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AN EFFECTIVE CRITERION FOR THE EXISTENCE
OF A MASS PARTITION

Aleksandra S. Dimitrijević Blagojević

Abstract. Let µ be a proper Borel probability measure on the sphere S2 in R3. It was
conjectured that for every triple of rational numbers (q1, q2, q3) with the property q1+q2+q3 = 1

2
,

there exist three planes in R3 intersecting along the common line through the origin such that the
six angular sectors on the sphere determined by those planes have respectively q1, q2, q3, q1, q2, q3

amount of the measure µ. In this paper we give an exact and explicitly realized algorithm which,
for every triple (q1, q2, q3) of the form q2 = q3, establishes whether there exists a configuration of
three planes splitting the measure in the required proportion.

1. Introduction

The problem of a mass partition on the sphere S2 by a configuration of three
planes intersecting along the common line through the origin was first studied by
V. Makeev [8] for the case of all equal parameters q1 = q2 = q3. The generalized
problem was stated and studied by the author and collaborators in [1], [2], [3]. It
was proved that for parameters (1, 1, 2), (1, 1, 3), (1, 2, 2) such partitions also exist.
Following [3], the generalized problem can be stated as follows.

1.1. The problem

Consider a Borel probability measure µ on the sphere S2 with the properties
(A) µ([a, b]) = 0 for any circular arc [a, b] ⊂ S2, and
(B) µ(U) > 0 for each nonempty open set U ⊂ S2.

A measure satisfying (A)–(B) on the sphere S2 is a proper measure. Notice
that there are no assumptions of any kind of symmetry on the measure µ.

Problem 1. Determine all the six-tuples α = (q1, . . . , q6) ∈ N6 with the
property that for any proper Borel probability measure µ on the sphere S2 there
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are three planes intersecting along a common line passing through the origin with
angular sectors determined by hyperplanes having the prescribed amount of the
measure µ(σi) = qi

q1+···+q6
, for all i ∈ {1, . . . , 6}. The six-tuples which satisfy these

conditions are the solutions of the problem.

If the six-tuple α = (q1, . . . , q6) is a solution, then q1 = q4, q2 = q5, q3 = q6.
Indeed, consider a uniform measure µ on the sphere S2. Then the measure of every
angular sector bounded by two great semicircles is completely determined by the
angle between tangent vectors to the boundary great semicircles. Since the sum
of every three consecutive angles has to be π, then the first and the fourth, the
second and the fifth, the third and the sixth angle must be the same. The equality
of angles extends to the equality of measures since the measure µ is uniform. Thus
the uniform measure, which is highly symmetric, provides necessary conditions on
the set of parameters q1, . . . , q6.

Since the only possible solutions are symmetric ones the notation can be sim-
plified by listing only first three parameters q1, q2, q3.

Fig. 1. Partition of the sphere measure into six angular sectors by three hyperplanes

1.2. Topological problem

We present a sketch of the configuration space/test map scheme presented in
[1], [2], [3] to obtain a topological question which we address through computational
obstruction theory. Let us fix a proper Borel probability measure µ on S2 and a
triple of parameters (q1, q2, q3).

A k-fan (x; l1, . . . , lk) is a collection of a point x ∈ S2 and k great semicircles
l1, . . . , lk emanating from x. Instead of great semicircles one can also use the
notation:

(a) (x;σ1, . . . , σk) where σi is an open angular sector between li and li+1, i =
1, . . . , k; or

(b) (x; t1, . . . , tk) where ti ∈ TxS2 is a tangent vector which is determined by the
great semicircle curves li, i = 1, . . . , k. Here TxS2 denotes the tangent space
at a point x ∈ S2.

The space of all k-fans on the sphere S2 is denoted by Fk.
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For n > 1 consider the space

Xµ,n = {(x; t1, . . . , tn) ∈ Fn | µ(σi) = 1
n for every i = 1, . . . , n}.

Every n-fan (x; t1, . . . , tn) ∈ Xµ,n is determined by the pair (x, t1) ∈ S2 × TxS2

and the measure µ. Thus Xµ,n is homeomorphic with the Stiefel manifold V2(R3).

Fig. 2. Stiefel manifold and the tangent representation of a fan for n = 6

The test map associated to our problem is given by

Φ : Xµ,n → Wn = {y ∈ Rn | Σiyi = 0}, Φ(x; t1, . . . , tn) = (θ1 − 2π
n , . . . , θn − 2π

n ),

where θi denotes the angle between tangent vectors ti and ti+1 in the tangent
plane TxS2. It is assumed that tn+1 = t1. The map Φ is a continuous map because
measure µ is a proper measure.

