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OF THE HAMY SYMMETRIC FUNCTION

Junxia Meng, Yuming Chu and Xiaomin Tang

Abstract. We prove that the dual form of the Hamy symmetric function

Hn(x, r) = Hn(x1, x2, . . . , xn; r) =
∏

1≤i1<···<ir≤n

( r∑
j=1

x
1
r
ij

)

is Schur harmonic convex in Rn
+. As applications, some inequalities are established by use of the

theory of majorization.

1. Introduction

Throughout this paper, we denote by Rn (n ≥ 2) the n−dimensional Euclidean
space, R = R1 and Rn

+ = {(x1, x2, . . . , xn) : xi > 0, i = 1, 2, . . . , n}.
For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , ) ∈ Rn

+ and α > 0, we denote by

x + y = (x1 + y1, x2 + y2, . . . , xn + yn),

xy = (x1y1, x2y2, . . . , xnyn),

αx = (αx1, αx2, . . . , αxn), and
1
x

= (
1
x1

,
1
x2

, . . . ,
1
xn

).

For x = (x1, x2, . . . , xn) ∈ Rn
+ and r ∈ {1, 2, . . . , n}, the Hamy symmetric function

[1–3] was defined as

Fn(x, r) = Fn(x1, x2, . . . , xn; r) =
∑

1≤i1<i2<···<ir≤n

( r∏

j=1

xij

) 1
r

.
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Corresponding to this is the r-order Hamy mean

σn(x, r) =
1

Cr
n

∑

1≤i1<i2<···<ir≤n

( r∏

j=1

xij

) 1
r

,

where Cr
n = n!

(n−r)!r! . T. Hara et al. [1] established the following refinement of the
classical arithmetic and geometric mean inequality:

Gn(x) = σn(x, n) ≤ σn(x, n− 1) ≤ · · · ≤ σn(x, 2) ≤ σn(x, 1) = An(x).

Here An(x) = 1
n

∑n
i=1 xi and Gn(x) = (

∏n
i=1 xi)

1
n denote the classical arithmetic

and geometric means, respectively.

The paper [4] by H. T. Ku et al. contains some interesting inequalities including
the fact that (σn(x, r))r is log-concave, the more results can be found in the book
[5] by P. S. Bullen. In [2], the Schur convexity of the Hamy symmetric function
and its generalization was discussed. In [3], W. D. Jiang defined the dual form of
the Hamy symmetric function as follows

H(x, r) = Hn(x1, x2, . . . , xn; r) =
∏

1≤i1<i2<···<ir≤n

( r∑

j=1

x
1
r
ij

)
(1.1)

for x = (x1, x2, . . . , xn) ∈ Rn
+ and r ∈ {1, 2, . . . , n}. The Schur concavity and

the Schur geometrically convexity of Hn(x, r) were discussed, and some analytic
inequalities were established by use of the theory of majorization.

Our main aim in what follows is to introduce the notion of Schur-harmonic-
convexity and prove that Hn(x, r) is Schur harmonic convex in Rn

+.

For convenience of readers, we recall and introduce some definitions as follows.

Definition 1.1. A set E1 ⊆ Rn is called a convex set if x+y
2 ∈ E1 whenever

x, y ∈ E1. A set E2 ⊆ Rn
+ is called a harmonic convex set if 2xy

x+y ∈ E2 whenever
x, y ∈ E2.

It is easy to see that E ⊆ Rn
+ is a harmonic convex set if and only if 1

E = { 1
x :

x ∈ E} is a convex set.

Definition 1.2. Let E ⊆ Rn be a convex set, a real-valued function f is said
to be a convex function on E if f(x+y

2 ) ≤ f(x)+f(y)
2 for all x, y ∈ E. And f is called

a concave function if −f is a convex function.

Definition 1.3. Let E ⊆ Rn
+ be a harmonic convex set, a function f : E −→

R+ is called a harmonic convex (or concave, respectively)function on E if f( 2xy
x+y ) ≤

(or ≥, respectively ) 2f(x)f(y)
f(x)+f(y) for all x, y ∈ E.

