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SUBSPACE AND ADDITION THEOREMS FOR EXTENSION AND
COHOMOLOGICAL DIMENSIONS. A PROBLEM OF KUZMINOV

V. V. Fedorchuk

Abstract. Let K be either a CW or a metric simplicial complex. We find sufficient condi-
tions for the subspace inequality

ACX, KeAEX)= K ¢cAE(A).

For the Lebesgue dimension (K = S™) our result is a slight generalization of Engelking’s theorem
for a strongly hereditarily normal space X. As a corollary we get the inequality

A C X = dimg A < dimg B.

for a certain class of paracompact spaces X and an arbitrary abelian group G.
As for the addition theorems

K € AE(A), L€ AE(B)= K=«*L € AE(AUB),
dimg(A U B) < dimg A + dimg B + 1,

we extend Dydak’s theorems for metrizable spaces (G is a ring with unity) to some classes of
paracompact spaces.

Introduction

One of the main results of theory of Lebesgue dimension is the inequality
(1) dim(AuB) <dimA+dimB + 1.

This inequality is called Urysohn—-Menger formula. Inequality (1) was established
for separable metric spaces by P.S. Urysohn in [40] (announcement [39]) and was
extended to hereditarily normal spaces by Ju.M. Smirnov [37].

When cohomological dimension theory was extended to paracompact spaces
by means of sheaves (look at [22], [23], [28]), W.I. Kuzminov posed the following
question ([28], Problem 10).
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Let X be a hereditarily paracompact space and let X = AU B. Is it true that
the inequality

(2) dimg X <dimg A+ dimg B +1

holds for an arbitrary abelian group?

L.R. Rubin [39] was the first who gave a partial answer to this question. Name-
ly, he proved that

(3) dimz(AUB) <dimz A+ dimz B+ 1

for subspaces of metrizable spaces. Thereafter J. Dydak and J.J. Walsh [19] proved
the inequality (2) for G = Z, or G is a subring of the ring of rationals Q, and
dimg A, dimg B > 2. A.N. Dranishnikov and D. Repovs [13] proved the inequality
(2) for G = Z, or G is subring of Q, dim(A U B) is finite and dimg A = 1 or
dimg B = 1. At last J. Dydak [16] proved that inequality (2) holds for any ring G
with unity. All these results were obtained for metrizable spaces.

A.Ch. Chigogidze [2] using the method of inverse systems and applying Rubin’s
theorem proved

THEOREM A. If X is a perfectly normal space and X = AU B, then

dim) X < dim) A+ dimy B+ 1. m

Here dim% X < n means that K(G,n) € AE(X). Applying Ghigogidze’s
technique and using mentioned above Dydak’s theorem, one can prove

THEOREM B. If X is a perfectly normal space and X = AU B, then

dim X < dim@ A+ dim B + 1

for an arbitrary countable ring with unity G. m

It should be mentioned that generally Kuzminov’s question has a negative
answer. A.N. Dranishnikov, D. Repovs and E.V. Séepin [14] constructed subsets A
and B of R* such that

Thereafter J. Dydak [16] proved that if G ® G = 0, then for any m > 2 there is a
subset A of $?™*+1 such that dimg A < m — 1 and dimg(S*™H1\ A) < m.

The purpose of this paper is to find general conditions under which Kuzminov’s
hypothesis is true. Let us start with the following theorem that was proved by P.J.
Huber [15], Y. Kodama [27] and I.A. Shvedov [36] (look at [28]).

THEOREM C. If X is a paracompact space, then
dimg X = dim% X. m

Combining Theorems B and C we get

THEOREM D. If X is a paracompact perfectly normal space and X = AU B,
then
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dimg X < dimg A+ dimg B+1

for an arbitrary countable ring with unity G. m

Our main result is the following generalization of Dydak’s theorem ([16], The-
orem 1.4, the first part).

THEOREM 5.2. Suppose A, B are subsets of a hereditarily paracompact p1-space
X and G is a ring with unity. Then

dimg (AU B) < dimg A + dimg B + 1
in the following cases:

1) G is countable;

2) X is perfectly normal.

A space X is said to be a pi-space if X admits a perfect mapping onto a
first countable space. Every first countable hereditarily paracompact space is a
hereditarily paracompact p;-space.

We prove also Subspace Theorem 2.20. On the one hand, it generalizes
Pasynkov—Zambahidze’s [43] and Engelking’s [21] theorems for Lebesgue dimen-
sion. On the other hand, Theorem 2.20 is a generalization of Dydak’s subspace
theorem for extension dimension [16]. Corollary 2.22 is a subspace theorem for
cohomological dimension.

Another auxiliary result is Theorem 3.4 which is a generalization of Urysohn—
Menger addition theorem for Lebesgue dimension. Theorem 3.4 is also a general-
ization of Dydak’s addition theorem for extension dimension of metrizable spaces
[16].

Yet another auxiliary result is the following extension of Dranishnikov’s theo-
rem [8] to paracompact spaces.

THEOREM 4.8. Let X be a paracompact p1-space and let K € AE(X) be a
CW-complex such that either:

1) K is countable;

2) X is perfectly normal.

Then

dimpy, (x,zy X <m for allm > 0.

1. Preliminaries

All spaces are assumed to be normal 77, all mappings are continuous. Any
additional information concerning general topology and dimension theory one can
find in [20], [21], [9], [11], [12], [18]. Recall some known notions and facts.

1.1. DEFINITION. Let X and Y be spaces and let Z C X. The property that
all partial mappings f : Z — Y extend over X will be denoted by ¥ € AE(X, 7).
If every mapping f : Z — Y extends over an open set Uy D Z, then we write
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Y € ANE(X, Z). If every partial mapping f : C — Y on X, C is a closed subset
of X, can be extended over X (respectively over an open set Uy D C), then Y is
called an absolute (neighbourhood) extensor of X (notation: Y € A(N)E(X)).

