Ea)xqll < ||zo|| proves |(I — Ea)zol = ||xoll-
Hence, (zo, (I — Ea)xo) = ||zol| [[(I = Ea)xo||. From this, since X is strictly convex,
it follows that xo = (I — Ea)xzo. So, xo € XA-

Now let A be an arbitrary open set in (—oo, 0] (referring to the relative topology
of (—o00,0] induced by the topology of R), and let A = J,~; A;, A; — mutually
disjoint intervals in (—o0,0]. Set -

XL=\/Xa, and X4 :=[()Xh,

i>1 i>1
Here, the linear hull of subspaces Xa, = Ea,(X) is denoted by \/,~; Xa,. So,
Ty € XI if and only if x can be written in the form x = Z?:l Ti, T; € Xa,,
for some n € N. If z € X{ then . = Y1 | 2, = >.I" | Ea,x; (by (3.18)). From
this, and Ex,Ean; = 0, Ea,(I — Ean,)) = 0 (4,5 = 1,2,...,n, i # j), we obtain
En,x = En, %y, thus o = 3| Ea, . So, for x € XJ,

x = Zn: Ea,z  for some n € N. (3.21)

i=1
Clearly, the linear manifold XX, and the closed subspace Xy are invariant relative
to the operator A. It is easy to see that

o L X{ = z9 € X, (3.22)
The proof is similar to the one of the statement (3.20).
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From (3.22) it follows that g L XX and zo L X imply zo = 0, thus XI + X\
is dense in X. Since X{ N X\ = {0}, the sum XX + X/ is direct, denoted by
X{+X). Let us define the operator Ea on the linear manifold X{+X/ in the
following way: Every z € XI—i—X /\ can be written in a unique way in the form

T =xpa+ T, A € XL, o\ € X),

so, we can define Eax := za. By (3.21), Eaz = (Z;L:l EAi)x. The opera-
tor > | Ea, is a hermitian projector, because operators Ea, are hermitian and
En,En,; =0, i# j. Hence E3x = Eaz and ||[Eaz| < [|z]| (z € XL+X4).

Now, we see that Ea can be extended to the hermitian projector Ea defined
on the whole X. Clearly, Fax = x for x € XX and Eaz = 0 for z € X,. Hence
Eax = for v € Xp = YZ. Since X{+X is dense in X, and X/ is closed, it
follows that X = Xa + X\. From Eaz = x for ¢ € Xa and Eaz =0 for x € X/,
it follows that X = Xa+X}.

It is easy to see that En = ), Ea, in the strong operator topology on X.
This is obvious if the number of intervals A; is finite. Let the number of intervals
A; be infinite. Any vector x € X can be written in the form
(n)

i

n
x = lim (%, + 1)), &n€ Xa, 2, € Xn, wherez, => J;Z(.n), T

—
n— 00 i=1

S XAi .
Then,

Eaz = lim &, = lim 3 2/ = lim 3 Ea,2\™

— — h — h
n oo n 007(:1 n 001:1

— lim . Ea,#n = lim (i EA,i)x =Y Eax.
n—=00 =1 n—=00 \j=1 i>1

Let now A and A be open sets in (—00,0]. If A C A, and if X = Xa+X4,
X=X A—i—X /A are corresponding decompositions of the space X, then XA C X3
and X}, 2 X%. This easily follows from the fact that the claim holds in the case
when A and A are intervals. (In that case, thew claim follows from the fact that
EAEx = Ea for A C A.) Furthermore, for open sets A and A (in (—o0,0]), it
follows EAER = ExEA = EAifAC A. This can be written in the form Ex < Ex.
We saw that XA = \/, Xa, (by definition) in the case when A is an open set such
that A = J, A;, A; — mutually disjoint intervals. It is easy to see that the same is
valid in the case when A; are open sets. If A’ C (—o0,0] is a closed set, then we
can define

Ear =1 — Ea, where A = (—00,0] \ A’ is an open set in (—o0, 0].
Hence, if Xao+X) is the decomposition of X corresponding to the open set A (in
(—00,0]), then

Enx=xfor x € Xar and Earx =0 for z € Xa.
So, for each open or closed set ¢ in (—oo, 0] there is the hermitian projector Ej.

Let A; be arbitrary mutually disjoint open sets (in (—o0,0]) and A = |J, A;.
We have already proved that Ea = ). Ea, in the strong operator topology on X,
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in the case when A; are intervals. But, that fact has played no role in the mentioned
proof. Hence, En =), Ea, holds in the case when A; are arbitrary open sets. If
A, A are open sets in (—oo, 0], then it is easy to see that X,z = XaNXx. Thus

Enni = EaEj. (3.23)
It is easy to prove that
Enva = Ea+Ex — Epna (3.24)
for all open sets A and A. Namely we have
Xpva = Eava(X) = (BEa = Epqa)(X)+H(Ex = Exna) (X)+HExq4(X),
which implies (3.24).
If A, A are closed sets in (—00,0], then (3.23) and (3.24) hold, too. Indeed, if
A = (—00,0]\ G, A = (—00,0] \ G, where G and G are open sets in (—oo, 0], then
Erxna =1 - Equa=1-Ec = Eg+ Egng = - Eq)(I — Eg) = EEg.
The relation (3.24) can be proved in a similar way.

Furthermore, by the definition of the operator E,, a > 0, we easily get AF,z =
E Az, v € D(A), a > 0, thus AEA,x = Ea, Az, x € D(A), A; — an open interval.
From this, and from En = >, Ea,, A = J;As, A; — mutually disjoint open
intervals, and since the operator A is closed, it follows that AEax = EaAz, x €
D(A), A — an open set. It is obvious that the last equality holds in the case when
A is a closed set in (—o0, 0], too.

Further, the resolvent R(\2, A) of A can now be written in the form

o 1
2

(obtained by (2.8), because F,x = [ By du, thus dF,z = E,x da). From this, we
obtain

b
1
R(\?,A)(Ey — E)x = /a Y dE,x, forevery 0 <a <b.

According to the previous notices: A = (—b2, —a?), En = Ey — Eo, I = (a,b),

1
2 —

The same holds for any open set A = J, A;, A; — open intervals in (—oo, 0], where
the corresponding open set in [0, +00) is denoted by I. This also holds when A is a
closed set in (—o0, 0], because it is the complement of the open set in (—oo, 0] with
respect to (—oo,0]. From this relation, it readily follows that the spectrum of the
operator A is a subset of A, where Ax denotes the restriction of the operator A
on the subspace Fa(X).

In the definition of the projector Ea, A = |J, A;, and in the proofs of its prop-
erties, the fact that A; are open intervals has played no essential role. Starting from
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open or closed sets in (—oo, 0] instead from open intervals, we define the projectors
Ea for sets A in (—o0, 0] which are unions of a finite or infinite countable number
of open or closed sets in (—o0, 0], and for their complements, too. All properties of
the operator Ea hold for these sets, as well. By repeating this procedure we can
verify that for each Borel set A in (—oo, 0] there is the projector Ea with earlier
described properties.

Let us assume that A is a spectral scalar type operator with the spectral family
E.,, u > 0 consisting of hermitian bounded linear projectors. Then, for all z € X,
and for A € C\ (—o0,0],

Sl | o 1 '
2
RO Ay = [ i = | <>\+u> B du.

By the definition of operators F,, a > 0 we get
Faa::/ E,xdu, reX, a>0,
0

so, we conclude that the operators F,, a > 0 are hermitian, and thus by (2.7), all
operators C(t), t € R are hermitian. The Theorem is proved. m
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