Definition 1.2 and 1.3 have the following consequences.
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Remark 1.1. If E1 ⊆ Rn
+ is a harmonic convex set and f : E1 −→ R+ is a

harmonic convex function, then

F (x) =
1

f( 1
x )

:
1

E1
−→ R+

is a concave function. Conversely, if E2 ⊆ Rn
+ is a convex set and F : E2 −→ R+

is a convex function, then

f(x) =
1

F ( 1
x )

:
1

E2
−→ R+

is a harmonic concave function.

Definition 1.4. Let E ⊆ Rn be a set, a function F : E −→ R is called a
Schur convex function on E if

F (x1, x2, . . . , xn) ≤ F (y1, y2, . . . , yn)

for each pair of n-tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in E, such
that x ≺ y, i. e.

k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, 2, . . . , n− 1

and
n∑

i=1

x[i] =
n∑

i=1

y[i],

where x[i] denotes the i-th largest component in x. And F is called Schur concave
if −F is Schur convex.

Definition 1.5. Let E ⊆ Rn
+ be a set. A function F : E −→ R+ is called a

Schur harmonic convex (or concave, respectively) function on E if

F (x1, x2, . . . , xn) ≤ (or ≥, respectively)F (y1, y2, . . . , yn)

for each pair of n-tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in E, such
that 1

x ≺ 1
y .

Definition 1.4 and 1.5 have the following consequences.
Remark 1.2. Let E ⊆ Rn

+ be a set and H = 1
E = { 1

x : x ∈ E}. Then
f : E −→ R+ is a Schur harmonic convex (or concave, respectively) function on E
if and only if 1

f( 1
x )

is a Schur concave (or convex, respectively) function on H.

Schur convexity was introduced by I. Schur in 1923 [6], it has many important
applications in analytic inequalities [7–12], linear regression [13], graphs and matri-
ces [14], combinatorial optimization [15], information-theoretic topics [16], Gamma
functions [17], stochastic orderings [18], reliability [19] and other related fields. But
no one has ever researched the Schur harmonic convexity. In the present paper, the
Schur harmonic convexity of the dual form of the Hamy symmetric function will
be discussed.
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2. Lemmas

In this section, we introduce and establish several lemmas, which are used in
the proof of our main result in next sections.

Lemma 2.1 [6] Let E ⊆ Rn be a symmetric convex set with nonempty inte-
rior intE and ϕ : E −→ R be a continuous symmetry function on E. If ϕ is
differentiable on intE, then ϕ is Schur convex on E if and only if

(xi − xj)(
∂ϕ

∂xi
− ∂ϕ

∂xj
) ≥ 0 (2.1)

for all i, j = 1, 2, . . . , n and x = (x1, x2, . . . , xn) ∈ intE. Here, E is a symmetric
set which means that x ∈ E implies Px ∈ E for any n× n permutation matrix P .

Remark 2.1. Since ϕ is symmetric, the Schur’s condition in Lemma 2.1, i.
e. (2.1) can be reduced as

(x1 − x2)(
∂ϕ

∂x1
− ∂ϕ

∂x2
) ≥ 0.

The following Lemma 2.2 can easily be derived from Remark 1.2, Lemma 2.1
and Remark 2.1 together with elementary computation.

Lemma 2.2. Let E ⊆ Rn
+ be a symmetric harmonic convex set with nonempty

interior intE and ϕ : E −→ R+ be a continuous symmetry function on E. If ϕ is
differentiable on intE, then ϕ is Schur harmonic convex on E if and only if

(x1 − x2)(x2
1

∂ϕ

∂x1
− x2

2

∂ϕ

∂x2
) ≥ 0

for all x = (x1, x2, . . . , xn) ∈ intE.

