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ON s-CLOSEDNESS AND S-CLOSEDNESS
IN TOPOLOGICAL SPACES

Zbigniew Duszynski

Abstract. Some properties of sets s-closed or S-closed relative to a space, and s-closed
or S-closed subspaces, are obtained. Relationships between some of them are indicated. New
characterizations of Hausdorff spaces in terms of s-closedness and a-compactness relative to a
space, are obtained.

1. Preliminaries

Throughout the paper (X,7) (or (Y,0)) denotes a topological space. For a
subset S of (X,7), int(5) (or intx(95)), cl(S) (or clx(95), or cl(X)) stand for
the interior of S and the closure of S, respectively. If Xy C X, then (Xo,Tx,)
denotes a subspace of (X, 7), and intx,(.), clx,(.) are interior and closure operators
(respectively) in (Xo,7x,). CO (X, 7) is the intersection of 7 and {X \ S : S €
T}. A subset S of (X, 7) is said to be regular open (resp. regular closed) if S =
int (c1(S)) (resp. S = cl(int (S))). A set S is said to be a-open [28] (resp. semi-
open [22], semi-closed [8], preopen [25], semi-preopen (or S-open) [2,1]) in (X, 1), if
S C int (cl (int (S))) (resp. S C cl(int (S)), S D int (c1(S)), S C int (c1(S5)), S C
cl(int (c1(S)))). A subset S of (X, 7) is semi-open if and only if there exists a U € T
such that U € S C cl(U) [22]. The collection of all regular open (resp. regular
closed, a-open, semi-open, semi-closed, preopen, semi-preopen) subsets of (X, 7)
is denoted by RO (X, 7) (resp. RC(X,7), 7%, SO (X,7), SC(X,7), PO(X,7),
SPO (X, 7)). The family 7 forms a topology on X such that 7 C 7*. An S is said
to be semi-regular [10] (see also [5] and [41]) if it is both semi-closed and semi-open
n (X, 7). We denote SO (X,7) N SC(X,7) = SR(X, 7). We have in each (X,7),
RO (X,7)URC(X,7) C SR(X,7) [41, Lemma 2.3, and RO (X,7) NRC (X, 1) =
CO (X, 7) (see for instance [11, ]). The semi-closure [8] (vesp. the semi-interior
[8]) of an S C X is the intersection of all semi-closed subsets of (X, 7) containing S
(resp. the union of all semi-open subsets of (X, 7) contained in S), and is denoted
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respectively by scl (S) (or sclx (S)) and sintx (S). The union of any family of semi-
open subsets of (X, 7) is semi-open as well [22].

A space (X, 1) is said to be extremally disconnected (briefly e.d.) if c1(S) € 7
for any S € 7.

A subset A of a space (X, 7) is said to be s-closed [10] (resp. S-closed [32],
N-closed [7], quasi-H-closed [38]) relative to (X, 1), if every cover {V,}aev C
SO (X, 7) (resp. {Vataev C SO(X,7), {Vataev C 7, {Vataev C 7) of A admits
a finite subfamily Vo C V such that A C ey, scl (Va) (resp. A C U, ey, ¢l (Va),
A C Ugev, int (1 (Va)), A C Uyev, €l (Va))- In the case A = X, (X, 7) is said to
be s-closed [10] (resp. S-closed [42]). (Xo,Tx,) is called an s-closed (resp. S-closed)
subspace of (X, 1) if it is s-closed (resp. S-closed) as a space.

The following results are useful in the sequel:

1. Let S € A€ SO (X, 7). Then S € SO (X, 7) if and only if S € SO (A,74) [29,
Theorem 5].

2. In any space (X, 7),

scl (S) = SUint (cl(S)) [2, Theorem 1.5(a)],
clra(S) = SUcl(int (c1(5))) [2, Theorem 1.5(c)]

3. In any space (X, 7), clr«(V) = cl, (V) for each V € SO (X, 7) [17, Lemma 1(i)].
4. In any e.d. space (X, 7), 7® = SO (X, 1) [19, Theorem 2.9].

2. s-closedness
In [4] the following two results have been stated.

