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ON BITOPOLOGICAL FULL NORMALITY

M. K. Bose and Ajoy Mukharjee

Abstract. The notion of bitopological full normality is introduced. Along with other results,
we prove a bitopological version of A. H. Stone’s theorem on paracompactness: A Hausdorff
topological space is paracompact if and only if it is fully normal.

1. Introduction

A bitopological space is a set equipped with two topologies. Kelly [5] initiated
the systematic study of such spaces. Since then considerable works have been done
on bitopological spaces. Generalizing the notion of pairwise compactness (Fletcher,
Hoyle III and Patty [4]), Bose, Roy Choudhury and Mukharjee [1] introduced a
notion of pairwise paracompactness and obtained an analogue of Michael’s theorem
(Michael [6]). In this paper, we introduce the notions of pairwise full normality and
a-pairwise full normality. For a pairwise Hausdorff topological space X, we prove
that X is a-pairwise fully normal if it is pairwise paracompact, and conversely, X
is pairwise paracompact if it is pairwise fully normal. To prove the converse part,
we use the above Michael’s theorem on pairwise paracompactness.

2. Definitions

Let (X,P1,P2) be a bitopological space.

Definition 2.1. [4] A cover U of X is a pairwise open cover if U ⊂ P1 ∪ P2

and for each i = 1, 2, U ∩ Pi contains a nonempty set.

Definition 2.2. [2] A pairwise open cover V of X is said to be a parallel
refinement of a pairwise open cover U of X if every (Pi)-open set of V is contained
in some (Pi)-open set of U .

We also recall the following known definitions:
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(a) X is said to be pairwise Hausdorff (Kelly [5]) if for each pair of distinct points
x and y of X, there exist U ∈ P1 and V ∈ P2 such that x ∈ U , y ∈ V and
U ∩ V = ∅.

(b) Pi is said to be regular with respect to Pj , i 6= j if for each x ∈ X and each
(Pi)-closed set A with x /∈ A, there exist U ∈ Pi and V ∈ Pj such that
x ∈ U,A ⊂ V and U ∩ V = ∅. X is said to be pairwise regular (Kelly [5]) if Pi

is regular with respect to Pj for both i = 1 and i = 2.
(c) X is said to be pairwise normal (Kelly [5]) if for any pair of a (Pi)-closed set A

and a (Pj)-closed set B with A∩B = ∅, i 6= j, there exist U ∈ Pj and V ∈ Pi

such that A ⊂ U , B ⊂ V and U ∩ V = ∅.
(d) A cover {Eα | α ∈ A} of X is said to be point finite (Dugundji [3]) if for each

x ∈ X, there are at most finitely many indices α ∈ A such that x ∈ Eα.
The following definitions are introduced in Bose, Roy Choudhury and Mukhar-

jee [1].

Definition 2.3. A subcollection C of a refinement V of a pairwise open cover
U of X is U -locally finite if for each x ∈ X, there exists a neighbourhood of x
intersecting a finite number of members of C, the neighbourhood being (Pi)-open
if x belongs to a (Pi)-open set of U .

Definition 2.4. The bitopological space X is pairwise paracompact if every
pairwise open cover U of X has a U -locally finite parallel refinement.

If in the above definition, some sets U ∈ U are both (P1)-open and (P2)-open,
then for each such set U , we select one of P1 and P2 with respect to which U is
open. For this choice, we have a U-locally finite refinement of U . Changing the
choice, we get a class of U -locally finite refinements of U . If there are two distinct
sets U1, U2 ∈ U such that for i = 1, 2, Ui is (Pi)-open and U1 ∩ U2 6= ∅, then
for U-local finiteness of a subcollection C of the refinement V of U at the points
x ∈ U1 ∩ U2, we must get two neighbourhoods Ni, i = 1, 2 of x such that Ni is
(Pi)-open and each intersects a finite number of members of C.

Definition 2.5. The bitopological space (X,P1,P2) is strongly pairwise reg-
ular if it is pairwise regular, and if both the topological spaces (X,P1) and (X,P2)
are regular.