Lemma 2.3 [2, Lemma 2.2(i); 3, Lemma 2.5; 20, Lemma 2.3] Let x =
(x1, x2, . . . , xn) ∈ Rn

+ and
∑n

i=1 xi = s. If c ≥ s, then

c− x
nc
s − 1

=
(

c− x1
nc
s − 1

,
c− x2
nc
s − 1

, . . . ,
c− xn
nc
s − 1

)
≺ (x1, x2, . . . , xn) = x.

Lemma 2.4 [20, Lemma 2.4] Let x = (x1, x2, . . . , xn) ∈ Rn
+ and

∑n
i=1 xi = s.

If c ≥ 0, then

c + x
nc
s + 1

=
(

c + x1
nc
s + 1

,
c + x2
nc
s + 1

, . . . ,
c + xn
nc
s + 1

)
≺ (x1, x2, . . . , xn) = x.
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3. Main result

Theorem 3.1. For r ∈ {1, 2, . . . , n}, the function Hn(x, r) is Schur harmonic
convex in Rn

+.

Proof. The proof is divided into four cases.
Case 1. r = 1.
In this case, we see that

Hn(x, 1) = Hn(x1, x2, . . . , xn; 1) =
n∏

i=1

xi. (3.1)

(3.1) leads to

(x1 − x2)
(

x2
1

∂Hn(x, 1)
∂x1

− x2
2

∂Hn(x, 1)
∂x2

)
= (x1 − x2)2

n∏

i=1

xi ≥ 0.

Case 2. r = n.
In this case, we see that

Hn(x, n) = Hn(x1, x2, . . . , xn;n) =
n∑

i=1

x
1
n
i . (3.2)

(3.2) leads to

(x1 − x2)
(

x2
1

∂Hn(x, n)
∂x1

− x2
2

∂Hn(x, n)
∂x2

)
=

1
n

(x1 − x2)(x
1+ 1

n
1 − x

1+ 1
n

2 ) ≥ 0.

Case 3. n ≥ 3 and r = 2.
The definition of Hn(x, r) in (1.1) implies

Hn(x, 2) = Hn(x1, x2, . . . , xn; 2)

= Hn−1(x2, x3, . . . , xn; 2)(x
1
2
1 + x

1
2
2 )

n∏

j=3

(x
1
2
1 + x

1
2
j ). (3.3)

(3.3) leads to

∂Hn(x, 2)
∂x1

=
1
2
Hn(x, 2)


 x

− 1
2

1

x
1
2
1 + x

1
2
2

+
n∑

j=3

x
− 1

2
1

x
1
2
1 + x

1
2
j


 . (3.4)

Similarly, we have

∂Hn(x, 2)
∂x2

=
1
2
Hn(x, 2)


 x

− 1
2

2

x
1
2
1 + x

1
2
2

+
n∑

j=3

x
− 1

2
2

x
1
2
2 + x

1
2
j


 . (3.5)
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(3.4) and (3.5) yield

(x1 − x2)
(

x2
1

∂Hn(x, 2)
∂x1

− x2
2

∂Hn(x, 2)
∂x2

)

=
1
2
(x1 − x2)Hn(x, 2)


x

3
2
1 − x

3
2
2

x
1
2
1 + x

1
2
2

+
n∑

j=3

x
1
2
1 x

1
2
2 (x1 − x2) + x

1
2
j (x

3
2
1 − x

3
2
2 )

(x
1
2
1 + x

1
2
j )(x

1
2
2 + x

1
2
j )




≥ 0.

Case 4. n ≥ 4 and 3 ≤ r ≤ n− 1.
The definition of Hn(x, r) in (1.1) implies

Hn(x, r) = Hn(x1, x2, . . . , xn; r)

= Hn−1(x2, x3, . . . , xn; r)
∏

3≤i1<i2<···<ir−1≤n

(x
1
r
1 +

r−1∑

j=1

x
1
r
ij

)×

×
∏

3≤i1<i2<···<ir−2≤n

(x
1
r
1 + x

1
r
2 +

r−2∑

j=1

x
1
r
ij

). (3.6)

Differentiating Hn(x, r) with respect to x1 and making use of (3.6) yield

∂Hn(x, r)
∂x1

=
1
r
Hn(x, r)