THEOREM 1. [4, Theorem 1] Let A € PO (X, 7). Then (A,Ta) is s-closed if
and only if A is s-closed relative to (X, ).

THEOREM 2. [4, Theorem 2] Let A C B C X, where B € PO (X, 7). Then,
the set A is s-closed relative to (B, 7g) if and only if it is s-closed relative to (X, T).

Proofs for these theorems are based on [12, Theorem 2.7], which states that
SR(A,74) = SR(X,7)N A (i.e,, SR(A,74) ={SNA: S eSR(X,7)}) for any
space (X,7) and any A € PO (X, 7). Unfortunately, the proof for SR (A,74) C
SR (X,7) N A given in [12] is far from clear (it is worth to see [20, Lemma 3]). We
shall give a proof for [12, Theorem 2.7]. It will make use of the subsequent lemmas.

LEMMA 1. [37, Teorema 3.2] Let X be an arbitrary subset of a space (X,T).
If A € SO (Xo,7x,), then A = XoN B for some B € SO (X, 7).

LEMMA 2. Let (X, 7) be a space and Xy € PO (X, 7).
(a) [34, Lemma 2.2] One has BN Xy € SO (Xo,Tx,) for every B € SO (X, 7).
(b) [34, Lemma 2.3] One has BN X, € SC(Xo,7x,) for every B € SC(X, 7).
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COROLLARY 1. If A € PO (X,7) then SR(X,7)N A CSR(A,74).

LEMMA 3. [34, Theorem 2.4]. If A C Xy € PO(X,7) then Xo Nsclx(A) =
sclx, (A).

LEMMA 4. [33, Lemma 3.5] If either A € SO (X, 1) or B € SO (X, ) then
int (cl (AN B)) =int (cl (A4)) Nint (cl (B)).
LEMMA 5. Let (X,7) be any space. The following statements are equivalent:
(a) SeSR(X,7).
(b) [10, Proposition 2.1(c)] There exists a set U € RO (X, 7) such that U C S C
clx (U)
(c) [41, Lemma 2.2(iii)] S = sclx (sintX(S)).

LEMMA 6. (compare [10, Proposition 2.2]) If S € SPO (X, 1) then scl(S) €
SR (X, 7).

Proof. By the use of [2, Theorem 1.5(a)] we obtain
int (cl1(S)) C scl(S) = Suint (cl (S)) C cl (int (cl (S)))Uint (cl (S)) = cl (int (cl (5))).
Thus, by Lemma 5(b), scl(S) € SR (X, 7). m
THEOREM 3. [12, Theorem 2.7] For any space (X,7), if Xo € PO (X, 1) then
SR (X, 7x,) = SR (X, 7) N Xo.

Proof. In view of Corollary 1 only the inclusion SR (Xo, 7x,) C SR (X, 7)N Xy
requires a proof. Let S € SR (Xy, 7x, ) be arbitrarily chosen. By Lemmas 5(c) and 3
we have sclx, (sintx, (9)) = Xo Nsclx (sintx, (9)).

Obviously sintx, (S) € SO (Xo, Tx,), 80 by Lemma 1, sintx,(S) = Xo N B for
some set B € SO (X, 7). We are to show that Xy, N B € SPO (X, 7). Indeed, by
Lemma 4 we have the following inclusions:

XoN B Cint(cl(Xp)) Nel(int (B)) C
C cl (int (cl (Xp)) Nint (c1(B))) = cl (int (c1 (Xo N B))).

Finally, sclx (Xo N B) € SR (X, 7), by Lemma 6, and the proof is complete. m

REMARK 1. Theorems 1 and 2 may be proved independently of Theorem 3 by
using Lemmas 1, 2(a), 3, and Lemma 7 below. Details are omitted (it is worth to
see for instance [32, Theorems 3.1 and 3.2] and left to the reader.

LEMMA 7. Let B € PO(X,7) and V € SO (X,7). Then BnNscl(V) C
scl(BNV).