If U is a pairwise open cover of X, then for each i = 1, 2, U i denotes the class
of (Pi)-open sets belonging to U . For a point x ∈ X, a set A ⊂ X and a collection
C of subsets of X, we write

St(x, C) =
⋃
{C ∈ C |x ∈ C},

St(A, C) =
⋃
{C ∈ C |A ∩ C 6= ∅}.

Let P be the topology on X generated by the subbase A =P1 ∪ P2.
We now introduce the following definitions.
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Definition 2.6. Let U be a pairwise open cover of X. A parallel refinement
V of U is said to be a parallel star (resp. barycentric) refinement of U whenever it
satisfies the following conditions: (1) if there are two distinct sets U1, U2 ∈ U such
that Ui is (Pi)-open and U1 ∩ U2 6= ∅, then for x ∈ U1 ∩ U2, there are two sets
V1, V2 ∈ V such that Vi ⊂ Ui, Vi is (Pi)-open and x ∈ V1 ∩ V2; (2) for any V ∈ V
(resp. x ∈ X), there exists a U ∈ U such that St(V,V) ⊂ U (resp. St(x,V) ⊂ U).

A (P)-open refinement V of U is said to be a (P)-open barycentric refinement
of U if for any x ∈ X, there exists a U ∈ U such that St(x,V) ⊂ U .

Definition 2.7. A set G ∈ P is said to be (P∗j )-open if it is a union of a
(Pi)-open set and a nonempty (Pj)-open set. The complement of a (P∗j )-open set
is called a (P∗j )-closed set.

Definition 2.8. X is said to be α-pairwise normal if for any pair of a (Pi)-
closed set A and a (P∗j )-closed set B with A∩B = ∅, i 6= j, there exist a set U ∈ P
and a set V ∈ Pi such that A ⊂ U,B ⊂ V and U ∩ V = ∅.

It is easy to see that X is α-pairwise normal if and only if for any (P∗j )-closed
set K and any (Pi)-open set U with K ⊂ U , there exists a (Pi)-open set V such
that K ⊂ V ⊂ (P)clV ⊂ U .

Definition 2.9. A pairwise open cover U = {Uα | α ∈ A} is said to be
shrinkable if there exists a pairwise open cover V = {Vα | α ∈ A} such that for each
α ∈ A, (P)clVα ⊂ Uα. V is then called a shrinking of U .

Definition 2.10. X is said to be pairwise (resp. a-pairwise) fully normal if
for every pairwise open cover U of X, there is a pairwise open (resp. (P)-open)
cover V of X such that V is a parallel (resp. (P)-open) star (resp. barycentric)
refinement of U .

We denote the set of natural numbers by N and the set of real numbers by R.

3. Theorems

Theorem 3.1. X is pairwise fully normal if and only if for every pairwise
open cover U of X, there is a pairwise open cover V of X such that V is a parallel
barycentric refinement of U .

The above theorem can be proved with standard arguments.

Theorem 3.2. If X is pairwise fully normal, then it is α-pairwise normal and
pairwise normal.

Proof. Let A and B be two disjoint subsets of X which are (Pi)-closed and
(P∗j )-closed respectively with i 6= j. Then there exist a (Pi)-open set G1 and a
nonempty (Pj)-open set G2 such that X − B = G1 ∪ G2. So {X − A,G1, G2}
is a pairwise open cover of X. Therefore there exists a parallel star refinement
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V of {X − A,G1, G2}. Then G = St(A,V) and H = St(B,V) are (P)-open and
(Pi)-open respectively, A ⊂ G and B ⊂ H. We claim G ∩H = ∅. If G ∩H 6= ∅,
then there exist V ′, V ′′ ∈ V with A ∩ V ′ 6= ∅, B ∩ V ′′ 6= ∅ and V ′ ∩ V ′′ 6= ∅, and
so St(V ′,V) intersects both A and B which is impossible. Thus X is α-pairwise
normal. Similarly, we can show that it is pairwise normal.

Example 3.3. For any a ∈ R, the bitopological space (R,P1,P2) where
P1 = {∅, R, (−∞, a], (a,∞)} and P2 = {∅, R, (−∞, a), [a,∞)} is α-pairwise normal
but not pairwise normal.