1.2. PrOPOSITION. If Y € A(N)E(X) and F C X is closed, then Y €
AMNE(F). =

Proposition 1.2 yields

1.3. PROPOSITION. Let Y € ANE(X) and let F be a closed subspace of X
such that Y € AE(F) and Y € AE(C) for every closed subset C' of X containing
in X\ F. ThenY € AE(X). m

1.4. COROLLARY. If X = X3 U---UX,, where X; are closed in X, and
Y e AE(X;),i=1,...,n, and Y € ANE(X), thenY € AE(X). =

1.5. PROPOSITION. If a space X = @, .4 Xa is the union of a discrete
family of its subspaces X, such that Y € A(N)E(X,) for any a € A, then'Y €
AN)E(X). m

1.6. PROPOSITION ([7], (2.2)). Let {F, : a € A} be a locally finite collection
of closed sets of a countably paracompact space X. Then there exists a locally finite
collection {G,, : a € A} of open sets, with Fy C G, in the following cases:

1) A is countable;

2) X is collectionwise normal. m

1.7. PROPOSITION. Let F be a closed subspace of a countably paracompact
space X and let uw = {U, : a € A} be a locally finite cover of F by functionally
open in F' sets. Then u can be extended to a locally finite functionally open cover
v={Vy:a € A} of X in the following cases:

1) A is countable;

2) X is collectionwise normal.

Proof. Since the family u = {Uy : a € A} is locally finite, we can apply
Proposition 1.6 to F,, = U,. There exists a locally finite collection {G,, : a € A}

of open sets in X, with U, C G,. Without loss of generality we can assume that
U, =G, N F. Now we can find functionally open sets H, such that

Uy=FNHy,C Hy,C G,

Let H=J{Hy,: € A} and let C = X \ H. Then FNC = @. Hence there exists
a functionally open set W such that

CCcCWCX\F.
Fix some oy € A and set
Voo = Hoy UW, V= H, for a # ap. m

Proposition 1.7 implies
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1.8. PROPOSITION. Let F be a closed subspace of a countably paracompact
space X. Then every locally finite partition of unity {pq : o € A} on F can be
extended to a locally finite partition of unity on X in the following cases:

1) A is countable;

2) X is collectionwise normal. m

1.9. REMARK. Point 2) for a paracompact space X was proved by J. Dydak
([17], Theorem 8.4).

We say that X is a py-space if X admits a perfect mapping onto a first countable
space.

1.10. THEOREM ([17], Theorem 11.1). Suppose F is a closed subset of a p;-
space X and m is an infinite cardinal number. Then the following conditions are
equivalent:

1) K € ANE(X, F) for every CW-complex, with card(K°) < m;

2) every locally finite partition of unity {¢s : o € A} (with card(4) < m) on
F extends to a locally finite partition of unity on X. m

Proposition 1.8 and Theorem 1.10 yield

1.11. THEOREM. Let X be a normal space and let K be a CW -complex. Then
K € ANE(X) in the following cases:

1) K is compact;
2) K is countable and X is a countably paracompact py-space;

3) X is a collectionwise normal countably paracompact p;-space. m

1.12. THEOREM. Let X be s space and let K be a metric simplicial (con-
tractible) complex. Then K € ANE(X) (K € AE(X)) in the following cases:

1) K is countable and topologically complete;

2) X is perfectly normal and K is countable;

3) X is perfectly normal and collectionwise normal. m

Remark on proof. O. Hanner [24], E. Michael [29], C.H. Dowker [5] proved
assertions 1), 2), 3) respectively for a metrizable space K which is an ANE for

metrizable spaces. On the other hand, every metric simplicial (contractible) com-
plex is an ANE(M)(AE(M)). m

1.13. PROPOSITION [7]. Let A be a closed set of a normal space X, let Y
be a space, and let f : (X x 0) U (A x I) — Y be a mapping. If f extends over
X x{0}UU, where U is open in X x I and AxI C U, then f extends over X x I. m

1.14. DEFINITION. We say that a pair (X,Y) of spaces satisfies homotopy
extension theorem (notation: (X,Y") € het) if the following theorem is fulfilled.

HoMmoToPY EXTENSION THEOREM. Let A be a closed subset of X. Then any
mapping f: (X x 0)U(A X I) =Y extends over X x I.
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Proposition 1.13 yields

1.15. PROPOSITION. Let X be a normal space such that Y € ANE(X x I),
then (X,Y) € het. m

1.16. PROPOSITION [4]. The product X XY of a countably paracompact space
X and a compact metric space Y is countably paracompact. m

1.17. PROPOSITION [7]. The product X x'Y of a countably paracompact
and collectionwise normal space X and a compact metric space Y is collectionwise
normal. m

1.18. PROPOSITION ([4], [26], [32]). Every perfectly normal space is countably
paracompact. ®

1.19. THEOREM. Let X be a space and let K be a CW-complex. Then
(X, K) € het in the following cases:

1)

2)

3) X is countably paracompact collectionwise normal p;-space.

X is normal, K 1is compact;

X is countably paracompact pi-space, K° is countable;

If L is a metric simplicial complez, then (X, L) € het in the following cases:
4) X is countably paracompact, L is countable and topologically complete;

5) X is perfectly normal, L is countable;

6) X is collectionwise normal and perfectly normal.

Proof. Point 1) was considered by M. Starbird [39] and K. Morita [34]. Point
2) is a consequence of Theorem 1.11. 2) and Propositions 1.13, 1.15, 1.16. Point
3) is a consequence of Theorem 1.11. 3) and Propositions 1.13, 1.15, 1.17.

Points 4), 5), 6) were considered by C.H. Dowker [7] in more general situation:
L is a metrizable ANR. m

Recall that a space X dominates a space Y (notation: Y < ;X)) if there exist
mappings f:Y — X and g: X — Y such that go f ~idy.

1.20. PROPOSITION. If X dominates Y,(Z,Y) € het, and X € A(N)E(Z),
thenY € AIN)E(Z). m

Proposition 1.20 yields

1.21. PROPOSITION. Let X and Y be homotopy equivalent spaces and let
(Z,X) € het, (Z,Y) € het. Then X € A(N)E(Z) if and only if Y € A(N)E(Z). m

1.22. PROPOSITION [42]. Every (countable) CW-complex is homotopy equiva-
lent to a (locally finite countable) metric simplicial complex. m

1.23. DEFINITION. Let K and L be spaces and let P be a class of spaces. We
say that K AEp-dominates L (notation: L < pK) if for every X € P we have
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K € AE(X) = L € AE(X).
If L <pK and K < pL we write K = pL.

