RIESZ SPACES OF MEASURES ON SEMIRINGS

Z. Ercan

Abstract. It is shown that the spaces of finite valued signed measures (signed charges) on σ -semirings (semirings) are Dedekind complete Riesz spaces, which generalizes known results on σ -algebra and algebra cases.

In the literature, to the best of my knowledge, in measure theory there are two (slightly) different definitions of a "semiring" as a collection of subsets of a nonempty set with certain conditions. The notion of a "semiring" has first been defined in [2] as a nonempty collection \mathcal{T} of a nonempty set X which satisfies, for each $A, B \in \mathcal{T}$, that $A \cap B \in \mathcal{T}$ and $A - B = \bigcup_n C_n$ for some pairwise disjoint sequence (C_n) in \mathcal{T} (see also [5]). In [1], a nonempty set \mathcal{T} of subsets of a nonempty set X is called a *semiring* on X if it is closed under finite intersections and for each $A, B \in \mathcal{T}$ there are pairwise disjoint sets C_1, C_2, \ldots, C_n such that $A - B = \bigcup_{i=1}^n C_i$. In this paper we use the notion of a semiring as in the later sense. A semiring \mathcal{T} on X is called a *semi-algebra* if $X \in \mathcal{T}$ (see [4]). Of course algebras and σ -rings are semirings and there are plenty of examples of semirings which are not an algebra or a σ -ring.

A subset A of X is called a σ -set in a semiring S on X if $A = \bigcup_{n=1}^{\infty} A_n$ for some disjoint sequence (A_n) in S. It is easy to see that if A, A_1, A_2, \ldots, A_n are in a semiring then $A - \bigcup_{i=1}^{n} A_i$ is a σ -set, but if $A \in \mathcal{S}$ and (A_n) is a sequence in \mathcal{S} then $A - \bigcup_{n=1}^{\infty} A_n$ may not be a σ - set.

EXAMPLE 1. i) Let X = [0, 1) and $\mathcal{T} = \{[a, b) : 0 \le a \le b \le 1\}$ is a semiring on X, but $\{0\} = X - \bigcup_n [1/n, 1)$ is not a σ -set in \mathcal{T} .

ii) Let X be a countable infinite set, $\mathcal{T} = \{\{x\} : x \in X\} \cup \{\emptyset\}$. For each $A, A_1, A_2, \dots \in \mathcal{T}, A - \bigcup_n A_n$ is a σ -set, but \mathcal{T} is neither an algebra nor a σ -ring.

This observation let us to introduce the following notion.

DEFINITION 1. A semiring S on X is called a σ -semiring on a set X if for each $A \in \mathcal{S}$ and for each sequence (A_n) in \mathcal{S} the set $A - \bigcup_n A_n$ is a σ - set.

Keywords and phrases: Riesz spaces; semiring; measure. 235

AMS Subject Classification: 28C99, 46G12.

Z. Ercan

It should be noted that for sequences $(A_n), (B_n)$ in a σ -semiring S there exists a disjoint sequence (C_n) in S such that

$$\bigcup_{n} A_n - \bigcup_{n} B_n = \bigcup_{n} C_n.$$

If μ is a measure on S and $\bigcup_n A_n \subset \bigcup_n B_n$ then

$$\sum_{n} \mu(A_n) \le \sum_{n} \mu(B_n).$$

For unknown definitions we refer to standard books [1] and [5].

1. The spaces of signed measures and charges as Riesz spaces

A map $\mu : S \to \mathbf{R}$, where S is a semiring on a set X, is called a *signed measure* if it is the difference of two positive measures. Let Σ be a σ -algebra on a set X and let

 $M(\Sigma) = \{\mu : \mu : \Sigma \longrightarrow \mathbf{R} \text{ is a signed measure } \}.$

It is well known that under the operations

$$(\mu_1 + \mu_2)(A) = \mu_1(A) + \mu_2(A), \quad (\alpha\mu)(A) = \alpha\mu(A)$$
$$\mu_1 \le \mu_2 \Leftrightarrow \mu_1(A) \le \mu_2(A) \quad \text{for all } A \in \Sigma$$

 $M(\Sigma)$ is a Dedekind complete Riesz space and for any $\mu, \nu \in M(\Sigma)$ the supremum of μ and ν is determined by the formula

$$(\mu \lor \nu)(A) = \sup\{\mu(B) + \nu(A - B) : B \in \Sigma \text{ and } B \subset A\}$$

(see [1] for a proof). The main result of this paper is to give a generalization of this as follows.