Fig. 3. Action of j on Xµ,n

The dihedral group D2n = 〈j, ε | εn = j2 = 1, εj = jεn−1 〉 acts on the space
Xµ,n and on the hyperplane Wn by
{

ε(x; t1, . . . , tn) = (x; tn, t1, . . . , tn−1)
j(x; t1, . . . , tn) = (−x; t1, tn, . . . , t2)

{
ε(y1, . . . , yn) = (yn, y1, . . . , yn−2, yn−1)
j(y1, . . . , yn) = (yn, yn−1, . . . , y2, y1)

(1)
where (x; t1, . . . , tn) ∈ Xµ,n and (y1, . . . , yn) ∈ Wn. The action of j on Xµ,n is
derived from the fact that the pair of unit vectors (−x, t1) determines the opposite
orientation of R3 to the one given by the pair (x, t1); see Figure 3.
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The action on Xµ,n is free and the test map Φ is an equivariant map.
The test subspace where possible solutions of the problem lie is the union⋃An ⊂ Wn of the smallest D2n-invariant arrangement An, which contains the

linear subspace L ⊂ Wn defined by the equalities

y1 + . . . + yn
2

= yq1+1 + . . . + yq1+
n
2

= yq1+q2+1 + . . . + yq1+q2+
n
2

= 0. (2)

Indeed, if (x, t1, . . . , tn) ∈ Φ(Xµ,n) ∩ (
⋃An) then

θ1 − 2π
n + . . . + θn

2
− 2π

n = θq1+1 − 2π
n + . . . + θq1+

n
2
− 2π

n

= θq1+q2+1 − 2π
n + . . . + θq1+q2+

n
2
− 2π

n = 0

where, again θi denotes the angle between tangent vectors ti and ti+1 in the tangent
plane TxS2. Consequently,

θ1 + . . . + θn
2

= θq1+1 + . . . + θq1+
n
2

= θq1+q2+1 + . . . + θq1+q2+
n
2

= π.

Therefore l1∪ln
2
, lq1+1∪lq1+

n
2

and lq1+q2+1∪lq1+q2+
n
2

are great circles on the sphere
S2 and the fan (x, t1, . . . , tn) ∈ Φ(Xµ,n) ∩ (

⋃An) is a solution of the problem.
The basic proposition of the method holds (cf. [3], [1]).

Proposition 2. If there is no continuous D2n-equivariant map V2(R3) →
Wn \

⋃An, then for every proper Borel probability measure on the sphere S2, there
exist three planes intersecting along the common line throughout the origin with
angular sectors such that, for every i ∈ {1, . . . , 6}, µ(σi) = qi/n.

Fig. 4. Map Φ is an equivariant map

The following proposition is proved in [4]. Let Q4n denote the generalized
quaternion group 〈ε, j〉 ⊂ S3 (cf. [5, p. 253] and [3, Appendix A.1, p. 2654]. The
group Q4n acts on S3 as a subgroup, and on Wn by the quotient homomorphism
Q4n → Q4n/{1,−1} ∼= D2n and already defined D2n-action on Wn. The Q4n-action
on S3 is free.

Proposition 3. The following continuous equivariant maps coexist

D2n-map V2(R3) → Wn \
⋃
An and Q4n-map S3 → Wn \

⋃
An.
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In the light of Propositions 2 and 3 we obtained the following topological
problem.

Problem 4. Determine all symmetric six-tuples α = (q1, q2, q3, q1, q2, q3) ∈ N6

such that there is no Q4n-equivariant map S3 → Wn\
⋃An, where the arrangement

An is the minimal Q4n-invariant (D2n-invariant) arrangement containing the linear
subspace L ⊂ Wn defined by the equations (2).

1.3. Statement of main result

In this paper we address Problem 4 through computational equivariant ob-
struction theory [3]. We give an explicit and exact algorithm (Section 2) which for
the given parameters q1 and q2 establishes the nonexistence of a Q4n-equivariant
map S3 → Wn \

⋃An for a symmetric six-tuple (q1, q2, q2, q1, q2, q2). The given
algorithm is realized in the computational package Mathematica [7]. The results
obtained so far are summarized in the following theorem.