From Proposition 1.18 we get

1.24. PROPOSITION. If K dominates L and (X, L) € het for every X € P,
then L< pK.m

Proposition 1.20 yields

1.25. PROPOSITION. Let K and L be homotopy equivalent spaces and let
(X,K) € het, (X,L) €het forall X € P. Then K =pL.m

1.26. DEFINITION. We say that a class K of CW-complexes is equivalent
to a class of £ of metric simplicial complexes with respect to a class P of spaces
(notation: K ~ pL) if for every K € K there exists L € £ such that K = pL and
for every L € L there exists K € K such that K = pL.

1.27. THEOREM. Let KC be a class of CW-complexes, L be a class of metric
simplicial complezes, and let P be a class of spaces. Then IC ~ pL in the following
cases:

1) K and L consist of all finite complezes, P is the class of all normal spaces;

2) KC consists of all countable complezes, L consists of all topologically complete
countable complexes, and P consists of all countably paracompact p1-spaces.

3) K and L consist of all countable complexes, and P consists of all perfectly
normal p1-space.

4) P consists of all perfectly normal and collectionwise normal p1- space.

Proof. Tt is well known that every finite CW-complex is an ENR. So point 1)
is a consequence of Theorem 1.19. 1).

Let K be a countable CW-complex. By Proposition 1.22 there exists a locally
finite countable metric simplicial complex L such that K ~ L. Theorem 1.19 implies
that (X, K) € het for every X € P. According to Proposition 1.15 and Theorem
1.12 we have (X, L) € het for every X € P. So K = pL, since Proposition 1.25.

Now let L be a topologically complete countable metric simplicial complex.
Put K = Lcw. It is well known that L ~ Lcw. So repeating the previous
argument we get L = p K.

If L is a countable metric simplicial complex and X is a perfectly normal p;-
space, then (X, L) € het by Theorem 1.19. 5). Let K = Lew. Then (X, K € het
according to Theorem 1.19. 2), because of Proposition 1.18. Applying Proposition
1.25 we get K = pL.

If K is a countable CW-complex, then it was proved above that K = pL for
every countable metric simplicial complex L such that L ~ K.

To prove assertion 4) we use the previous argument changing Theorems 1.19.
5) and 1.19. 2) for Theorems 1.19. 6) and 1.19. 3) respectively. m
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1.28. LEMMA. Let A be a subspace of a space X and u = {Uy : X € A} be a
cover of A. Assume that either:

1) X is hereditarily normal and u is finite;

2) X is hereditarily normal and countably paracompact, and u is countable;
3) X is hereditarily paracompact and u is locally finite in A.

Then there exist open in X sets Vy, A € A, such that

(i) ACcV=U{Vh:xeA}

(i)  VanACU, for any X € A;

(iii) N V£ = [\ Ur#D for any finite Ay C A;
AEA AEAo

(iv)  the family v ={V) : XA € A} is locally finite in V. m

If K is a simplicial complex, z € K and a € K is a vertex, then p,(z) is a
barycentric coordinate of z. So we get a barycentric mapping p, : K — [0;1] =1 =
1.

1.29. PROPOSITION. Let K be a metric simplicial complex. Then the diagonal
product

pr = A g K — I
aceK ()

(0)

is a topological embedding. m
From Proposition 1.29 we get

1.30. PROPOSITION. If K is a metric simplicial complex and X is a space,

then f: X — K is continuous if and only if pg o f is continuous for each verter a
of K.m

If a € K is a vertex of a simplicial complex K, then St(a) denotes the union
of all open simplices s C K such that a is a vertex of s, i.e.

(1.1)  St(a) ={z € K : po(2) > 0}.
1.31. PROPOSITION [1]. Let f,g: X — K be mappings to a metric simplicial

complex K. If for any x € X there exists a € K© such that f(z),g(x) € St(a),
then f~g.m

1.32. PROPOSITION. Let X be a space and let K be either a metric simplicial
complex or a CW-complex such that:
1) either X hereditarily normal and K is finite;

2) or X hereditarily normal and hereditarily countably paracompact, and K is
countable;

3) or X is hereditarily paracompact.

Then for any A C X and any mapping f : A — K there exist a neighbourhood
OA and a mapping g : OA — K such that g|a is homotopic to f.
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Proof. Let K be a metric simplicial complex. Consider more complicated case
of a hereditarily paracompact space X and an arbitrary complex K. Let

(1.2) U, = f~Y(St(a)), a € KO,
Then u = {U, : a € K(O)} is a point-finite cover of A. Since A is paracompact,
there exists a locally finite cover u; = {U} : a € K9} of A such that

(1.3) UlcU,, ac K©.
According to Lemma 1.28 there exist open in X sets Vg, a € K satisfying
conditions (i)-(iv), where we replace A € A by a € K(©). Since V is paracompact,

there is a locally finite partition {¢,} of unity for V' combinatorially subordinated
to the cover v = {V,}, i.e.

(1.4)  wa*((0; 1})V CVa, a€ KO,
Conditions (1.3), (1.4), and (ii) imply that
(1.5) AN, ((0;1]) CUs, a€ KO,
Let
(1.6) ¢ =2Duer© Ya:V — 57,
Conditions (ii), (iii), (1.1)—(1.4) and (1.6) yield
(17) (V) C uxc(K).
Putting
g=ng op:V—K,
we get the required mapping g. Indeed, condition (1.5) implies that
9(AN @ ((0:1) C St(a) = F(UL).
It remains to apply Proposition 1.31.

Now let K be a CW-complex. Point 1) coincides with Point 1) for simplicial
complexes. Consider points 2) and 3) simultaneously. Let A C X andlet f: A — K
be a mapping. By Proposition 1.22 there exist a (locally finite countable) metric
simplicial complex L and mappings f; : L — K and f5 : K — L such that

(1.8)  fiofa~idk, foo f1 ~idyL.
According to Proposition 1.32 for simplicial complexes there exist a neighbourhood
OA and a mapping h : OA — L such that

(19) h|A ~ f2 o f
Put g = fioh. Then g|a = fiohla =~ (1.9) = fiofeof|a ~ (1.8) ~idxof|s =~ fl4.m

2. Subspace theorem

Recall that an open set U C X is said to be regular open in X if U = Int(U).
2.1. LEMMA. Let Uy, Uy be open disjoint subsets of X and B be a closed
subset of X such that
(2.1) Ul QUQ CBCUl.
If Uy is regular open in'Y = X \ B, then Us is regular open in X.
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Proof. Since U; NUs = @, we have Uy N U, = @. Hence U, NInt(T, ) = 2.