THEOREM 1. Let S be a σ -semiring on a set X and let

 $M(\mathcal{S}) = \{ \mu : \mu : \mathcal{S} \longrightarrow \mathbf{R} \text{ is a signed measure} \}.$

Under the operations

$$(\mu_1 + \mu_2)(A) = \mu_1(A) + \mu_2(A), (\alpha\mu)(A) = \alpha\mu(A)$$

$$\mu_1 \le \mu_2 \Leftrightarrow \mu_1(A) \le \mu_2(A) \quad for \ all \quad A \in \mathcal{S}$$

M(S) is a Dedekind complete Riesz space and for any $0 \le \mu, \nu \in M(S)$ the supremum of μ, ν is given by

$$w(A) = \sup \left\{ \sum_{n=1}^{\infty} \mu(A_n) + \sum_{n=1}^{\infty} \nu(B_n) : (A_n), (B_n) \text{ are disjoint in } S, \right.$$
$$\bigcup_n A_n \subset A \text{ and } A - \bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n \right\}.$$

236

Proof. Firstly let $0 \leq \mu, \nu \in M(\mathcal{S})$ be given and w(A) be defined as above. It is easy to see that $w(A) \geq 0$ for each $A \in \mathcal{S}$ and $w(\emptyset) = 0$. Let $\{A_n\}$ be a disjoint sequence in \mathcal{S} satisfying $\bigcup_{n=1}^{\infty} A_n = A \in \mathcal{S}$. Let (B_n) be a disjoint sequence in \mathcal{S} with $\bigcup_{n=1}^{\infty} B_n \subset A$ and choose a disjoint sequence (C_n) in \mathcal{S} such that $A - \bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} C_n$. For each m, let (T_n^m) be a disjoint sequence in \mathcal{S} satisfying

$$\bigcup_{n=1}^{\infty} (C_n \cap A_m) \subset A_m - \bigcup_{n=1}^{\infty} (B_n \cap A_m) = \bigcup_{n=1}^{\infty} T_n^{m}$$

which implies

$$\sum_{n} \nu(C_n \cap A_m) \le \sum_{n} \nu(T_n^{m}).$$

Also we have

$$\sum_{n} \mu(B_n) + \sum_{n} \nu(C_n) = \sum_{n} \mu(\bigcup_m (B_n \cap A_m)) + \sum_{n} \nu(\bigcup_m (C_n \cap A_m))$$
$$= \sum_{n} \sum_{m} \mu(B_n \cap A_m) + \sum_{n} \sum_{m} \nu(C_n \cap A_m)$$
$$= \sum_{m} (\sum_{n} \mu(B_n \cap A_m) + \sum_{n} \nu(C_n \cap A_m))$$
$$\leq \sum_{m} (\sum_{n} \mu(B_n \cap A_m) + \sum_{n} \nu(T_n^m))$$
$$\leq \sum_{m} w(A_m),$$

so that

$$w(\bigcup_n A_n) \le \sum_m w(A_n).$$

For the converse direction let $\epsilon > 0$. For each *n* choose a disjoint sequences $(B_m{}^n), (T_m{}^n)$ in S satisfying

$$\bigcup_{m} B_{m}{}^{n} \subset A_{n} \quad \text{and} \quad A_{n} - \bigcup_{m} B_{m}{}^{n} = \bigcup_{m} T_{m}{}^{n}$$

such that

$$w(A_n) - \epsilon/2^n \le \sum_m \mu(B_m{}^n) + \sum_m \nu(T_m{}^n).$$

 So

$$\sum_{n} w(A_n) - \epsilon \le \sum_{n} \sum_{m} \mu(B_m^{n}) + \sum_{n} \sum_{m} \nu(T_m^{n}).$$

Note that for each i, j, m, n

$$B_m{}^n \cap T_i{}^j = \emptyset$$
 and $\bigcup_n \bigcup_m B_m{}^n \subset \bigcup_n A_n$

and there exists a disjoint sequence (C_n) in \mathcal{S} such that

$$\bigcup_{n} \bigcup_{m} T_{m}^{n} \subset \bigcup_{n} A_{n} - \bigcup_{n} \bigcup_{m} B_{m}^{n} = \bigcup_{m} C_{m}$$