Proof. By [2, Theorem 1.5(a)] and Lemma 4 we have BNscl(V) =Bn (VU
int (c1(V))) = (BNV)U (BNint (c1(V))) C (BNV)U (int (cl (B)) Nint (c1 (V))) =
scl(BNV). m
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REMARK 2. Tt is interesting to recall that if B € PO (X, 7) and V € SO (X, 1),
then BNel (V) C cl(BNV) [35, Lemma 2.1]. The latter inclusion is equivalent the
following: BNcly« (V) C clra (BNV) for every B € PO (X, 7*) and V € SO (X, 7%).
It is so since SO (X, 7%) = SO (X, 7) [28, Proposition 3], PO (X,7%) = PO (X, 1)
[20, Corollary 2.5(a)], cly«(V) = cl(V) [17, Lemma 1(i)], and cl,«(BNV) D
cl.(BNV) (to prove this one use Lemma 4 and [2, Theorem 1.5(c)]).

We omit details in the proofs of the next three corollaries.

COROLLARY 2. Let A C Xo C X3 C X and Xo,X; € PO(X,7). Then A is
s-closed relative to (Xo,Tx,) if and only if A is s-closed relative to (X1,7Tx,).

Proof. Theorem 2. m

COROLLARY 3. Let A € PO (Xo,7x,) and Xo € PO (X, 7). Then A is an
s-closed subspace of (Xo,7x,) if and only if A is an s-closed subspace of (X, T).

Proof. This follows from Theorems 1-2 and [26, Lemma 2.2]: if A €
PO (Xy,7x,) and Xy € PO (X, 7) then A € PO(X,7). m

Corollary 3 improves [4, Corollary 1].

COROLLARY 4. Let A € PO(X(),TXO), Xy € PO(X1,TX1), and X, €
PO (X,7). Then A is an s-closed subspace of (Xo,7x,) if and only if it is an
s-closed subspace of (X1,7x,).

Proof. By Corollary 2 and [26, Lemma 2.2]. m

DEFINITION 1. A subset S of a space (X, 7) is said to be sspo-closed relative
to (X, 7) if, for every cover {V, : @ € V} C SPO (X, 1) of S there is a finite set of
indices Vo C V such that S C ,cv, sclx (Vo). If S = X, then (X, 7) is called an
sspo-closed space.

THEOREM 4. In any space (X, 7) and for any subset S of it, the following
statements are equivalent:

(a) S is sspo-closed relative to (X, T),
(b) S is s-closed relative to (X, ).

Proof. (a)=(b). Obvious, since SO (X, 7) C SPO (X, 7).

(a)<=(b). Let {V, : a € V} C SPO(X,7) cover a set S. Then, S C
Uaev sclx (Vo). Since S is s-closed relative to (X, 7) if and only if each semi-
regular cover of S admits a finite subcover [10, Proposition 4.1], application of
Lemma 6 completes the proof. m

LEMMA 8. Let A be an arbitrary subset of a space (X, 7). If U € SPO (A, 74)
then
intx(A) NU Ccly (intx (Clx(U)))
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Proof. Using the equality intx(E) = int4(F) Nintx(A) that holds for any
subset E C A [36, Exercise 7(vi)], we calculate as follows:
intx (A) NU C intx (A) Ncla(inta(cla(U))) Cintx(A) Nelx (inta(cla(U))) C
C clx (intx (A) Ninta(cla(U))) = clx (intx (cla(U)))
- Clx(intx(clx(U))). ]
COROLLARY 5. If A€ 7 and U € SPO (A, 74), then U € SPO (X, 7).
COROLLARY 6. If A€ 7 and U € SPO (A,74), then cla(U) € SPO (X, 7).
LEMMA 9. If A€ 1 and V € SPO (X, 1), then ANV € SPO (A, 74).
Proof. We have
ANV Cc Anclx (intX (Clx(V))) C CIA(A Nint x (Clx(V))) =
= clA(intA(A N ch(V))) C clA(intA(clA(A N V))) [ ]
THEOREM 5. Let (X, 1) be a space and A € 7. The following are equivalent:
(a) (A,7a) is sspo-closed,
(b) (A, 74) is s-closed.
Proof. (a)=(b). Making use of Theorems 1 and 4 we will show A is sspo-
closed relative to (X,7). Suppose {V, : a« € V} C SPO(X,7) is a cover of
A. By Lemma 9, {ANV, : o« € V} C SPO(A,74) covers A and hence we get

A = Uqev, scla(ANV,) for some finite Vo C V. It is easy to see that by Lemma 3,
A C Ugpev, sclx (Vo). Thus (A, 74) is s-closed.