( ∑

3≤i1<i2<···<ir−1≤n

x
1
r−1
1

x
1
r
1 +

∑r−1
j=1 x

1
r
ij

+
∑

3≤i1<i2<···<ir−2≤n

x
1
r−1
1

x
1
r
1 + x

1
r
2 +

∑r−2
j=1 x

1
r
ij

)
. (3.7)

Similarly, we have

∂Hn(x, r)
∂x2

=
1
r
Hn(x, r)

( ∑

3≤i1<i2<···<ir−1≤n

x
1
r−1
2

x
1
r
2 +

∑r−1
j=1 x

1
r
ij

+

+
∑

3≤i1<i2<···<ir−2≤n

x
1
r−1
2

x
1
r
1 + x

1
r
2 +

∑r−2
j=1 x

1
r
ij

)
. (3.8)

(3.7) and (3.8) lead to

(x1 − x2)(x2
1

∂Hn(x, r)
∂x1

− x2
2

∂Hn(x, r)
∂x2

) =
1
r
(x1 − x2)Hn(x, r)×

×
[ ∑

3≤i1<i2<···<ir−1≤n

x
1
r
1 x

1
r
2 (x1 − x2) + (x1+ 1

r
1 − x

1+ 1
r

2 )
∑r−1

j=1 x
1
r
ij

(x
1
r
1 +

∑r−1
j=1 x

1
r
ij

)(x
1
r
2 +

∑r−1
j=1 x

1
r
ij

)

+
∑

3≤i1<i2<···<ir−2≤n

x
1+ 1

r
1 − x

1+ 1
r

2

x
1
r
1 + x

1
r
2 +

∑r−2
j=1 x

1
r
ij

]
≥ 0.

Therefore, Theorem 3.1 follows from cases 1–4 and Lemma 2.2.
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4. Applications

In this section, we establish some inequalities by using Theorem 3.1 and the
theory of majorization.

Theorem 4.1. If x = (x1, x2, . . . , xn) ∈ Rn
+ and r ∈ {1, 2, . . . , n}, then

Hn(x1, x2, . . . , xn; r) ≥
[
r

(
n∑n

i=1
1
xi

) 1
r
] n!

r! (n−r)!

.

Proof. We clearly see that
(∑n

i=1
1
xi

n
,

∑n
i=1

1
xi

n
, . . . ,

∑n
i=1

1
xi

n

)
≺ (

1
x1

,
1
x2

, . . . ,
1
xn

). (4.1)

Therefore, Theorem 4.1 follows from Theorem 3.1, (4.1) and the definition of
Hn(x, r) in (1.1).

Remark 4.1. W. D. Jiang [3, Corollary 3.1] proved that

Hn(x1, x2, . . . , xn; r) ≤
[
r

(∑n
i=1 xi

n

) 1
r

] n!
r! (n−r)!

for any (x1, x2, . . . , xn) ∈ Rn
+ and r ∈ {1, 2, . . . , n}.

The following Theorems 4.2 and 4.3 can be derived directly from Theorem 3.1,
Lemma 2.3 and 2.4, and (1.1).

Theorem 4.2. Let x = (x1, x2, . . . , xn) ∈ Rn
+,

∑n
i=1 xi = s. If c ≥ s and

r ∈ {1, 2, . . . , n}, then

Hn( 1
x , r)

Hn( 1
c−x , r)

≥
(nc

s
− 1

) n!
r! (n−r)!r

.

Theorem 4.3. Let x = (x1, x2, . . . , xn) ∈ Rn
+,

∑n
i=1 xi = s. If c ≥ 0 and

r ∈ {1, 2, . . . , n}, then

Hn( 1
x , r)

Hn( 1
c+x , r)

≥
(nc

s
+ 1

) n!
r! (n−r)!r

.

Remark 4.3. If we take c = s = r = 1 in Theorem 4.2 and 4.3, respectively,
then the following two Weierstrass inequalities [21] are obtained:

(i)
∏n

i=1(x
−1
i − 1) ≥ (n− 1)n;

(ii)
∏n

i=1(x
−1
i + 1) ≥ (n + 1)n.