Z. Ercan

and

$$\sum_{n} \sum_{m} \mu(T_m^{n}) \le \sum_{m} \mu(C_m)$$

Now it is clear that

$$\sum_{n} w(A_n) - \epsilon \le w(\bigcup_{n} A_n)$$

Since $\epsilon > 0$ is arbitrary, we have

$$w(\bigcup_n A_n) = \sum_n w(A_n).$$

So far we have shown that w is an upper bound of μ, ν in M(S). Now suppose that β is another upper bound of μ, ν . Let $A \in S$ and $(A_n), (B_n)$ be arbitrary disjoint sequence in S with

$$\bigcup_{n} A_n \subset A \quad \text{and} \quad A - \bigcup_{n} A_n = \bigcup B_n$$

and

$$\sum_{n} \mu(A_n) + \sum_{n} \nu(B_n) \le \sum_{n} \beta(A_n) + \sum_{n} \beta(B_n) = \beta(\bigcup_{n} A_n \cup \bigcup_{n} B_n) = \beta(A)$$

which implies that $w \leq \beta$ in $M(\mathcal{S})$. We have proved that $\mu \vee \nu$ exists for each $0 \leq \mu, \nu \in M(\Sigma)$. Let $\mu, \nu \in M(\mathcal{S})$ with $\alpha \leq \nu, \mu$ for some measure $-\alpha$. Now it is routine to check that

$$(\mu - \alpha) \lor (\nu - \alpha) + \alpha$$

is least upper bound on μ and ν , i.e. $\mu \vee \nu$ exists. Hence $M(\mathcal{S})$ is a Riesz space. If $\mu_{\alpha} \uparrow \leq \mu$ we define $\mu_{\infty}(A) = sup_{\alpha}\mu_{\alpha}(A)$ then it is easy to show that $\mu_{\infty} \in M(\mathcal{S})$ and $\mu_{\alpha} \uparrow \mu_{\infty}$, which proves that $M(\mathcal{S})$ is Dedekind complete.

It is known that if \mathcal{A} is an algebra on a set X, then the vector space

 $C(\mathcal{A}) = \{ \mu : \mu : \mathcal{A} \longrightarrow \mathbf{R} \text{ is a signed charge} \}$

is a vector lattice under pointwise order and supremum of $\mu, \nu \in C(\mathcal{A})$ is given by

$$\mu \lor \nu(A) = w(A) = \sup\{\mu(B) + \nu(A - B) : B \in \mathcal{A} \text{ and } B \subset A\}$$

(see [2] for a proof). This result can be generalized as follows and its proof is similar to the proof of the above theorem.

THEOREM 2. Let \mathcal{A} be a semiring (not necessarily a σ -semiring) on X. Then

$$M(\Sigma) = \{\mu : \mu : \mathcal{A} \longrightarrow \mathbf{R} \text{ is a signed charge}\}$$

is a Dedekind complete vector lattice under usual operations and supremum of any μ, ν is given by

$$(\mu \vee \nu)(A) = \sup \left\{ \sum_{i=1}^{k} \mu(A_i) + \sum_{i=1}^{k} \nu(B_i) : A_i, B_i \in \mathcal{A}, \quad \bigcup_{i=1}^{k} A_i \subset A \quad and \\ A - \bigcup_{i=1}^{k} A_i = \bigcup_{i=1}^{k} B_i, \quad A_i \cap A_j = B_i \cap B_j = \phi \quad for \ all \quad i \neq j \right\}.$$

238

ACKNOWLEDGEMENT. I would like thank to the referee for many corrections and comments.

REFERENCES

- [1] C. D. Aliprantis and O. Burkinshaw, Principle of Real Analysis, Springer-Verlag, Berlin, 1998.
- $[\mathbf{2}]$ N. G. Bruijn and A. C. Zaanen, Non σ -finite measures and product measures, Indag. Math. 16 (1954), 456–466.
- [3] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I, Amsterdam: North Holland, 1971.
- [4] I. K. Rana, An Introduction to Measure and Integration, Graduate Studies in Mathematics, V. 45, 2002.
- [5] A. C. Zaanen, An Introduction to the Theory of Integration, Amsterdam, 1958.

(received 03.07.2008, in revised form 08.01.2009)

Abant Izzet Baysal University, Department of Mathematics, 14280, Bolu, Turkey *E-mail*: zercan@ibu.edu.tr