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BOUNDS ON ROMAN DOMINATION NUMBERS OF GRAPHS

B.P. Mobaraky and S.M. Sheikholeslami

Abstract. Roman dominating function of a graph G is a labeling function f : V (G) →
{0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination
number γR(G) of G is the minimum of Σv∈V (G)f(v) over such functions. In this paper, we find
lower and upper bounds for Roman domination numbers in terms of the diameter and the girth
of G.

1. Introduction

For G, a simple graph with vertex set V (G) and edge set E(G) (briefly V and
E), the open neighborhood N(v) of the vertex v is the set {u ∈ V (G) | uv ∈ E(G)}
and its closed neighborhood is N [v] = N(v)∪ {v}. Similarly, the open neighborhood
of a set S ⊆ V is the set N(S) =

⋃
v∈S N(v), and its closed neighborhood is

N [S] = N(S) ∪ S. The minimum and maximum vertex degrees in G are denoted
by δ(G) and ∆(G), respectively. A subset S of vertices of G is a dominating
set if N [S] = V . The domination number γ(G) is the minimum cardinality of a
dominating set of G. A subset S of vertices of G is a 2-packing if for each pair of
vertices u, v ∈ S, N [u] ∩N [v] = ∅.

A Roman dominating function (RDF) on a graph G = (V, E) is defined in [13],
[15] as a function f : V −→ {0, 1, 2} satisfying the condition that a vertex v with
f(v) = 0 is adjacent to at least one vertex u with f(u) = 2. The weight of a RDF
is defined as w(f) =

∑
v∈V f(v). The Roman domination number of a graph G,

denoted by γR(G), equals the minimum weight of a RDF on G. A γR(G)-function
is a Roman dominating function of G with weight γR(G). Observe that a Roman
dominating function f : V → {0, 1, 2} can be presented by an ordered partition
(V0, V1, V2) of V , where Vi = {v ∈ V | f(v) = i}.

Cockayne et. al [3] initiated the study of Roman domination, suggested orig-
inally in a Scientific American article by Ian Stewart [15]. Since V1 ∪ V2 is a
dominating set when f is a RDF, and since placing weight 2 at the vertices of a
dominating set yields a RDF, they observed that

γ(G) ≤ γR(G) ≤ 2γ(G). (1)
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In a sense, 2γ(G)−γR(G) measures “inefficiency” of domination, since the vertices
with weight 1 in a RDF serve only to dominate themselves. The authors [3] in-
vestigated graph theoretic properties of RDFs and characterized γR(G) for specific
graphs. They found out the graphs G, those with γR(G) = γ(G) + k when k ≤ 2;
and then for larger k by Xing et al. [16]. They also characterized the graphs G with
property γR(G) = 2γ(G) in terms of 2-packings, referring them to as Roman graphs.
Henning [9] characterized Roman trees, while Song and Wang [14] identified the
trees T with γR(T ) = γ(T ) + 3. Computational complexity of γR(G) is considered
in [4]. In [12], linear-time algorithms are given for γR(G) on interval graphs and on
cographs, along with a polynomial-time algorithm for AT-free graphs. Chambers
et al. [2] proved that γR(G) ≤ 4n

5 when G is a connected graph of order n ≥ 3, and
determined when equality holds. They have also obtained sharp upper and lower
bounds for γR(G) + γR(G) and γR(G)γR(G), where G denotes the complement of
G. Favaron et al. [7] proved that γR(G) + γ(G)

2 ≤ n for any connected graph G of
order n ≥ 3. Other related domination models are studied in [1, 5, 6, 10, 11].

The purpose of this paper is to establish sharp lower and upper bounds for
Roman domination numbers in terms of the diameter and the girth of G.

Cockayne et al. in [3] proved that:

Theorem A. For a graph G of order n,

γ(G) ≤ γR(G) ≤ 2γ(G),

with equality in lower bound if and only if G = Kn.

Theorem B. For paths Pn and cycles Cn,

γR(Pn) = γR(Cn) =
⌈

2n

3

⌉
.

Theorem C. Let G = Km1,... ,mn be the complete n-partite graph with m1 ≤
m2 ≤ . . . ≤ mn. If m1 = 2, then γR(G) = 3.

Theorem D. Let f = (V f
0 , V f

1 , V f
2 ) be a γR-function for a simple graph G,

such that |V f
1 | is minimum. Then V f

1 is a 2-packing.