From (2.1) we get B ﬁInt(U?) = @ and, consequently, Int(U;() C Y. Thus Int (U;()
is a regular open in Y set containing a regular open in Y set U, as a dense subset.

So Int(Ug() =U. m

2.2. PROPOSITION. Let X be a space, let K be a CW-complex, and let L be a
metric simplicial complex such that either:

1) X is hereditarily normal and K (L) is finite;
2) X is a hereditarily normal, hereditarily countably paracompact first countable
space, and K is countable;

3) X is hereditarily paracompact first countable space;

4) X is hereditarily normal and hereditarily countably paracompact, and L is
countable and topologically complete;

5) X is perfectly normal and L is countable;

6) X is perfectly normal and paracompact and L is arbitrary.
Then the following conditions are equivalent:

(i) K € AE(A) for any A C X;

(i) K € AE(U) for any regular open U C X.

Proof. Tt suffices to check that (ii) = (i). Let F be a closed subset of A and
let f: FF — K be a mapping. By Proposition 1.32 there exist an open set U C X
and a mapping g : U — K such that

(2.2) FcU,
(23) glr=f.
Let B= (X\U)NF " and Y = X\ B. Then the sets C = UNF" and D =Y \U

are closed in Y and disjoint. Since Y is normal, there exist regular open in Y sets
V and W such that

(24) CcV,DcW,
(25) VnWwW=g.
Inclusions FF C U and F C FX imply that FX - 6X. Hence
(26) BcCO cV .
From (2.5) and (2.6) we get
Q7 ViAW cBcV".
So we may apply Lemma 2.1 for U; = V and Uy = W. According to this lemma,
W is regular open in X.
In view of (2.4) there exists an open set G such that
(2.8) DcGcG cw.
Hence
(29) IT'=W\GCcX\GcX\DcU.
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Since W is regular open in X, the mapping g1 = ¢g|r : I' — K can be extended to
a mapping g : W — K according to condition (ii). Now we can define a mapping
g3 1 Y — K in the following way:

. —Y
_Jaly) ifyeY\G ;
93(y) = .
ga(y) ity cW
The mapping g is defined on Y because Y\éy C (by (2.8)) ¢ W. It is continuous
. Y
since Y\ G~ and W are open.

Now let h = g3|4a. By definition h|p = g|r. Hence f extends over A by
Theorem 1.19. m

2.3. DEFINITION. Let A C X be an arbitrary subset. A space Y is called
an absolute extensor of a space A with respect to X (notation: Y € AE(A, X))
provided Y € AE(F) for every set F such that, FF C A, F closed in X.

2.4. REMARK. The class AE(X, A) from Definition 1.1 does not coincide with
the class AE(A4, X).

2.5. LEMMA. Let X be a space, let K be either a CW-complex or a metric
simplicial complez.

If X can be represented as the union of a sequence X1, Xs,... of subspaces
such that K € AE(X;, X) and the union U,.,, Xi =Y, is closed forn =1,2,...,
then K € AE(X) in the following cases:

1) X is normal and K is finite;

2) X is a countably paracompact p1-space and K is a countable CW-complez;

3) X is a collectionwise normal countably paracompact py-space and K is a
CW-complex;

4) X is normal and K is a countable and topologically complete simplicial
complex;

5) X is perfectly normal and K is a countable simplicial complex;

6) X is perfectly normal and collectionwise normal and K is a simplicial com-
plex.

Proof. Consider a mapping f : F — K, when F' is closed in X. We have
(2.10) F,=FnNY,isclosed in X.

We shall construct inductively open sets U,, C X and mappings f, : [U,] — K, n >
1, such that

(2.11),, Y, CUy;

(2.12),,  [Up-1] C Uy;
(213)n  falr, = flr.;
(2-14)n fn|[Un71] = fa-1-

Here we assume that Uy = @. Let n = 1. According to (2.10) and to K € AE(Y7)
there exists a mapping f’ : Y7 — K such that
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(2'15) f/|F1 = f|F1
By Theorems 1.11 and 1.12, there exist a neighbourhood OY; and a mapping
f:0Y; — K such that

(216) 'y, = i
Take an open set U; such that
(2.17) F, CU; C[Uh) COF
and set
(218) i = /'l
Conditions (2.17) and ((2.15), (2.16), (2.18)) respectively imply (2.11)1, and (2.13);.
As for conditions (2.12); and (2.14)1, they are fulfilled trivially.

Assume that the sets U; and the mappings f; satisfying (2.11);—(2.14); are
defined for all ¢ < n > 2. From (2.11),_1 it follows that

(219)  Zn =Yy \Un_1 C Xp.
Since Z,, is closed in X and K € AE(X,,, X), we have
(2.20) K € AE(Z,).
Let
(2.21) A, =(Z,N[Up-1]) U (F, \ Up—1).
The set A, is closed and contained in Z, by virtue of (2.10) and (2.19). Let
! 1 : Ay, — K be a mapping defining by
ez g = {00 e
foo1(z) faxe Z,N[Uy-q].
According to (2.20) there exists a mapping f! ; : Z, — K such that
(2.23) 71L—1|An = fa-1-
Set
(2.24) By = [Un_1]U Z,.
Define a mapping f;, : B, — K in the following way:

(225)  fi(x) = { frale) ifa € U]

S (z) ifxeZ,.