(a)<(b). Suppose A is s-closed relative to (X, 7) (utilize Theorem 1). Let
{Uq : @« € V} C SPO (A, 74) beacover of A. We have {U, : o € V} C SPO (X, 1)
(Corollary 2) and A C |J, ey sclx (Ua), where {sclx(Us) : « € V} C SR(X,7).
By [10, Proposition 4.1], A C U,cv, sclx(Ua) for some finite Vo C V. Hence,
using Lemma 3 we get that A = J, ¢y, scla(Uys). This completes the proof. m

LeEMMA 10. [12] (compare also [24, Example 3.3(ii)]). If V € SO (X,7) and
W C X, the following holds:
V Nscl (W) C el (sl (VNW)).

THEOREM 6. Let A,B € SC(X,7) and ANB € SO (X,7). If A and B are
both s-closed relative to (X, 1), then AN B is also s-closed relative to (X, T).

Proof. Let AN B C U,y Va where V,, € SO (X, 7) for each a € V. We have
A C (X\B)UU,ev Va and B C (X\A)UU, v Va, where X\ A, X\ B € SO (X, 7).
By hypothesis there are finite subfamilies V1, Vo C V with
ACsc(X\B)U U scl(V,) and
a€eV;
B Csc(X\A)U U scl (V4,).
a€EVo
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It follows easily from Lemma 10 that

ANB=(ANB)N(AUB)C [J sdd(Va)U [ scl(Va).
acVy acVy

Thus, AN B is s-closed relative to (X, 7). m

COROLLARY 7. If A,B € SC(X,7), AnNB € SO(X,7), and A, B are both
s-closed relative to (X, T), then AN B is an s-closed subspace of (X, T).

Proof. Follows from Theorem 6 and [20, Theorem 4]. m
It is of worth to compare Corollary 7 with [14, Theorem 2.2].

THEOREM 7. Let A,B € SO (X,7) and ANB = 0. If a set AU B is s-closed
relative to (X, 7), then B and A are s-closed relative to (X, 7).

Proof. Similar to that of Theorem 28 below—one uses Lemma 10. m

The notion of S-connectedness has been introduced by Pipitone and Russo in
[37]: (X,7) is S-connected if there are no two nonempty sets Ay, As € SO (X, 1)
such that X = A1 U Ay and Ay N Ay = (0. A space that is not S-connected is said
to be S-disconnected.

COROLLARY 8. Let (X, 7) be an S-disconnected and s-closed space. Then there
exists a nonempty set B € SO (X, T) which is s-closed relative to (X,T) and is an
s-closed subspace of (X, ).

Proof. By Theorem 7 and [21, Theorem 4]. m

THEOREM 8. Let (X,7) be s-closed and A € SR(X,7). Then X \ A is an
s-closed subspace of (X,T).

Proof. Let X \ A C U,ey Va where {V, : a € V} C SR(X,7). Then
X = AUJ,ey Va, and by [10, Proposition 3.1] there exists some finite Vo C V
with X = AU U,cy, Va- So, X \ A is s-closed relative to (X,7) and by [21,
Theorem 4] it is an s-closed subspace. m

THEOREM 9. Let A € CO (X, 1) be a set s-closed relative to (X,7). Then
(X, 7) is s-closed if and only if X \ A is an s-closed subspace of it.

Proof. Necessity. Theorem 8. Sufficiency. By Theorem 1, X \ A is s-closed
relative to (X, 7). Hence X = AU(X\A) is s-closed relative to (X, 7) [4, Theorem 4];
e, (X,7) is s-closed. m

LeMMA 11. Let B € SR(X,7), A C X, and AU B be s-closed relative to
(X, 7). Then, A\ B is s-closed relative to (X, ).