2. Bounds in terms of the diameter

In this section sharp lower and upper bounds for γR(G) in terms of diam (G) are
presented. Recall that the eccentricity of vertex v is ecc(v) = max{d(v, w) : w ∈ V }
and the diameter of G is diam (G) = max{ecc(v) : v ∈ V }. Throughout this section
we assume that G is a nontrivial graph of order n ≥ 2.

Theorem 1. If a graph G has diameter two, then γR(G) ≤ 2δ. Furthermore,
this bound is sharp for infinite family of graphs.
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Proof. Since G has diameter two, N(u) dominates V (G) for all vertex u ∈
V (G). Now, let u ∈ V (G) and deg(u) = δ. Define f : V (G) −→ {0, 1, 2} by
f(x) = 2 for x ∈ N(u) and f(x) = 0 otherwise. Obviously f is a RDF of G. Thus
γR(G) ≤ 2δ.

To prove sharpness, let G be obtained from Cartesian product P2 ¤ Km (m ≥
3) by adding a new vertex x and jointing it to exactly one vertex at each copy of
Km. Obviously, diam (G) = 2 and γR(G) = 4 = 2δ. This completes the proof.

Next theorem presents a lower bound for Roman domination numbers in terms
of the diameter.

Theorem 2. For a connected graph G,

γR(G) ≥
⌈

diam (G) + 2
2

⌉
.

Furthermore, this bound is sharp for P3 and P4.

Proof. The statement is obviously true for K2. Let G be a connected graph
of order n ≥ 3 and f = (V f

0 , V f
1 , V f

2 ) be a γR(G)-function. Suppose that P =
v1v2 . . . vdiam (G)+1 is a diametral path in G. This diametral path includes at most
two edges from the induced subgraph G[N [v]] for each v ∈ V f

1 ∪ V f
2 . Let E′ =

{vivi+1 | 1 ≤ i ≤ diam (G)} ∩ ⋃
v∈V f

1 ∪V f
2

E(G[N [v]]). Then the diametral path

contains at most |V f
2 |−1 edges not in E′, joining the neighborhoods of the vertices

of V f
2 . Since G is a connected graph of order at least 3, V f

2 6= ∅. Hence,

diam (G) ≤ 2|V f
2 |+ 2|V f

1 |+ (|V f
2 | − 1) ≤ 2γR(G)− 2,

and the result follows.
In the following theorem, an upper bound is presented for Roman domination

numbers.

Theorem 3. For any connected graph G on n vertices,

γR(G) ≤ n−
⌊

1 + diam (G)
3

⌋
.

Furthermore, this bound is sharp.

Proof. Let P = v1v2 . . . vdiam (G)+1 be a diametral path in G. Moreover,
let f = (V f

0 , V f
1 , V f

2 ) be a γR(P )-function. By Theorem B, the weight of f is
d 2diam (G)+2

3 e. Define g : V (G) −→ {0, 1, 2} by g(x) = f(x) for x ∈ V (P ) and
g(x) = 1 for x ∈ V (G) \ V (P ). Obviously g is a RDF for G. Hence,

γR(G) ≤ w(f) + (n− diam (G)− 1) = n−
⌊

1 + diam (G)
3

⌋
.

To prove sharpness, let G be obtained from a path P = v1v2 . . . v3k (k ≥ 2) by
adding a pendant edge v3u. Obviously, G achieves the bound and the proof is
complete.
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For a connected graph G with δ ≥ 3, the bound in Theorem 3 can be improved
as follows.

Theorem 4. For any connected graph G of order n with δ ≥ 3,

γR(G) ≤ n−
⌊

1 + diam (G)
3

⌋
− (δ − 2)

⌊
diam (G) + 2

3

⌋
.

Proof. Let P = v1v2 . . . vdiam (G)+1 be a diametral path in G and f =
(V f

0 , V f
1 , V f

2 ) be a γR(P )-function for which |V f
1 | is minimized and V f

2 is a 2-
packing. Obviously, |V f

2 | = bdiam (G)+2
3 c. Let V f

2 = {u1, . . . , uk} where k =
bdiam (G)+2

3 c. Since P is a diametral path, each vertex of V f
2 has at least δ−2 neigh-

bors in V (G)\V (P ) and N(ui)∩N(uj) = ∅ if ui 6= uj . Define g : V (G) −→ {0, 1, 2}
by g(x) = f(x) for x ∈ V (P ), g(x) = 0 for x ∈ ⋃k

i=1 N(ui) ∩ (V (G) \ V (P )) and
g(x) = 1 when x ∈ V (G) \ (V (P )∪ (

⋃k
i=1 N(ui))). Obviously g is a RDF for G and

so

γR(G) ≤ w(g) = w(f) + n− diam (G)− 1− (δ − 2)
⌊

diam (G) + 2
3

⌋
.