By Theorems 1.11 and 1.12 there exist a neighbourhood OB,, and a mapping f} :
OB, — K such that

(226)  filp, = i
Take an open set U,, such that
(2.27) B, CU,cC[U,) CcOB,
and define a mapping f, : [U,] — K by
(228)  fu=Flw.
Conditions (2.24) and (2.27) imply (2.12),,. Conditions (2.10), (2.19), (2.24), (2.27),

and (2.12),, yield (2.11),. From (2.25), (2.26), and (2.28) we get (2.14),,. Finally,
conditions (2.22), (2.23), (2.25), and (2.13),—1 imply (2.13),,.
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Hence the construction of the sets U,, and the mappings f,, satisfying (2.11),,—
(2.14),, for n =1,2,... is completed. Putting

f(@) = fa(2) if z € [Uy],
we get a mapping f : X — K which extends the mapping f: F — K. m

2.6. COROLLARY. Let X and K satisfy conditions of Lemma 2.5. If X can
be represented as the union of a sequence Xy, Xo,... of subspaces such that K €
AE(X;) and the union U, Xi =Y, is closed forn=1,2..., then K € AE(X). =

Lemma 2.5 also yields

2.7. COUNTABLE SUM THEOREM. Let X and K satisfy conditions of Lem-

ma 2.5. If X can be represented as the union of a sequence Fy,Fs,... of closed
subspaces such that K € AE(F,) forn=1,2,..., then K € AE(X). m

Theorem 2.7 is also an immediate consequence of Theorems 1.11, 1.12, and the
following Dranishnikov’s theorem.

2.8. THEOREM [10]. If a normal space X can be represented as the union of
a sequence Fy, Fy, ... of closed subspaces, then K € AE(X) provided K € AE(F),)
for alln and K € ANE(X). m

Proposition 1.5 and Theorem 2.7 yield

2.9. 0-DISCRETE SUM THEOREM. Let X and K satisfy conditions of Lemma
2.5, and let o, = {F : a € A}, n € N, be discrete families of closed subsets of
X such that K € AE(FY) and

X = Uma 7.
Then K € AE(X).m

2.10. LEMMA ([21], Lemma 2.3.3). Let u = {U, : o € A} be a point-finite
open cover of a space X. Fori=1,2,... denote by X; the set of all points of the
space X which belong to exactly i members of the cover u, by 7; the family of all
subsets of A that have exactly i elements, and let

Xr=X;N(Ua:aeT})
for each T € T;. Then
(229) X=U{X;:i=12,... }
(2.30) X;NX; =& whenever i # j;
(2.31) Y, =U{X;:i<n} is closed fori=1,2,...;
(332) X;=U{Xr:T €T} and Xr are open in X; and pairwise disjoint. m

2.11. POINT-FINITE SUM THEOREM. Let X and K satisfy conditions of Lem-
ma 2.5. Let X can be represented as the union of a family {F, : o € A} of closed
subspaces such that K € AE(F,) for a € A, and there exists a point-finite open
cover u = {Uy : a € A} of the space X such that F, C U, for a € A. Then
K € AE(X).
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Proof. Consider the decomposition of the space X described in Lemma 2.10.
Because of Lemma 2.5 it suffices to show that

(2.33) KeAE(X;,X), i=1,2,....
Let F be a closed subspace of the space X containing in X;. It follows from (2.32)
that for every T € 7; the set F'N X is closed in X. Since

FNnXy CU{F,:aeT},
by Proposition 1.2 and Theorem 2.7 we have K € AE(F N X7) for every T € 7.
From (2.32) we get

F= & (FNnXp).

TeT;

Consequently, K € AE(F) by Proposition 1.5. m

2.12. THEOREM. Let X and K satisfy conditions of Lemma 2.5 and let X be
weakly paracompact. If X can be represented as the union of a family u = {U, :

a € A} of open subspaces such that K € AE(U,) for a € A, then K € AE(X).

Proof. The space X being weakly paracompact, one can assume that the cover
u is point-finite and thus has a closed shrinking {F,, : « € A}. To complete the
proof it suffices to apply Proposition 1.2 and Theorem 2.11. m

Recall that two subsets A and B of a space X are separated if ANB = @ =
ANB.

2.13. REMARK. Theorems 2.11 and 2.12 generalize well known results for
Legesgue dimension. Theorem 2.12 (K = S™) for paracompact X was established
by C.H. Dowker [6] and K. Nagamy [35]. Theorem 2.11 and 2.12 (both for K = S™)
were obtained by A.V. Zarelua [44].

2.14. DEFINITION [21]. A space X is called strongly hereditarily normal if for
every pair A, B of separated subset of X there exist open sets U,V C X such that

ACU BCV,UNV =g,

and both U and V can be represented as the union of point finite families of open
F,-sets.

2.15. PROPOSITION. A space X 1is strongly hereditarily normal if and only if
X is hereditarily normal and every reqular open set U C X can be represented as
the union of a point-finite family of open F,-sets. m

2.16. DEFINITION [43]. A disjoint covering u of a space X is said to be scaled
if u can be represented as the union of families u;, i = 0, 1,..., such that:

(i) uy = J;
(ii)  for ¢ > 1, the family u; is discrete in Z; = X \ Uj<i(U u;) and consists
of closed subsets of Z;.

It is clear that every Z; is open in X and every Y; = Uj<i (U uj) is closed
in X.
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2.17. DEFINITION [43]. A hereditarily normal space X is called totally scaled
if every open set U C X has a scaled covering consisting of F,-sets of X.

Formally classes SHN (of strongly hereditarily normal spaces) and TS (of to-
tally scaled spaces) are incomparable. We define a new class which contains both
of them.

2.18. DEFINITION. A hereditarily normal space X is called regular scaled

(notation: X € RS) if every regular open set U C X has a scaled covering consisting
of F-sets of X.

2.19. PrROPOSITION. If RS is the class of all regular scaled spaces, then
SHNUTSCRS. m

2.20. SUBSPACE THEOREM. Let X be a regqular scaled space, and let K be

either a CW-complex or a metric simplicial complex. If X and K satisfy conditions
of Lemma 2.5, then K € AE(X) = K € AE(A) for any A C X.

Proof. According to Proposition 2.2 it suffices to check that K € AE(U) for
every regular open set U C X. Since X is regular scaled, there exists a scaled
covering u = [J;2, u; of U consisting of Fj,-sets of X. Set

(2.34)  Yi= U (Uw);

Jj<i
In view of Corollary 2.6 it remains to show that K € AE(X;) for every i. By
definition of a scaled covering, the equality (2.35) implies that

Xi :U{BW:’VEF}v
where the family {B, : v € T'} is discrete in X; and consists of Fy-sets of X.

