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THE SCHUR-HARMONIC-CONVEXITY OF DUAL FORM
OF THE HAMY SYMMETRIC FUNCTION

Junxia Meng, Yuming Chu and Xiaomin Tang

Abstract. We prove that the dual form of the Hamy symmetric function
T 1
Hy(z,r) = Hn(z1,%2,...,Zn;7T) = H (Z z[J)
1<ip < <ip<n =1

is Schur harmonic convex in R7. As applications, some inequalities are established by use of the
theory of majorization.

1. Introduction

Throughout this paper, we denote by R™ (n > 2) the n—dimensional Euclidean
space, R = R! and R ={(z1,22,...,2,) :2; > 0,i =1,2,...,n}.
For x = (xz1,22,...,2n),y = (Y1,%2,-..,) € R} and a > 0, we denote by

.’E+y: $1+y1,$2+y27~~»$n+yn)a
Yy

(
xz :(Ilyl,fzyz,---,fvnyn)7
ar = (axy, s, ..., axy,), and
1 1 1 1
7:(7,75""7)'
x r1 T2 In

For x = (x1,%2,...,2,) € R} and 7 € {1,2,...,n}, the Hamy symmetric function
[1-3] was defined as

r 7
Fo(z,r) = Fp(x1, 22, ..., %n;7) = Z <H$%) .
1

1<) <ip < <ip<n Nj=
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Corresponding to this is the r-order Hamy mean

ORI (H 33)

N 1<i1 <9< - <ip<n V=1

where C7 = —".— T. Hara et al. [1] established the following refinement of the

(n—mr)lr!”
classical arithmetic and geometric mean inequality:

Gn(x) =0op(z,n) <onp(z,n—1) < - <op(z,2) < op(z,1) = Ay (2).

Here A,(z) = 237" | 2; and G,(z) = ([T, xl)L denote the classical arithmetic
and geometric means, respectively.

The paper [4] by H. T. Ku et al. contains some interesting inequalities including
the fact that (o, (z,7))" is log-concave, the more results can be found in the book
[5] by P. S. Bullen. In [2], the Schur convexity of the Hamy symmetric function
and its generalization was discussed. In [3], W. D. Jiang defined the dual form of
the Hamy symmetric function as follows

H(z,7) = Hy (21, @2, ., ni7) = I1 <Zx) (1.1)

1<i1 <@g < <ip<n “j=1

for x = (z1,22,...,2,) € R} and r € {1,2,...,n}. The Schur concavity and
the Schur geometrically convexity of H,(z,r) were discussed, and some analytic
inequalities were established by use of the theory of majorization.

Our main aim in what follows is to introduce the notion of Schur-harmonic-
convexity and prove that H,(z,r) is Schur harmonic convex in R} .

For convenience of readers, we recall and introduce some definitions as follows.

DEFINITION 1.1. A set E; C R" is called a convex set if % € E4 whenever
x,y € F1. A set By C Ri is called a harmonic convex set if 3% € E5 whenever
T,y € Es.

It is easy to see that ¥ C Ri is a harmonic convex set if and only if % = {% :
x € E} is a convex set.

DEFINITION 1.2. Let E C R" be a convex set, a real-valued function f is said
to be a convex function on E if f(%) < w for all z,y € F. And f is called
a concave function if —f is a convex function.

DEFINITION 1.3. Let £ C Ri be a harmonic convex set, a function f : F —
R, is called a harmonic convex (or concave, respectively)function on E if f(2££) <

Tty / —
(or >, respectively ) % for all z,y € E.

Definition 1.2 and 1.3 have the following consequences.
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REMARK 1.1. If F; C Ri is a harmonic convex set and f: F; — R4 is a
harmonic convex function, then

1 1
Flz)=—:—=— — Ry
f(3)  Er
is a concave function. Conversely, if F; C R/ is a convex set and F': F; — R,
is a convex function, then

is a harmonic concave function.