Example 3.4. Let p ∈ R, P1 = {∅, R} ∪ {E ∪ (x,∞) | p /∈ E ⊂ R, x ∈ R
and x ≥ p + 1} and P2 = the usual topology of R. Then the bitopological space
(R,P1,P2) is pairwise normal, since for any (P1)-closed set A(6= ∅, R), we have

A = E ∩ (−∞, x], p ∈ E ⊂ R, x ≥ p + 1

and for any (P2)-closed set B with A ∩ B = ∅, we have p /∈ B, one can take for
y > x,

U = (X −B) ∩ (−∞, y) ∈ P2,

V = B ∪ (y,∞) ∈ P1

so that A ⊂ U,B ⊂ V and U ∩ V = ∅.
But (R,P1,P2) is not α-pairwise normal, since for the (P1)-closed set

F = ((p− 1, p + 1) ∪ (the set of rationals)) ∩ (−∞, x], x ≥ p + 1,

and the (P∗2 )-closed set

K = M ∩ ((−∞, p− 1] ∪ [p + 1,∞))

where M is the (P1)-closed set

((p− 1, p + 1) ∪ (the set of irrationals)) ∩ (−∞, x], x ≥ p + 1,

there exists no pair of a (P)-open set U and a (P1)-open set V with F ⊂ U,K ⊂ V
and U ∩ V = ∅.

From the above two examples, it follows that the notions of pairwise normality
and α-pairwise normality are independent.

Theorem 3.5. If X is pairwise Hausdorff and pairwise paracompact, then X
is α-pairwise normal.

Proof. Let us consider a (Pi)-closed set A and a (P∗j )-closed set B with A∩B =
∅ and i 6= j. Let ξ ∈ B. Then ξ /∈ A. Since X is pairwise Hausdorff and
pairwise paracompact, it is pairwise regular (Theorem 5, Bose et al. [1]). Therefore
there exist a set Uξ ∈ Pj and a set Vξ ∈ Pi such that A ⊂ Uξ, ξ ∈ Vξ and
Uξ ∩ Vξ = ∅. The set X − B is (P∗j )-open, and so there exist a (Pi)-open set
G1 and a nonempty (Pj)-open set G2 such that X − B = G1 ∪ G2. Therefore
the family V = {Vξ | ξ ∈ B} ∪ {G1, G2} is a pairwise open cover of X. Since X is
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pairwise paracompact, there exists a V-locally finite parallel refinement D of V. Let
V =

⋃{D ∈ D | D ∩ B 6= ∅}. Then V ∈ Pi and B ⊂ V . Now let x ∈ A ⊂ X − B.
Since X−B = G1∪G2 and G1, G2 ∈ V, it follows that there exists a neighbourhood
Wx of x such that Wx ∈ Pi (resp. Wx ∈ Pj) if x ∈ G1 (resp. x ∈ G2) and Wx

intersects finite number of sets D1
x, D2

x, . . . , Dm
x with B ∩ Dk

x 6= ∅ and Dk
x ∈ D

for k = 1, 2, . . . , m. If Dk
x ⊂ Vξk

, ξk ∈ B, then Ux ∩ V = ∅ and x ∈ Ux where
Ux = Wx ∩ (

⋂m
k=1Uξk

) ∈ P. If U =
⋃

x∈AUx, then U ∈ P, A ⊂ U and U ∩ V = ∅.
Therefore X is α-pairwise normal.

Theorem 3.6. If X is α-pairwise normal, then every point finite pairwise
open cover is shrinkable.

Proof. Let U = {Uα | α ∈ A} be a point finite pairwise open cover of X.
We well-order the index set A, and write A = {1, 2, . . . , α, . . . }. By transfinite
induction, we now construct a pairwise open cover V = {Vα | α ∈ A} which is a
shrinking of U . We write F1 = X−⋃{Uα | α > 1}. Since U is a pairwise open cover,
it follows that if U1 is (Pi)-open, then F1 is (P∗j )-closed and F1 ⊂ U1. Therefore
there exists a (Pi)-open set V1 such that F1 ⊂ V1 ⊂ (P)clV1 ⊂ U1. Assume that
Vβ is defined for every β < α, and consider the set

Fα = X −
(
(
⋃
{Vβ | β < α}) ∪ (

⋃
{Uγ | γ > α})

)
.