Now the result follows from w(f) = d 2diam (G)+2
3 e.

The next theorem speaks of an interesting relationship between the diameter
of G and the Roman domination number of G, the complement of G.

Theorem 5. For a connected graph G with diam (G) ≥ 3, γR(G) ≤ 4.

Proof. Let P = v1v2 . . . vm be a diametral path in G where m ≥ 4. Let
S = {v1, vm}. Since diam (G) ≥ 3, each vertex v ∈ V (G) \ S can be adjacent to
at most one vertex of S in G. Consequently, S is a dominating set for G. By (1),
γR(G) ≤ 2γ(G) ≤ 4 and the proof is complete.

3. Bounds in terms of the girth

In this section we present bounds on Roman domination numbers of a graph
G containing cycles, in terms of its girth. Recall that the girth of G (denoted by
g(G)) is the length of a smallest cycle in G. Throughout this section, we assume
that G is a nontrivial graph of order n ≥ 3 and contains a cycle.

The following result is very crucial for this section.

Lemma 6. For a graph G of order n with g(G) ≥ 3 we have γR(G) ≥ d 2g(G)
3 e.

Proof. First note that if G is an n-cycle then γR(G) = d 2n
3 e by Theorem B.

Now, let C be a cycle of length g(G) in G. If g(G) = 3 or 4, then we need at least 1
or 2 vertices, respectively, to dominate the vertices of C and the statement follows
by Theorem A. Let g(G) ≥ 5. Then a vertex not in V (C), can be adjacent to at
most one vertex of C for otherwise we obtain a cycle of length less than g(G) which
is a contradiction. Now the result follows by Theorem A.
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Theorem 7. If g(G) = 4, then γR(G) ≥ 3. Equality holds if and only if G is
a bipartite graph with partite sets X and Y with |X| = 2, where X has one vertex
of degree n− 2 and the other of degree at least two.

Proof. Let g(G) = 4. Then γR(G) ≥ 3 by Lemma 6. If G is a bipartite graph
satisfying the conditions, then obviously g(G) = 4 and γR(G) = 3 by Theorem
C. Now let g(G) = 4 and γR(G) = 3 and f = (V f

0 , V f
1 , V f

2 ) be a γR(G)-function.
Obviously, |V f

1 | = |V f
2 | = 1. Suppose that V f

1 = {u} and V f
2 = {v}. Since γR(G) =

3, {u, v} is an independent set and v is adjacent to all vertices in V (G) \ {u, v}.
Let X = {u, v} and Y = V (G) \ X. Since g(G) = 4, Y is an independent set.
Henceforth, u and v are contained in each 4-cycle of G. It follows that u has degree
at least two. This completes the proof.

Theorem 8. Let G be a simple connected graph of order n, δ(G) ≥ 2 and
g(G) ≥ 5. Then γR(G) ≤ n − b g(G)

3 c. Furthermore, the bound is sharp for cycles
Cn with n ≥ 5.

Proof. Let G be such a graph. Assume C is a cycle of G with g(G) edges. If
G = C, then the statement is valid by Theorem B. Now let G′ be obtained from G
by removing the vertices of V (C). Since g(G) ≥ 5, each vertex of G′ can be adjacent
to at most one vertex of C which implies δ(G′) ≥ 1. Thus, γR(G′) ≤ n− g(G). Let
f and g be a γR(G′)-function and γR(C)-function, respectively. Define h : V (G) →
{0, 1, 2} by h(v) = f(v) for v ∈ V (G′) and h(v) = g(v) for v ∈ V (C). Obviously, h
is a RDF of G and the result follows.

Theorem 9. For a simple connected graph G of order n, if g(G) ≥ 5, then
γR(G) ≥ 2δ. The bound is sharp for C5 and C6.

Proof. Let f = (V f
0 , V f

1 , V f
2 ) be a γR(G)-function such that |V f

1 | is minimum
and let C be a cycle with g(G) edges. If n = 5, then G is a 5-cycle and γR(G) =
4 = 2δ. For n ≥ 6, if δ ≤ 2, then γR(G) ≥ d 2g(G)