DEFINITION 1.4. Let E C R" be a set, a function F : E — R is called a
Schur convex function on E if

F(l’l,IEQ,..-,fEn) SF(ylayQa"'ayn)

for each pair of n-tuples © = (x1,29,...,2,) and y = (y1,¥y2,...,ys) in E, such

that x <y, i. e.
k

k
Zx[i] SZym, k=1,2,....n—1
i=1

i=1

and . .
Zw[i] = Zy{i]’
i=1 i=1

where x[; denotes the i-th largest component in x. And F is called Schur concave
if —F is Schur convex.

DEFINITION 1.5. Let E C R’} be a set. A function F': E — Ry is called a
Schur harmonic convex (or concave, respectively) function on FE if

F(x1,xa,...,x,) < (or >, respectively) F(y1, Y2, - - -, Yn)

for each pair of n-tuples = (z1,x2,...,2,) and y = (y1,¥2,...,Yn) in E, such
that -+ < &
Y
Definition 1.4 and 1.5 have the following consequences.

REMARK 1.2. Let E C R} be aset and H = £ = {1 : v € E}. Then
f: F — Ry is a Schur harmonic convex (or concave, respectively) function on F

if and only if ﬁ is a Schur concave (or convex, respectively) function on H.

Schur convexity was introduced by I. Schur in 1923 [6], it has many important
applications in analytic inequalities [7—12], linear regression [13], graphs and matri-
ces [14], combinatorial optimization [15], information-theoretic topics [16], Gamma
functions [17], stochastic orderings [18], reliability [19] and other related fields. But
no one has ever researched the Schur harmonic convexity. In the present paper, the
Schur harmonic convexity of the dual form of the Hamy symmetric function will
be discussed.



40 J. Meng, Y. Chu, X. Tang
2. Lemmas

In this section, we introduce and establish several lemmas, which are used in
the proof of our main result in next sections.

LEMMA 2.1 [6] Let E C R" be a symmetric convexr set with nonempty inte-
rior intE and ¢ : E — R be a continuous symmetry function on E. If ¢ is
differentiable on int E, then ¢ is Schur convex on E if and only if

dp dp
P ——)>0 2.1
(@ xj)(axi axj) - (2.1)
foralli,j =1,2,...,n and © = (x1,22,...,2,) € intE. Here, E is a symmetric

set which means that © € E implies Px € E for any n X n permutation matriz P.

REMARK 2.1. Since ¢ is symmetric, the Schur’s condition in Lemma 2.1, i.
e. (2.1) can be reduced as

dy dp
—m) (2 — 2y > 0.
(1'1 xQ)(aIl 8332) =

The following Lemma 2.2 can easily be derived from Remark 1.2, Lemma 2.1
and Remark 2.1 together with elementary computation.

LEMMA 2.2. Let E C R} be a symmetric harmonic convexr set with nonempty
interior int B and ¢ : E — Ry be a continuous symmetry function on E. If ¢ is
differentiable on int E, then ¢ is Schur harmonic conver on E if and only if

¢ d¢
(21 — 952)(33%8751 - 33387:02

)=0
for all x = (x1,22,...,2,) € intE.

LEMMA 2.3 [2, Lemma 2.2(i); 3, Lemma 2.5; 20, Lemma 2.3] Let z =
(z1,22,...,2,) ERY and Y. x; = s. If ¢ > s, then

c—2x <c—x1 c— o c—xn>_<( )
= s gy T1,L2y...,Lp) =1T.
ne_q T \mEopme_pEe g
LEMMA 2.4 [20, Lemma 2.4] Let x = (z1,2,...,2,) € R and 377" 2; = s.
If ¢ >0, then

c+z (c—i—acl c+ o c+ T,

= < (z1,20,...,2,) = .
e (EE o ) S =
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3. Main result

THEOREM 3.1. Forr € {1,2,...,n}, the function H,(xz,r) is Schur harmonic

convex in R .

Proof. The proof is divided into four cases.