Since Proposition 1.2 and Theorem 2.7, K € AE(B,) for every v € I'. Applying
Proposition 1.5, we get K € AE(X;). m

2.21. COROLLARY. If either X is a perfectly normal first countable space
and K is a countable CW-complex, or X is perfectly normal and K is a countable
metric simplicial complex then K € AE(X) = K € AE(A) foranyAC X. m

From Theorems C and 2.20 we get

2.22. COROLLARY. Let X be regular scaled paracompact py-space and A C X.
Then

dimG A S dimG X
for an arbitrary abelian group G. m

2.23. REMARK. Theorem 2.20, for regular scaled X and K = S™, is contained
in ([43], Theorem 6). For strongly hereditarily normal X and K = S™, Theorem
2.20 was proved in ([21], Theorem 3.1.19). Subspace theorem, for metrizable X and

arbitrary CW-complex K, was proved in ([16], Proposition 1.1). Corollary 2.22 is
also a generalization of just mentioned Dydak’s theorem.
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3. Addition theorem for simplicial complexes

3.1. DEFINITION [16] (see also [12]). Given two simplicial complexes K and
L, their simplicial join K * L is formed by declaring o = {ay,...,ax, bo,...,b;) to
be its simplex if and only if and only if o1 = (ag,...,ax) is a simplex in K and
o2 = (bo,...,b) is a simplex in L. So 0 = 07 * 02 is a topological join of simplices
01 and o3. Both K and L are naturally embedded in K % L. The simplicial join is
related to the abstract join. As in the case of the abstract join, there are canonical
projections

w: K+ L — [0;1];
g K+« L\L— K,
7w, K+« L\ K — L.

Namely, any point x € K x L can be expressed as t -y + (1 —t) - z, where ¢t € [0, 1],
y € K, and z € L. Here t is unique, and we put 7(z) = ¢, y is unique if z ¢ L, and
we put g () = y. Similarly, z is unique if z ¢ K, and we put 7 (z) = z.

3.2. LEMMA ([16], [12]). Suppose K, L are metric simplicial complezes and X
is a normal space. Then there is a one-to-one correspondence between mappings
f: X — KxL and 5-tuples

UV,g:U—K, h:V—>L, a: X —[0;1])
satisfying the following conditions:
(31) X=UUV, U andV are functionally open in X;
(3.2) a7 l0;1) =U and a=1(0;1] = V.
Namely, given f: X — K x L, define
U=fYK*L\L), V=fYKx*L\K);
g=mngof, h=mLof, a=mof.

Conversely, given (U,V, g, h,a), one defines f as follows:

g9(z) ifzeU\V,
flz) =4 (1—a()) g(z)+a(2) h(z) fzelNnV,
h(z) ifz eV \U.

The mapping f defined as above will be denoted by g * 4h.

Proof. The only thing we need to verify that f is continuous. In accordance
with Proposition 1.29 we need to show that u, o f is continuous for all vertices a
of K * L. Since (K L) = KOy LO) without loss of generality we may assume
that a € K. Since o (h(z)) = 0 for € U, we have

(33) paof(x)=010—a(x))  peog(x) forall x € U
and

(34) pgof(x)=0forallz e U\V.

Clearly, p, o f|y is continuous. Let zp € U\ V and ¢ > 0. We have to find a
neighbourhood Oz such that
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g o f(x) < eforall z € Oxy.
Set
(3.5) Ozg=a'(1—¢l].
If € Oxg \ V, then p, o f(x) = 0 according to (3.4). If x € Oxo N U, then

100 f(x) = (by (3:3)) = (1—a(x))-paog(x) < (in view of (3.5)) < e-zog(x) <

3.3. LEMMA. Suppose f : A — [0;1] is continuous, A is a closed subset of a
space X, and U and V are open in X sets such that

UUV =X, UNnA=f10:1), VAA=f10;1].
Then there is an extension f1: X — [0;1] of f such that
oy U, friocv. .

3.4. URYSOHN-MENGER THEOREM. Let a space X and metric simplicial
complexes K and L be such that either:

1) X is hereditarily normal and K and L are finite;

2) X is hereditarily normal and hereditarily countably paracompact, and K and
L are countable and topologically complete;

3) X is perfectly normal, K and L are countable;
4) X is perfectly normal and paracompact.
Let X = AUB and K € AE(A), L € AE(B). Then K x L € AE(X).

Proof. Suppose C'is a closed subset of X, and f: C — K x L is a mapping.
In view of Theorem 1.12 we may assume that C is functionally closed in X. By
Lemma 3.2, f defines two closed, disjoint subsets Cx = f~1(K), Cp = f~1(L) of
C' and maps

fk:C\CL— K, fr, :C\L, a: C —[0;1]
such that

(3.6) a7 1(0)=Ck, a71(1)=Cyr;

(B7) f() = (1 a@)) - fic(x) + ala) - [ ().

Since Cp, is a Gs-set, K € AE(A\C}) according to Theorem 2.7. Consequently,
fr extends to a mapping

,fK CUA\CL —>K,
Applying Proposition 1.32, we can find an open set U4 and a mapping gx : Uy — K
such that

(38) CUA\CLCUrCX\CL; gklone, =~ fk-

Since C'\ Cy, is closed in U4, by Theorem 1.19 there exists a mapping fj : Us — K
such that

(3.9)  fxleve, = fx-
Similarly, there exist an open set Ug and a mapping f; : Ug — L such that
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(3.10) CUA\Ckx CcUpC X\Ck;
(311)  frlevex = fr-
Since U4 UUp = X, conditions (3.8) and (3.10) yield
(3.12) UAQC:C\CL, UBQO\OK.
Now, according to (3.6) and (3.12), we can apply Lemma 3.3 to the set C, the

function « and the sets Uy and Up. We get a function 5 : X — [0;1] such that
B|C = a and

(3.13)  B7Y0;1) C Ua, B71(0;1] C Up.
Setting
Up=B710;1), Up = B71(0:1],
f}1< = f}<|U}“ fi = f’L‘Ug,
and applying Lemma 3.2, we get the mapping
fk*pfl: X > KxL
which extends f, because of (3.9) and (3.11). m

3.5. REMARK. Since dim X < n means that S™ € AE(X) for any normal
space X and S™ x §™ = §ntm+1 Theorem 3.4 is a generalization of the Urysohn—
Menger theorem for hereditarily normal spaces. Theorem 3.4 also is a generalization
of Dydak’s theorem ([16], Theorem 1.2) for metrizable X and arbitrary K and L.