If Uα is (Pi)-open, then Fα is (P∗j )-closed. Also Fα ⊂ Uα. Therefore there exists a
set Vα ∈ Pi such that

Fα ⊂ Vα ⊂ (P)clVα ⊂ Uα. (1)

If x ∈ X, then there exist a finite number of sets Uα1 , Uα2 , . . . , Uαn such that
x ∈ Uαi for all i = 1, 2, . . . , n. If α = max(α1, α2, . . . , αn), then for γ > α, x /∈ Uγ .
Therefore x ∈ Fα ⊂ Vα if x /∈ Vβ for all β < α. So V = {Vα | α ∈ A} is a pairwise
open cover of X. Hence it follows from (1) that V is a shrinking of U .

Now we prove an analogue (Theorem 3.8) of A. H. Stone’s theorem on para-
compactness (Stone [7]).

For this, we require the following result.

Theorem 3.7. [1] If X is strongly pairwise regular, then X is pairwise para-
compact if and only if every pairwise open cover U of X has a parallel refinement
V =

⋃∞
n=1Vn, where each Vn is U-locally finite.

Theorem 3.8. Suppose X is pairwise Hausdorff. If X is pairwise paracom-
pact, then it is a-pairwise fully normal. Conversely, if X is pairwise fully normal,
then it is pairwise paracompact.

Proof. At first we suppose that X is pairwise Hausdorff and pairwise paracom-
pact.

Let U be a pairwise open cover of X. Then there exists a U -locally finite
parallel refinement V = {Vα | α ∈ A} of U . Since V is U-locally finite, it is point
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finite. Again by Theorem 3.5, X is α-pairwise normal, and so by Theorem 3.6,
there exists a shrinking W = {Wα | α ∈ A} of V. W is a pairwise open cover of X
such that for each α,

(P)clWα ⊂ Vα. (2)

For x ∈ X, we write
Dx =

⋂
{Vα | x ∈ (P)clWα}. (3)

From (2) and point finiteness of V, it follows that there are finite number of Vα in
the intersection (3). Hence Dx ∈ P . Now let

Kx =
⋃
{(P)clWα | x /∈ (P)clWα}.

Since V is U-locally finite, {(P)clWα} is (P)-locally finite. Therefore by 9.2
(Dugundji [3], p. 82), Kx is a (P)-closed set. Therefore Gx = X − Kx is a
(P)-open set. Hence the collection B = {Dx ∩ Gx | x ∈ X} is a (P)-open cov-
er of X. For y ∈ X, let y ∈ (P)clWα. If y ∈ Dx ∩ Gx, then x ∈ (P)clWα,
since otherwise (P)clWα ⊂ Kx and hence y /∈ Gx. Again if x ∈ (P)clWα, then
Dx ⊂ Vα ⇒ Dx ∩Gx ⊂ Vα. Therefore B is a (P)-open barycentric refinement of V
and hence of U . Therefore X is a-pairwise fully normal.

Conversely, suppose X is pairwise Hausdorff and pairwise fully normal. Let
U = {Uα | α ∈ A} be a pairwise open cover of X. By Theorem 3.1, we can construct
a sequence {Un} of pairwise open covers of X such that U1 is a parallel barycentric
refinement of U , and for each n ∈ N, Un+1 is a parallel barycentric refinement of
Un. For α ∈ A, let

V n
α = {x ∈ Uα | St(x,Un) ⊂ Uα},

Vα =
⋃∞

n=1
V n

α .