Proof. Follows easily from [10, Proposition 4.1] and the identity A \ B =
(AUB)N(X\B). =
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THEOREM 10. Let, in a space (X, 7), (A,74) and (B, 7g) be s-closed subspaces.
IfAc 7 and B € CO(X,7), then (A\ B,Ta\B) is an s-closed subspace of (X, T).

Proof. By Theorem 1, A and B are s-closed relative to (X, 7). Using [4,
Theorem 4] and Lemma 11 we get that A\ B is s-closed relative to (X, 7). It is
enough now to recall that CO (X,7) = CO (X, 7%) m

REMARK 3. The above Theorems 7 to 10 should be compared with respective
Theorems 28 to 31 in the sequel (Section 4).

Recall the following notions [10, p.227]: a point = of a space (X, 7) is said to
be a semi 0-adherent point of a subset S C X if S Nsclx(U) # O for every set
U € SO (X, 7) with € U. The set of all semi #-adherent points of an S is called
the semi O-closure of S in (X, 7). A set S C X is called semi 6-closed if the semi
O-closure of S'is S.

THEOREM 11. Let A € SPO (X, 7). If AU (X \ sclx(A)) is s-closed relative
to (X, 7), then A is s-closed relative to (X, T).

Proof. Let A C ey Va where {V, : o € V} C SR(X,7). By Lemma 6,
sclx(A) € SR (X, 7) and hence sclx(A) is semi O-closed [12, Proposition 2.3(b)].
Thus, for each z € X \ sclx(A) there exists V,, € SO (X, 7) with = € V,;, such that
sclx (V) € X\ sclx(A). The family {sclx(V;) : z € X \sclx (A)}U{V, : a € V}
covers the set AU (X \ sclx (A)). Thus, by hypothesis, there exists a finite Vo C V
with A C U,cp, Vo ®

COROLLARY 9. Let (X,7) be an s-closed space and A € SPO(X,7). If
sclx(A)\ A € SR (X, 1) then A is s-closed relative to (X, ).

Proof. By the proof of Theorem 8 the set X \ (sclx(A4)\ A) is s-closed relative
o (X, 7). Apply now Theorem 11. m

A space (X, 1) is said to be weakly-T [40], if each point of X can be expressed
as an intersection of regular closed subsets of (X, 7). In [10, Proposition 4.3] the
following is proved: if K is s-closed relative to a weakly-T5 space, then K is semi
0-closed in (X, T).

THEOREM 12. Let A C X be a set s-closed relative to (X, 7). Assume that

for each x € X \ A and y € A, there exist sets
Veer®, V, € SO(X,7), Vo 22, V, >y, withV, NV, =0. (1)

Then, A is semi 0-closed in (X, ).

Proof. Pick an arbitrary xo € X\ A. For eachy € A, there exist sets V,, , € 7%,
Vo D o, and V,, € SO (X, 1), V,, 3y, with V, , NV, = 0. Thus, {V, : y € A}
covers A and, as A is s-closed relative to (X, 7), we have A C [J;_, scl(V,,) for
some yi,...,yn € A. Making use of Lemma 7 (or Lemma 10) we get Vg, N



206 Z. Duszynski

scl(Vy,) = 0,4 =1,...,n. We have also A C |J]_;scl(V,,) =V € SO(X,7) and
2o € Nizy Vaow: = B € 7. So, by [17, Lemma 1(i)],

Bnecl (V)=BnNcla(V) Cclea(BNV) =10,

where cl; (V) € SR (X, 7). This implies that zo € X \cl (V) € SR (X, 7); i.e., there
isa U € SO (X, 7) containing zo such that sclx (U)NA = (). Thus, z¢ is not a semi
f-adherent point of A and hence A is semi 6-closed. m

ExAaMPLE 1. There exist a space (X, 7) which is not weakly-75, and a subset
A C X such that (1) of Theorem T12 holds. Indeed, if X = {a,b,¢,d,e}, 7 =
{@, X, {a,b},{c,d}, {e}}7 then consider A = {c¢,d, e}.