3 e ≥ 2δ by Lemma 6. Now,
let δ ≥ 3. First suppose that V f

1 = ∅. Assume v ∈ V f
0 and N(v) = {v1, . . . , vk}

for some k ≥ δ. Without loss of generality, one may suppose v1, . . . , vr ∈ V f
2 and

vr+1, . . . , vk ∈ V f
0 and for j = r + 1, . . . , k, vjv

′
j ∈ E(G) where v′j ∈ V f

2 and k > r.
Since g(G) ≥ 5, the vertices of v1, . . . , vr, v

′
r+1, . . . , v′k are distinct. Consequently,

|V f
2 | ≥ 2k which implies γR(G) ≥ 2k ≥ 2δ. For the case V1 6= ∅, by definition

of f , |V f
1 | is an independent set. Suppose that u ∈ V f

1 and N(u) = {u1, . . . , uk}
for some k ≥ δ. Obviously, N(u) ⊆ V f

0 . For each j = 1, . . . , k, one may consider
ujvj ∈ E(G) where vj ∈ V f

2 . Since g(G) ≥ 5, the vertices v1, . . . , vk are distinct.
Hence, γR(G) = 2|V f

2 |+ |V f
1 | ≥ 2δ + 1 and the proof is complete.

Theorem 10. For a simple connected graph G with δ ≥ 2 and g(G) ≥ 6,
γR(G) ≥ 4(δ − 1). This bound is sharp for C6.

Proof. Let f = (V f
0 , V f

1 , V f
2 ) be a γR(G)-function such that |V f

1 | is minimum.
Therefore, V f

1 is an independent set and N(w1) ∩ N(w2) = ∅ if w1 6= w2 for
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w1, w2 ∈ V f
1 . For V f

1 6= ∅ and u ∈ V f
1 , N(u) = {u1, . . . , udeg(u)} ⊆ V f

0 . Suppose
that N(u1) = {w1, . . . , wr} where u = w1. Since g(G) ≥ 6, N(u) ∩N(u1) = ∅ and
N(ui) ∩ N(wj) = ∅ for each i, j. In this way, each vertex of V f

2 can be adjacent
to at most one vertex in (N(u) ∪N(u1)) ∩ V f

0 . This implies that |V f
2 | ≥ 2(δ − 1)

which follows the statement.
For V f

1 = ∅, |V f
0 | ≥ 2 holds clearly. If G[V f

0 ] has an edge uv, analogous
reasoning proves the statement. Let V f

0 be an independent set in G with |V f
0 | ≥ 2

and u, v ∈ V f
0 . Since g(G) ≥ 6 and V f

0 is an independent set, |N(u) ∩ N(v)| ≤ 1
and N(u) ∪N(v) ⊆ V f

2 . This implies that |V f
2 | ≥ 2δ − 1 and the result follows.

Theorem 11. For a simple connected graph G with δ ≥ 2 and g(G) ≥ 7,
γR(G) ≥ 2∆. This bound is sharp for g(G) = 7.

Proof. Let f = (V f
0 , V f

1 , V f
2 ) be a γR(G)-function such that |V f

1 | is minimum
and let C be a cycle of G with g(G) edges. Suppose v ∈ V (G) is a vertex with
degree ∆. By Theorem D, V f

1 is an independent set of G and N(w1) ∩N(w2) = ∅
if w1 6= w2 for w1, w2 ∈ V f

1 . Consider N(v) = {v1, v2, . . . , v∆}. For v /∈ V f
2 , similar

to the proof of Theorem 9, the statement follows. For v ∈ V f
2 , let A = N [v] ∩ V f

2

and B = N(v) ∩ V f
0 . For u ∈ B, three cases might occur.

Case 1. u has a neighbor in V f
2 −{v}. In this case, consider xu ∈ (V f

2 −{v})∩
N(u).

Case 2. u has no neighbor in V f
2 − {v} and u has some neighbor in V f

0 . For
yu ∈ N(u) ∩ V f

0 , Since g(G) ≥ 7, yu 6∈ B. In this case, let xu ∈ V f
2 ∩N(yu).

Case 3. u has no neighbor in V f
0 ∪ (V f

2 − {v}) and u has some neighbor in
V f

1 . For zu ∈ V f
1 ∩ N(u), Since G is connected and δ ≥ 2, zu has a neighbor in

V f
0 − {u}, say yu. On the other hand yu has a neighbor in V f

2 , say xu.
Since g(G) ≥ 7, it is straightforward to verify that A ∩ {xu | u ∈ B} = ∅ and

xu 6= xu′ when u 6= u′ and u, u′ ∈ B. Thus, |V f
2 | ≥ ∆ that implies the statement.

The bound is sharp for the graph G = (V, E), where V = {v, u, w, vi, ui, wi |
1 ≤ i ≤ m} and E = {vu, uw, w1w2, vvi, viui, uiwi | 1 ≤ i ≤ m} for m ≥ 2 when
g(G) = 7.
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