Case 1. r = 1.
In this case, we see that

n

Hy(x,1) = Hy (21,2, .., 203 1) = [ ] 2. (3.1)
=1
(3.1) leads to
0H, (z,1 0H, (z,1 .
(.%‘1 — xg) (x% 8;(51 ) — l‘% 8;2 )) = (-%'1 - xQ)QHJ;i > 0.
=1

Case 2. r =n.
In this case, we see that

H,(z,n) = H,(x1,z2,...,Tp;n) :fo (3.2)

(3.2) leads to

1

OH,(z,n O0H,(xz,n 1 1+1 1+1
(1 — x2) (x% 8;1 ) — 2 5552 )) = ﬁ(arl —$2)($1+” -z +") > 0.

Case 3. n>3 and r = 2.
The definition of H,(z,r) in (1.1) implies

Hy,(z,2) = Hy(x1,22,...,Tn;2)

1 PR 1
= Hyoi(w2, 25, o 2) (@ +a3) [[ (@7 +27). (3.3)
j=3
(3.3) leads to
OHp(z,2) 1 2] ? LI
o §Hn(1372) -+ Z -1 |- (3-4)
1 i +x5 =3 %] —|—Z‘;
Similarly, we have
OH,(1,2) 1 S
n(x, Ty ? Ty ?
— 2 + —— |- (3.5)

=-Hy(2,2) | ——
O 2 xf +x2 Smai4 zf



42 J. Meng, Y. Chu, X. Tang

(3.4) and (3.5) yield

0H,(z,2) 0H,(z,2)
(zl N z2) (ZL'% 61‘1 B SC% 6.’172
. 3 ot e —an) 4 od el —oh)
T2 — rixs (1 — 22 x?(x] —x3
= 5($1 —x9)H,(7,2) % + I I ;j 1
i +xy =3 (xf +27) (23 +27)
> 0.

Case4d. n>4and 3<r<n-—1.
The definition of H,(z,r) in (1.1) implies
Hn(xa T) = Hn(xhx% s ,xn;r)

1 r-1 1
=H,_1(xo,x3,...,T,;7) H (x7 + g :E[J)x
3<i1 << <tp_1<N Jj=1

1
X H acl + x2 + Z xT
3<i1 << <ip_2<n
Differentiating H,(x,r) with respect to 21 and makmg use of (3.6) yield

13
OH, (z,r 1 x{
# = THn(x,r)< Z 11—;
1 3<iy <ip <+ <ip_1<n T +Z_7 11“

11
i
+ o
1 1 r—o 1 .
: o
J

3<it<iz<-<ip_2<n T + T3 + 3]

Similarly, we have

i1
OH,(x,r) 1 xd
T (D D . —
2 3<iy<in<<ip_1<n Tg +Z] 1%

1_

1q
+ 3 12 1).

3<i1<ip< - <ip_2<n xl +x2 +Z] 1xz]

(3.7) and (3.8) lead to
5 OH, (x,7) 2 OHp(z, 7)1
1 axl — Ty 8(1}2 ) - ;(1‘1 - Z'Q)HH(I',T') X

(z1 — @2) (2]

(3.6)

(

™

3.7)

(3.8)

J

x[z

1 1
3<iy <ig<--<ip_1<n $1 + 3050 mzj)($2 + 3050 xr)

144 14+1

- 3 . R

3<iy <ig<--<ip_2<n 11 Jr1’2 + 3052 1xr

Therefore, Theorem 3.1 follows from cases 1-4 and Lemma 2.2. m

T 14+ 144 1
i s (xl —r2) + (2 -y )Z§:1 z
(
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4. Applications

In this section, we establish some inequalities by using Theorem 3.1 and the
theory of majorization.

THEOREM 4.1. If x = (z1,22,...,2,) € R} andr € {1,2,...,n}, then

n ] T
Hy(z1, 22, 20;7) > |7 = :
21:15

Proof. We clearly see that

<Z?—lz1 27:1% Z?_1i><(1 1 1

). (4.1)

n n n 1 To " T

Therefore, Theorem 4.1 follows from Theorem 3.1, (4.1) and the definition of
H,(z,r)in (1.1). m
REMARK 4.1. W. D. Jiang [3, Corollary 3.1] proved that

!