Theorem 5. For all triples (q1, q2, q2) such that n
2 = q1 + 2q2 ≤ 40, and any

proper Borel probability measure µ on S2,

(A) there are no continuous Q4n-equivariant maps S3 → Wn \
⋃An, which implies

that

(B) there are three planes intersecting along the common line throughout the ori-
gin such that angular sectors determined by them have the (q1, q2, q2, q1, q2, q2)
proportion of the measure µ.

The same algorithm can provide an answer for any set of parameters when
n > 80, up to a computational time which grows. The assumption that q2 = q3

reflects the properties of the arrangement An and surfaces in the equations (4). The
algorithm given in [7] for given parameters q1 and q2 = q3 proves the theorem by
applying the procedure of computing the obstruction cocycle presented in Section
2 followed by a parity criterion (Theorem 9).

2. Computational obstruction theory

In this section we follow the method of the computational obstruction theory
explained in [3, Section 1.5.] for setting up the algorithm for questioning the
existence of a Q4n-map S3 → Wn \

⋃An when q2 = q3.

The assumptions for the application of the equivariant obstruction theory are
satisfied because:

• dim S3 − 2 = conn(Wn \
⋃An) = 1, codimWn(

⋃An) = 3,

• Wn \
⋃An is 2-simple, π1(Wn \

⋃An) = 0 acts trivially on π2(Wn \
⋃An) ∼=

H2(Wn \
⋃An,Z),

• the action of Q4n on S3 is free.
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Therefore the existence of an equivariant map depends on the primary obstruc-
tion element [o] = [o(f)] living in the equivariant cohomology group

H3
Q4n

(S3,H2(Wn \
⋃
An,Z)).

The obstruction element does not depend on the particular Q4n-map f from the
2-skeleton of the sphere (S3)(2) to the complement Wn \

⋃An.

Thus, the obstruction element can be determined by the explicit computation
of the obstruction cocycle o(f) for some nicely defined Q4n-map f : (S3)(2) →
Wn \

⋃An. Such a map is called a map in general position and should satisfy the
properties in [3, Definition 1.5, p. 2639]. After obtaining the obstruction cocycle
o(f), its class in cohomology is the obstruction element and

[o] = [o(f)] = 0 if and only if there is a continuous Q4n-map f : S3 → Wn \
⋃
An.

Since the action of Q4n on the sphere S3 is free it can be substituted by any other
free Q4n action on the sphere S3. This observation allows us to choose a particular
action on the sphere in the process of computation of the obstruction cocycle.

The algorithm of computing the obstruction cocycle o = o(f), for a map
f : S3

(2) → Wn \
⋃An in general position has following three steps (cf. [3]). It is

followed by a parity criterion for the non-vanishing of the obstruction element [o].

2.1. Equivariant simplicial structure on S3

The sphere S3 can be seen as the Q4n simplicial complex P
(1)
n ∗ P

(2)
n where

P
(i)
n , i = 1, 2, denotes a regular n-gon. We denote vertices of P

(1)
n by a0, . . . , an−1

and vertices of P
(2)
n by b0, . . . , bn−1. Then all tetrahedra in the join P

(1)
n ∗ P

(2)
n

are of the form [ar, ar+1, bk, bk+1]. The action of Q4n on P
(1)
n ∗ P

(2)
n is given on

0-skeleton in the following way: let t denote a0 vertex then

ai = εi · t and bj = εij · t.

The action extends to all skeleta equivariantly. In this way we equipped the sphere
S3 with a free Q4n-action.

Fig. 5. Q4n simplicial structure on S3
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This particularly chosen free Q4n action on S3 is not the one introduced in (1).
The reason why the substitution of actions can be done, as we already indicated,
is the consequence of the following lemma from the obstruction theory.

Lemma 6. Let G be a finite group and let the sphere Sn be equipped with two
free G actions · and ◦. Then there exist G-equivariant maps (Sn, ·) → (Sn, ◦) and
(Sn, ◦) → (Sn, ·).

Proof. The sphere Sn is (n − 1)-connected space, both actions are free and
therefore there is no obstruction for the existence of G map (Sn, ·) → (Sn, ◦) or
(Sn, ◦) → (Sn, ·).