Point 4) of Theorem 3.4 is also an immediate corollary of Theorem 1.19.6) and
the following Dydak’s theorem.

3.6. THEOREM ([18], Theorem 4.3). Suppose X is a hereditarily paracompact
space and K and L are CW-complexes. If K is an absolute extensor of A C X up
to homotopy and L is an absolute extensor of B C X wup to homotopy, then the
joint K x L is an absolute extensor of AU B up to homotopy.

Recall, that K is an absolute extensor up to homotopy of X [18] if every map-
ping f: A — K, A closed in X, extends over X up to homotopy.

4. Dranishnikov’s theorem for paracompact spaces

The purpose of this section is to generalize a theorem of A.N. Dranishnikov
[15] stating that if a CW-complex K is an absolute extensor of a compactum X,
then dimpy,  (xz) X < m for all m > 0. This theorem was extended to metrizable
spaces X by J.Dydak [16]. We follow his argument.

4.1. PROPOSITION. Let f: X' — X be an open mapping of a weakly paracom-
pact space X' onto a space X such that card f~'(z) < n for all x € X and some
n < oo, and let K be a metric simplicial complex such that K € AE(X). Then
K € AE(X') in the following cases:

1) K is countable and topologically complete;
2) X' is perfectly normal and K is countable;

3) X' is perfectly normal and paracompact.
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Proof. Induction on n. For n = 1 the mapping f is a homeomorphism. Suppose
Proposition 4.1 holds for n < m and consider n = m + 1. The set

A={2' € X' :cardf~1f(z") < m}

is closed in X’ and K € AE(A) by inductive assumption. Further K € ANE(X")
according to Theorem 1.12. By virtue of Proposition 1.2 it suffices to prove that
K € AE(C) for every closed subset C of X’ containing in X’\ A. Given z € X'\ 4,
there is an open neighbourhood U, of x in X’ such that fl; : U, — f(Us,) is a
homeomorphism. So K € AE(C) by Theorem 2.12. m

4.2. DEFINITION [3]. Given a space X and m > 0, the m-th symmetric
product SP™(X) of X is the space of orbits of the action of the symmetric group
S on X™. Points of SP™(X) will be written in the form > ", ;. The set
SP™(X) is equipped with the quotient topology given by the natural mapping
m: XM — SP™(X).

If X is a Hausdorff space, then 7 : X™ — SP™(X) is both open and closed,
since S, is a compact group. So if X is metrizable, then SP™(X) is metrizable, too.
If X has a base point a, then SP™(X) has ) .~ a as its base point; this base point
will be denoted by a, too. There is a natural inclusion ¢!, =i : SP™(X) — SP™(X)
for all n < m. It is given by formula

n n

i(Y @) ;xi—&-(m—n)a.

i=1 i
In this way, points of the form Z?zl x;, n < m, can be considered as belonging to
SP™(X).
The direct limit of the sequence
X =8PY(X)— SP*(X)— - — SP™(X) — -
is denoted by SP>(X).

4.3. PROPOSITION [31]. If every pair (SP™(X), SP™(X)) satisfies homo-
topy extension property, then the infinite symmetric product SP>(X) is homotopy
equivalent to the telescope

U SP™(X) x [m—1,m]. m

4.4. COROLLARY. If X is metrizable, then SP*(X) is homotopy equivalent
to the telescope

U SP™(X) x [m—1,m]. m

The next statement was formulated in ([16], Lemma 3.2) for metrizable X and
Z. But the metrizability condition is excessive. Repeating the original proof with
more details we get
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4.5. LEMMA. Suppose (X,xq), (Z,a) are pointed spaces and [ : (X, xo) —
(SP*(Z),a) is a mapping, k > 1. Let

(X',25) ——  (Z%,q)

(X, 20) —— (SP¥(Z),a)

be the pull-back diagram. Then, the function
fro (X @) — (SPM(X'), 2p)

defined by
ffl@)= > vy

ye(n’)~(z)
1S continuous.

Proof. Every element o € Sy, defines a mapping o : Z¥ — Z* by
02(2’1, ceey Zk) = (20(1)7 “e 7ZU(k))'
Let a : Z* — SP*¥(Z*) be the mapping defining as follows:

a(zl,...,zk): Z (20(1)7"'720(16)): Z O-Z(Zl?"'azk)'
ocESk oc€Sy

There is a mapping g : SP¥(Z) — SP*(Z*) such that a = go .
Indeed, it suffices to put

gzt F2) = D (Zo(1) s Zo(k))-
o€Sk

Let

i: X x SPH(ZF) — SPH (X x ZF)
be the mapping defined by

iz, 21+ +2zk) = (x,21) + -+ (2, 25)-
It remains to check that f*(z) =i(x,gf(x)). m

The following lemma was formulated in ([16], Lemma 3.3) for metrizable X and
arbitrary K. Using Proposition 4.1 and Lemma 4.5 we find more strict restrictions.

4.6. LEMMA. Suppose X is a weakly paracompact space and K € AE(X) is a
pointed metric simplicial complex such that:

1) either K is countable and topologically complete;

2) X is perfectly normal and K is countable;

3) X is perfectly normal and paracompact.
Given a closed subset A of X and a mapping g : A — SP*(K), there is an extension
g : X — SP¥F(K) of g.

Proof. Add a discrete base point zg to A and map it to the base point a €

SP*(K). Let C(K) be the metric cone over K. Then C(K) is a contractible
metric simplicial complex. Since SPF is a functor from the homotopy category
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(see [3]), SP¥(C(K)) is homotopic to a contractible metric simplicial complex.
According to Theorems 1.12, 1.19 and Proposition 1.20 there is an extension G :
X — SP¥(C(K)) of the mapping g. Let f : X’ — X be the pull-back of the
projection C(K)* — SP¥(C(K)) under G. Thus,

X' ={(z,z1,...,71) € X x O(K)* : G(x) = 21 + - + 21}
and f(x,x1,...,2,) = x. The space X’ contains as closed subset, the space A’
obtained as a pull-back of K¥ — SP¥(K) under g. Since X’ is perfect preimage of
X, X' is weakly paracompact and paracompact if X is paracompact. On the other
side, if X is perfectly normal, then X x C(K)* is perfectly normal as a product of
a perfectly normal space X with a metrizable space C(K)* [33]. So X' is perfectly
normal being a subset of X x C(K)*. Thus, we can apply Proposition 4.1. It
follows that K* € AE(X'). Hence we can extend the natural projection A’ — K
over X’ and compose it with K¥ — SP¥(K). Since SP™ is a functor, the resulting
mapping induces

SP*(X') — SP¥(SP¥(K) — SP*H(K),
which, when composed with the mapping f* : X — SP¥(X’) from Lemma 4.5, is
an extension of g: A — SP¥(K). m

4.7. PROPOSITION. Let X be a weakly paracompact pi-space and let K €
AE(X) be a CW-complex such that:

1) either K is countable;
2) or X s perfectly normal and paracompact.
Then
K(H,,(K,Z),m) € AE(X)
for allm > 0.