REMARK 4. Recall that (X, 7) is called a semi-T3-space [23], if for any distinct
points x1,z2 € X there exist disjoint V7, V5 € SO (X, 7) with V4 3 21 and Vs 5 z».
Using [19, Theorem 2.9] and the fact that (X, 7) is 73 if and only if (X, 7%) is T2
[11, Theorem 3], we obtain that every e.d. semi-75 space is 72. So, directly from
[10, Proposition 4.3] we infer what follows: in any e.d. semi-75 space (X, 7), every
subset s-closed relative to (X, 7) is semi 6-closed in (X, 7).

A function f: (X,7) — (Y, 0) is said to be semi-continuous [22] (resp. s-open
[6]) if f~1(V) € SO (X,7) (resp. f(U) € o) for every V € o (resp. U € SO (X, 1)).
An f is semi-continuous if and only if for every S C X, f(sclx(S)) C cly (f(S5)) [9,
Theorem 1.16].

THEOREM 13. Consider a function f : (X,7) — (Y,0) and a subset G s-closed
relative to (X, 1).

(a) If f is semi-continuous and s-open then f(G) is N -closed relative to (Y, o).
(b) If f is semi-continuous then f(G) is quasi H-closed relative to (Y, o).

Proof. (a) Let {V, : a € V} C o be a cover of f(G). Then {f~*(V,) :
a € V} C SO (X,7) is a cover of G. There is a finite Vo C V such that G C
Uaev, sclx (f7'(Va)). As f is semi-continuous and s-open, we obtain

FG) c | Flsedx(F1 (Vo)) € | inty (cly (£(F71(Va))))

acVy a€Vo

C U inty (Cly(va)).
a€eVy
Thus, f(G) is N-closed relative to (Y, o).
(b) Similar to the case (a). m

Semi-continuity and s-openness are independent notions, as seen by the exam-
ple below.

EXAMPLE 2. (a). Let X = {a,b,c}, 7 = {0, X,{a,b},{a}}, Y = {a,b,c,d},
and o = {0,Y, {a}, {a, b}, {a,d}, {a,b,d}}. Define f : (X,7) — (Y, 0) as the iden-
tity on X. One checks that f is semi-continuous. But, f is not s-open since

f{a,b}) ¢ 0.
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(b). Let X = {a,b,c}, 7 = {0,X,{a,b}}, and o = {0, X,{c},{a,b}}. Let
again f : (X,7) — (X,0) be the identity on X. Then f is s-open not being
semi-continuous as f~1({c}) ¢ SO (X, 7).

DEFINITION 2. A function f : (X,7) — (Y,0) is said to be SR-open (resp.
R-open), if f(U) € SR(Y,0) (resp. f(U) € RO(Y,0)) for every U € SR(X,71)
(resp. U € RO (X, 7)).

THEOREM 14. Let a set B be s-closed relative to (Y,0). If a bijection f :
(X,7) — (Y,0) is SR-open then f~1(B) is s-closed relative to (X,T).

Proof. Use [10, Proposition 4.1]. m

A function f: (X,7) — (Y, 0) is called a.c.H. ([18, 25] and [39, Theorem 4]) if
f~YV) e PO(X,7) for every V € 0.

THEOREM 15. If a function f: (X,7) — (Y,0) is a.c.H. and R-open, then it
is SR-open.

Proof. Let A € SR (X, 7). There exists aset U € RO (X, 7) such that U C A C
clx (U) [10, Proposition 2.1]. Since f is a.c.H., f(clx(S)) C cly (f(S)) for every
S € 7[39, Theorem 6]. Thus, by R-openness of f and, again, by [10, Proposition 2.1]
we obtain that f is SR-open. m

3. Hausdorffness of spaces
In this section we offer some characterizations of 75 and semi-75 spaces.

THEOREM 16. A space (X, 7) is T3 if and only if, for each A C X s-closed
relative to (X,7) and each point x € X \ A there exist disjoint sets Uy, Us €
RO (X, 7) with Uy > x and Us D A.