If we take c = s = 1 and r = n in Theorem 4.2 and 4.3, respectively, then we
have the following corollary 4.1.
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Corollary 4.1. Suppose that (x1, x2, . . . , xn) ∈ Rn
+. If

∑n
i=1 xi = 1, then

∑n
i=1

(
1
xi

)n

∑n
i=1

(
1

1−xi

)n ≥ (n− 1)
1
n

and ∑n
i=1

(
1
xi

)n

∑n
i=1

(
1

1+xi

)n ≥ (n + 1)
1
n .

Theorem 4.4. Let A be an n-dimensional simplex in Rn (n ≥ 3) and
{A1, A2, . . . , An+1} be the set of vertices. Let P be an arbitrary point in the in-
terior of A. If Bi is the intersection point of the extension line of AiP and the
(n− 1)-dimensional hyperplane opposite to the point Ai, then

Hn+1

(
A1B1

PB1
,
A2B2

PB2
, . . . ,

An+1Bn+1

PBn+1
; r

)
≥

[
r(n + 1)

1
r

] (n+1)!
r! (n−r+1)!

and

Hn+1

(
A1B1

A1P
,
A2B2

A2P
, . . . ,

An+1Bn+1

An+1P
; r

)
≥

[
r(

n + 1
n

)
1
r

] (n+1)!
r! (n−r+1)!

for r ∈ {1, 2, . . . , n, n + 1}.

Proof. Theorem 4.4 follows from Theorem 3.1 and the fact that
∑n+1

i=1
PBi

AiBi
=

1 and
∑n+1

i=1
AiP
AiBi

= n.

Theorem 4.5. Let A = (aij)n×n (n ≥ 2) be a complex matrix, λ1, λ2, . . . , λn

the eigenvalues of A, and I denotes n × n unit matrix. If A is a positive definite
Hermitian matrix and r ∈ {1, 2, . . . , n}, then

∏

1≤i1<i2<···<ir≤n

[ r∑

j=1

(
log(1 + λij )

)− 1
r

]
≥

[
r

(
n

log det(I + A)

) 1
r

] n!
r! (n−r)!

.

Proof. Since λi (i = 1, 2, . . . , n) is an eigenvalue of matrix A, we clearly see
that 1 + λi is an eigenvalue of matrix I + A and

∏n
i=1(1 + λi) = det(I + A). This

leads to
(

log det(I + A)
n

,
log det(I + A)

n
, . . . ,

log det(I + A)
n

)

≺ (log(1 + λ1), log(1 + λ2), . . . , log(1 + λn)) . (4.2)

Therefore, Theorem 4.5 follows from Theorem 3.1 and (4.2) together with the
definition of Hn(x, r) in (1.1).
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Theorem 4.6. Let A = (aij)n×n (n ≥ 2) be a complex matrix, λ1, λ2, . . . , λn

the eigenvalues of A. If A is a positive definite Hermitian matrix and r ∈
{1, 2, . . . , n}, then

∏

1≤i1<i2<···<ir≤n

( r∑

j=1

λ
− 1

r
ij

)
≥

[
r
( n

trA

) 1
r

] n!
r! (n−r)!

.

Proof. Theorem 4.6 follows from (1.1) and Theorem 3.1 together with the fact
that λi > 0 (i = 1, 2, . . . , n) and

∑n
i=1 λi = trA.

Theorem 4.7. If (x1, x2, . . . , xn) ∈ Rn
+, then

Hn(
1

1 + x1,
,

1
1 + x2,

, . . . ,
1

1 + xn
) ≤ Hn(

1
1 +

∑n
i=1 xi

, 1, 1, . . . , 1).

Proof. Theorem 4.7 follows from Theorem 3.1 and the fact that

(1 + x1, 1 + x2, . . . , 1 + xn) ≺ (1 +
n∑

i=1

xi, 1, 1, . . . , 1).
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