19—
H }:7} N T (n—r)!
n($1,$27,,,7;pn;1) < |r (Z—ll)

n

for any (z1,22,...,2,) € R} and r € {1,2,...,n}.
The following Theorems 4.2 and 4.3 can be derived directly from Theorem 3.1,
Lemma 2.3 and 2.4, and (1.1).

n

THEOREM 4.2. Let x = (x1,%2,...,2,) € R}, > s = 5. Ifc> s and
re{l,2,...,n}, then

!

Hn l7 7! nnér Ir
(TT) Z(E—l) Rl
Hn(ﬁ,r) S
THEOREM 4.3. Let © = (21,22,...,2,) € R}, 30 2, = s. Ifec >0 and

re{l,2,...,n}, then

H,(+r T
(915 ) > ( ne n 1) =
Hy(557) $

REMARK 4.3. If we take ¢ = s = r = 1 in Theorem 4.2 and 4.3, respectively,
then the following two Weierstrass inequalities [21] are obtained:

) Il =) = (= 1)

(i) Ty (e +1) > (n+1)™

If we take ¢ = s = 1 and r = n in Theorem 4.2 and 4.3, respectively, then we
have the following corollary 4.1.
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COROLLARY 4.1. Suppose that (x1,22,...,x,) € RY. If Y1 ;= 1, then

Ehia) w2 (- 1)F
i ()

and

= ()
=1\ z;
n 1 72
Dic (m)
THEOREM 4.4. Let A be an n-dimensional simplex in R" (n > 3) and
{A1,As, ..., Ani1} be the set of vertices. Let P be an arbitrary point in the in-

terior of A. If B; is the intersection point of the extension line of A; P and the
(n — 1)-dimensional hyperplane opposite to the point A;, then

A1B, A;B Any1B, k===
Hn+1< 101 A2D3 +1 +1'r)>[r(n+1)r} (n—r+1)

(n+1)r.

PB,’ PBy' ' PBp
and
(n+1)!
Hyi A1B17A232’.“’An+13n+1;r > r(n+1)% RICRIE
AP AP Ay P "

forre{1,2,...,n,n+ 1}.

PRrOOF. Theorem 4.4 follows from Theorem 3.1 and the fact that Z?jll z %’2 =
1and S0 AL —

i=1 A,B;

THEOREM 4.5. Let A = (aij)nxn (M > 2) be a complex matriz, A, A2,..., A\,
the eigenvalues of A, and I denotes n x n unit matriz. If A is a positive definite
Hermitian matriz and r € {1,2,...,n}, then

r N L #LU'
1 [Soeenn ]| (i)
Zj -
1<i1 <9<+ <4, <n ~j=1 1Og det([ + A)
Proof. Since A; (1 = 1,2,...,n) is an eigenvalue of matrix A, we clearly see

that 1+ ); is an eigenvalue of matrix I + A and [[;—, (1 + A;) = det(Z + A). This
leads to

<log det(I + A) logdet(I + A) log det(I + A))
m , ” s -

=< (log(1+ A1),log(l+ Az),...,log(1+ Ap)). (4.2)

Therefore, Theorem 4.5 follows from Theorem 3.1 and (4.2) together with the
definition of H,(z,r) in (1.1). m
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THEOREM 4.6. Let A = (aij)nxn (N >2) be a complex matriz, i, A2,..., A\
eigenvalues of A. If A is a positive definite Hermitian matriz and r €

{1,2,...,n}, then

11 (ZA) > [r (WnAHH

1<ip<io<---<i,,<n =1

Proof. Theorem 4.6 follows from (1.1) and Theorem 3.1 together with the fact

that \; >0 (i=1,2,...,n)and > N\, =trA. =

THEOREM 4.7. If (x1,22,...,2,) € R, then
1 1 1 1
H,( , e V< H(—=—>1,1,...,1).
1—|—$17 1+I2, 1+.Tn 1+Zi:1$i

Proof. Theorem 4.7 follows from Theorem 3.1 and the fact that

I+z,1420,...,14+x,) <1+ > x;,1,1,...,1). =
i=1
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