If x ∈ Vα, then x ∈ V n
α for some n, and so St(x,Un) ⊂ Uα. Now let y ∈ St(x,Un+1),

then x ∈ St(y,Un+1). Since Un+1 is a barycentric refinement of Un, it follows that,
St(y,Un+1) ⊂ St(x,Un) ⊂ Uα. So y ∈ V n+1

α ⊂ Vα. Thus St(x,Un+1) ⊂ Vα. Since
U1 is a barycentric refinement of U , for any x ∈ X, there exists a Uα such that
St(x,U1) ⊂ Uα and so x ∈ V 1

α ⊂ Vα. Therefore V = {Vα | α ∈ A} is a refinement
of U . We now well-order V as V1, V2, . . . , Vα, . . . . For a fixed n ∈ N , we define

Bn
1 = X − St(X − V1,Un),

Bn
α = X − St

(
(X − Vα) ∪ (

⋃
β<α

Bn
β ),Un

)
if α > 1.

It is easy to see that

St(Bn
α,Un) ⊂ Vα for all α,

St(Bn
α,Un) ∩Bn

β = ∅ for all β 6= α. (4)

Let x ∈ X. Since {Vα | α ∈ A} is a cover of X, there is a first index α such that
x ∈ Vα. Then St(x,Um) ⊂ Vα for some m. We now show x ∈ Bm

α . If possible,
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suppose x /∈ Bm
α . Then

x ∈ St
(
(X − Vα) ∪ (

⋃
β<α

Bm
β ),Um

)

⇒ St(x,Um) ∩
(
(X − Vα) ∪ (

⋃
β<α

Bm
β )

)
6= ∅

⇒ St(x,Um) ∩Bm
β 6= ∅ for some β < α (since St(x,Um) ⊂ Vα)

⇒ x ∈ St(Bm
β ,Um) ⊂ Vβ .

This contradicts the fact that α is the first index for which x ∈ Vα. Therefore
x ∈ Bm

α . Hence {Bn
α | n ∈ N,α ∈ A} is a cover of X. We now define

Gn
α = St(Bn

α,U i
n+2), n ∈ N, α ∈ A if Uα is (Pi)open.

Then Gn
α is (Pi)-open. Since St(Bn

α,Un) ⊂ Vα, we have St(Bn
α,Un+2) ⊂ Vα and

hence Gn
α ⊂ Vα. Now let x ∈ X. Then x ∈ Bn

α for some pair of n and α and
so x ∈ Uα, since Bn

α ⊂ St(Bn
α,Un) ⊂ Vα ⊂ Uα. If Uα is (Pi)-open, then by

definition of parallel barycentric refinement, x ∈ U for some U ∈ U i
n+2. So x ∈

St(Bn
α,U i

n+2) = Gn
α. Therefore G ={Gn

α | n ∈ N, α ∈ A} is a cover of X and hence
a parallel refinement of U . We now show that there exists no U ∈ Un+2 intersecting
both Gn

α and Gn
β for α 6= β, whenever both Uα and Uβ are (Pi)-open. Suppose

if possible, U ∈ Un+2 intersects both Gn
α and Gn

β for α 6= β with Uα, Uβ ∈ Pi.
Then there exist H1,H2 ∈ U i

n+2 such that H1 intersects both Bn
α and U , and H2

intersects both Bn
β and U . Hence St(U,U i

n+2) intersects both Bn
α and Bn

β . Since
Un+2 is a star refinement of Un, it follows that some W ∈ Un intersects both Bn

α

and Bn
β . Therefore St(Bn

α,Un) intersects Bn
β which contradicts (4).

Since Un+2 is a parallel refinement of U , it thus follows that for each n ∈ N ,
Gn = {Gn

α | α ∈ A} is U-locally finite. Also we have G =
⋃∞

n=1 Gn
α .

Since X is pairwise Hausdorff, any singleton subset of X is (Pi)-closed for i = 1
and 2. Therefore by Theorem 3.2, X is pairwise regular. Next we show that both
(X,P1) and (X,P2) are regular topological spaces. Let F be a (Pi)-closed subset
of X with x /∈ F, i = 1, 2. Considering {x} as a (Pi)-closed set, we get a parallel
star refinement V of {X−{x}, X−F}. Then G = St({x},V) and H = St(F,V) are
(Pi)-open sets with x ∈ G,F ⊂ H and G∩H = ∅. So (X,Pi) is regular. Hence X is
strongly pairwise regular. Therefore by Theorem 3.7, X is pairwise paracompact.
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