Proof. Tt suffices to show that SP>®(K) € AE(X) as SP°(K) homotopy
dominates K (H,,(K;Z),m) for each m > 0 (see [3]). Let L be a metric simplicial
complex (locally finite countable if K is countable) which is homotopy equivalent to
K. Since Theorem 1.27, it is sufficient to check that SP>°(L) € AE(X). According
to Corollary 4.4 we can replace SP>(L) by the telescope

J SP™(L) x [m —1,m].
m=1
After this we use Lemma 4.6. m
From Proposition 4.7 and Theorem C we get

4.8. THEOREM. Let X be a paracompact py-space and let K € AE(X) be a
CW-complex such that either:

1) K is countable;
2) X is perfectly normal.
Then

dimpy, (x,zy X <m for allm >0.m
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4.9. REMARK. From Theorem 1.27 it follows that the assertion of Theorem
4.8 holds for a metric simplicial complex K.

5. Dydak’s theorem for paracompact spaces
J.Dydak proved the following theorem.

5.1. THEOREM ([16], Theorem 1.4, the first part). Suppose A, B are subsets
of a metrizable space. Then
dimg (AU B) < dimg A + dimg B + 1

for any ring G with unity. m

We shall extend this theorem to classes of spaces which are larger that the class
of all metrizable spaces. A space X is called a hereditarily paracompact pi-space if
each its subspace is a paracompact pj-space.

5.2. THEOREM. Suppose A, B are subsets of a hereditarily paracompact p1-
space X and G is a ring with unity. Then

dimg (AU B) < dimg A + dimg B + 1
in the following cases:

1) G is countable;

2) X s perfectly normal. m

To prove Theorem 5.2 we need an additional information. The next assertion
is was proved by J. Dydak for metrizable spaces ([16], Theorem 1.3, the first part).
We give more general result.

5.3. THEOREM. Let A and B be subspaces of a hereditarily paracompact p;-
space X. Then

(5.1) dimggu(AUB) <dimgA+dimyB +1
in the following cases:

1) G and H are countable;

2) X is perfectly normal.

To prove Theorem 5.3 we need an additional information. J. Milnor defined
[30] the join X7 * X5 of topological spaces X; and X in the following way. A
point of the join is a formal linear combination tyxq + toxo, where x; € X, t; > 0,
t1 + to = 1, and the element x; may be chosen arbitrarily or omitted whenever the
corresponding ¢; vanishes. A subbase for the open sets is given by the sets of the
following two types:

1) {t1z1 + towa : oy < t; < Bi};

2) {t1x1 + toxs : t; # 0 and z; € U, where U is an arbitrary open subset of
X}

This topology has the property that coordinate functions
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t;: X1 % X — [0;1] and x; : t;l(O7 1] - X;
are continuous. It is easy to see that the topology of the metric simplicial join
defined at the beginning of § 3 coincides with the Milnor’s topology.

So we can apply a partial version of Milnor’s result.

5.4. PROPOSITION ([30], Lemma 2.1). Let K and L be metric simplicial
complexes. Then the reduced singular homology groups of the join K % L with
coefficients in a principal ideal domain D are given by

(52) gr+1(K*L) = Zl+J:TE[rL(K) ®ﬁ] (L) +El+J:T71TOI‘(Erl(K), FIJ (L)) n
Proof of Theorem 5.3. Suppose G, H # 0 are abelian groups and dimgA =
m > dimyg B = n. If m = n = 0, then Theorem 5.3 reduces to the Urysohn-Menger

Theorem. Assume m > 0. By Theorems C and 1.27 there exist metric simplicial
complexes L1 and Ly such that

(5.3) L1 € AE(A), Ly € AE(B);
(5.4) Ly = K(G,m), Ly = K(H,n).
From (5.2) and Theorem 3.4 we get
(5.5) Ly * Ly € AE(AU B).
Because of (5.4), equality (5.2) implies that
(5.6) Hypns1 (L1 % Lo, Z) = G @ H.
Remark 4.9 and equality (5.6) yield
dimggp(AUB) <m+n+1.m

Proof of Theorem 5.2. Since G is a ring with unity 1, G is a retract G ® G.
Indeed, the homomorphism m : G ® G induced by the multiplication G x G — G
is a left inverse of id ® 1 : G — G ® (. Hence there exists an exact sequence

6.17M0-GC—-G®G—-G—0
such that
(5.8) G - GE®G - G=idg.
The short exact sequence (5.7) generates the Bockstein exact sequence
(5.9) --- — HP(Y,F;G) — HP(Y,F;G ® G) — H?(Y,F;G) — HPTY(Y,F;G) —

for any paracompact space Y and its closed subset F. In view of (5.8) we have
(5.10) H?(Y, F;G) — H?(Y,F;G® G) — HP(Y,F;G) = id.
Let Y = AU B, dimgA = m, dimgB = n, and p > m + n + 2. Then Theorem 5.3
implies that
(5.11) HP(Y,F;G®G) =0
for any F. From (5.10) and (5.11) it follows that
(5.12) H?(Y,F;G) =0 forany p>m+n+2.
Hence dimg(Y) = dimg(AUB) <m+n+1.m
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5.5. COROLLARY. Suppose A, B are subsets of a first countable hereditarily
paracompact space X and G is a ring with unity. Then

dimg (AU B) <dimgA + dimgB + 1
in the following cases:

1) G is countable;

2) X is perfectly normal. m

Theorem 5.2 gives the best possible (at this time) answer to Kuzminov’s ques-
tion, if G is a ring with unity.
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