2.2. A map in a general position

We define a Q4n-equivariant map F : P
(1)
n ∗ P

(2)
n → Wn by defining its image

on the vertex t:

F (t) :=
(

1
1 , 1

2 , 1
3 , . . . ., 1

n−1 ,−
n−1∑
i=1

1
i

)

and then extend it equivariantly. The requirement that F is piecewise affine de-
termines the extension of F uniquely. The image of t should be chosen in such a
way that it satisfies the property of being in general position toward the arrange-
ment An, [3, Definition 1.5, p. 2639]. Particularly, in this situation this means that
there is no triangle τ in P

(1)
n ∗ P

(2)
n such that F (τ) ∩ (

⋃An) 6= ∅. This property
is tested by the algorithm for every choice of parameters q1, q2. If the property is
not satisfied the algorithm reports and allows manual intervention in definition of
F (t).

Let f = F |(S3)(2) be a map from the second skeleton of the sphere S3. Since F

is in general position f can be seen as a Q4n-map
(
S3

)(2) → Wn\ (
⋃An). Therefore

it is enough to compute the obstruction cocycle of the map f .

2.3. Obstruction cocycle o(f)
The obstruction cocycle o(f) is computed using [3, Proposition 1.6, p. 2640].

When F : P
(1)
n ∗ P

(2)
n → Wn is a map in general position with respect to An, then

for every 3-simplex σ = [ai, ai+1, bj , bj+1] of P
(1)
n ∗P

(2)
n the value of the obstruction

cocycle o(f) on σ is given by:

o(f)(σ) =
∑

x∈F−1(F (σ)∩(
⋃
An))

I(σ, Sf(x)) ‖f(x)‖ ∈ H2(Wn\
⋃
An,Z). (3)

Here I(σ, SF (x)) ∈ Z denotes the intersection number of the image F (σ) and the
appropriate oriented element SF (x) of the arrangement An. The homology class
‖F (x)‖ is the so-called point class associated with the point ‖f(x)‖ and the element
of the arrangement SF (x). The notion of point classes was introduced in [4].

The formula (3) is the heart of the algorithm [7]. By computing all intersections

F ([ai, ai+1, bj , bj+1]) ∩ (
⋃
An)
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and testing whether they belong to more than one maximal element of the arrange-
ment, the algorithm obtains an explicit formula for the obstruction cocycle of the
map f = F |(S3)(2) .

The essential consequence of the assumption q2 = q3 is that

ε
n
2 L = L and ε−2q2jL = L. (4)

This means that the arrangement An has n
2 maximal elements. Therefore it is

enough to determine the n× n
2 intersections f(P (1)

n ∗ P
(2)
n ) ∩ (

⋃An) of the form

f ([ai, ai+1, b0, b1]) ∩ εrL = f
(
[εit, εi+1t] ∗ [jt, εjt]

) ∩ εrL

where i ∈ {0, . . . , n− 1} and r ∈ {0, . . . , n
2 − 1}.

2.4. Parity criterion for [o] 6= 0
In this subsection we give an explicit criterion when the obstruction cocycle

given by
o(f) ∈ C3

Q4n
(S3, H2(Wn \

⋃
An,Z))

does not vanish while passing to cohomology into the obstruction element

[o(f)] ∈ H3
Q4n

(S3,H2(Wn \
⋃
An,Z)).

An Economical Q4n cell structure on S3. As presented in [5, p. 253] and
[3, Appendix A, pp. 2654–2655], there is a Q4n cell structure on S3 with just one
equivariant generator in dimension 3. The cellular complex has one Q4n 0-cell a,
two Q4n 1-cells b and b′, two Q4n 2-cells c and c′, and one Q4n 3-cell e. The chain
complex D = {Di} is given by

0 → Z[Q4n]e ∂→ Z[Q4n]c⊕ Z[Q4n]c′ ∂→ Z[Q4n]b⊕ Z[Q4n]b′ ∂→ Z[Q4n]e → 0

where

∂e = (ε− 1)c− (εj − 1)c′, ∂c = (1 + · · ·+ εn−1)b− (j + 1)b′, ∂b = (ε− 1)a,

∂c′ = (εj + 1)b + (ε− 1)b′, ∂b′ = (j − 1)a.

The just defined Q4n complex can be cellularly mapped to the Q4n simplicial com-
plex P

(1)
n ∗ P

(2)
n such that in dimension 3 it is given by

e 7−→ [a0, a1, b0, b1] + [a1, a2, b0, b1] + · · ·+ [an−1, an, b0, b1].

The following proposition is the consequence of the existence of just one equivariant
generator in the Q4n cell structure on S3.

Proposition 7. The obstruction cocycle, in terms of the Q4n cell structure
on S3, again denoted by o(f), is completely determined by the value

o(f)(e) =
n−1∑
i=0

o(f)([ai, ai+1, b0, b1]) ∈ H2(Wn \
⋃An,Z). (5)
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Q4n-module structure on H2(Wn \
⋃An,Z). Following the same argument

as in [3, Eq. (20–24), pp. 2646–2647] we have the isomorphism of Q4n-modules

ϕ : H2

(
Wn \

⋃
An,Z

)
→ Hom

(
Hn−4

(⋃
Ân,Z

)
,Z

)

given on the point class ‖y‖ as the evaluation of the linking number

ϕ (‖y‖) (l) = link(l, ‖y‖)
where l ∈ Hn−4(

⋃ Ân,Z). Here Ân denotes the one-point compactification of the
arrangement An. Moreover there is a Q4n decomposition of modules

Hn−4(
⋃
Ân,Z) ∼=

n−4⊕

d=0

( ⊕

V ∈P :dim V =d

H̃n−5−d(∆(P<V ),Z)
)

∼=
( ⊕

V ∈P :dim V =n−4

Z
)
⊕

( n−5⊕

d=0

( ⊕

V ∈P :dim V =d

H̃n−5−d(∆(P<V ),Z)
))

where P denotes the intersection poset of the arrangement Ân. Thus there is an
exact sequence of Q4n-modules

0 −→
⊕

V ∈P :dim V =n−4

H̃n−5−d(∆(P<V );Z)︸ ︷︷ ︸
∼=Z

−→ Hn−4

(⋃
Ân,Z

)

which induces an exact sequence of Q4n-modules

H2

(
Wn \

⋃
An,Z

)
χ−→ Hom

( ⊕

V ∈P :dim V =n−4

H̃n−5−d(∆(P<V );Z),Z
)
−→ 0.

(6)
The map χ is geometrically interpreted as the computation of the linking numbers.
The left exactness of the coinvariant functor, implies the exactness of the sequence

H2

(
Wn \

⋃
A,Z

)
Q4n

χ∗−→ Hom
( ⊕

V ∈P :dim V =n−4

H̃n−5−d(∆(P<V );Z),Z
)

Q4n

−→ 0.

(7)
The map χ∗ is the summation of linking numbers along the orbit.

Proposition 9. Hom
(⊕

V ∈P :dim V =n−4 H̃n−5−d(∆(P<V );Z),Z
)

Q4n

∼= Z/2.

Proof. The conclusion follows along the same lines as in [3, Lemma 2.5, p.
2647] using (4).

The criterion. With all the assumptions and notions introduced in Section
2 we state the criterion.

Theorem 10. If the number of elements of the set F−1 (F (e) ∩ (
⋃An)) is

odd then [o(f)] = [o] 6= 0.
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Proof. Let
∣∣F−1 (F (e) ∩ (

⋃An))
∣∣ be an odd number. Then by (3) the obstruc-

tion cocycle is

o(f)(e) =
∑

x∈F−1(F (σ)∩(
⋃
An)):σ⊂e

I(σ, Sf(x))‖f(x)‖

where the sum has odd number of summands and I(σ, Sf(x)) ∈ {−1, +1}. Using
Proposition 7 we can think of the obstruction element o(f) as an element of the
coefficient group o(f)(e) ∈ H2 (Wn \

⋃A,Z). The obstruction element [o(f)(e)]
is the image of o(f)(e) along the quotient homomorphism (cf. [3, Proposition 1.6,
p. 2640]

ζ : H2

(
Wn \

⋃
A,Z

)
−→ H2

(
Wn \

⋃
A,Z

)

Q4n

.

Here H2 (Wn \
⋃A,Z)Q4n

denotes the group of coinvariants of the Q4n-module
H2 (Wn \

⋃A,Z).
The image of the obstruction cocycle o(f)(e), mapped by the composition

χ∗ ◦ ζ : H2

(
Wn \

⋃
A,Z

)
−→ Hom

( ⊕

V ∈P :dim V =n−4

H̃n−5−d(∆(P<V );Z),Z
)

Q4n

is given by

o(f)(e)
ζ7−→ [o(f)]

χ∗7−→
∑

x∈F−1(F (σ)∩(
⋃
An)):σ⊂e

I(σ, Sf(x)).

Since the number of summands is odd, the obstruction element is different from
zero.
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