Proof. Necessity. Let o € X \ A be arbitrary. By Hausdorffness of (X, 7),
for each y € A there are disjoint V,, ,,V, € 7* with V,,, 3 x¢ and V,, > y [17,
Theorem 3]. Since A is s-closed relative to (X,7), A C JI_, scl(V,,) for certain
Y1, .--,Yn € A. It is enough to show that

scl (ﬂ Vmo,yi) N scl (U scl (Vy)) =0,
i=1 i=1

because scl (S) = int (c1(S)) for any S € 7 C PO (X, 7) [20, Proposition 2.7(a)].
Indeed, we get by Lemma 7 (for instance), [8, Theorem 1.7(4)], and Lemma 4:

scl (é VM,) N scl (L_RJI scl(Vyi)) C scl <scl (ﬂ Vio. yl> i_LnJlscl (Vyi))

C scl <Scl ((ﬁ o, y> N scl (U V))

= scl <int <cl <(n] Vie.ys N L_le>)> = scl (int (cl (0))) = 0.

i=1
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Thus, if we put

U; = scl (ﬂ Vg“,) e RO(X,7), Us=scl (U scl(Vyi)> € RO (X,7),
i=1 i=1

then
xg € Uq, ACUQ, and U]ﬂUQZQ).

Sufficiency. This is clear as every singleton is s-closed relative to (X, 7) (com-
pare [10, Proposition 4.1]). m

Recall that a subset A of a space (X, 7) is said to be a-compact relative to
(X, ) [3], if every 7%-cover of A admits a finite subcover.

THEOREM 17. A space (X, 1) is To if and only if, for each A C X, a-compact
relative to (X,7) and each point x € X \ A, there exist disjoint sets Uy,Us €
RO (X, 7) with Uy o x and Uy D A.

Proof. Very similar to that of Theorem 16 (after few modifications—details
left to the reader). m

In [15] the author has proved that a space (X,7) is semi-73 if and only if,
for any distinct x,y € X, there are sets U,,U, € SR(X,7) such that z € U,,
y € Uy, U, NU, = 0. So, since every singleton is s-closed relative to (X, 7) [10,
Proposition 4.1], we get as a corollary

THEOREM 18. Assume that for each subset A C X, s-closed relative to (X, T),
and for each point © € X \ A, there exist disjoint Uy,Us € SR(X,7) with Uy > x
and Uy D A. Then (X, 1) is semi-Ts.

Combining Theorem 18 with [21, Theorem 6] we obtain the following charac-
terization of e.d. semi-75 spaces.

THEOREM 19. An e.d. space (X, 7) is semi-T3 if and only if, for any A C X,
s-closed relative to (X, 1), and each x € X \ A, there exist disjoint semi-reqular

subsets U and V with U > x and V D A.

4. S-closedness

The following result has been stated by Khan, Ahmad, and Noiri [21, Theo-
rem 5): if every semi-reqular subset of an e.d. space (X,T) is an s-closed subspace
of (X,7), then (X,7) is s-closed. In this theorem (X, 7T) is s-closed’ may be re-
placed by ’(X,7) is S-closed’ since in e.d. spaces these two notions coincide [27,
Theorem 14]. Moreover, the next result we state shows that after this replacement,
the assumption '(X, 7) is e.d.” becomes superfluous.

THEOREM 20. If every semi-reqular subset of (X, 7) is an s-closed subspace of
(X,7), then (X, T) is S-closed.

Proof. Suppose {V,, : a € V} C SO(X,7) is a cover of (X,7). Take into
consideration a set clx (V) # X with Vg # (0. Obviously, clx (V) € SR (X, 7) and
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hence X \ clx(Vg) € SR(X,7) as well. By hypothesis X \ clx(V3) is an s-closed
subspace of (X, ), and since it is open in (X, 7), we infer from Theorem 1 that
X \ clx(Vp) is s-closed relative to (X, 7). We have X \ clx(V3) € U V, and
there is a finite Vo C V such that

X\ elx(Vg) € | selx(Va).
aeVy

acV

Thus, one gets X = U, cv,u(s; ¢1x (Va). This shows that (X,7) is S-closed. m

In [32, Theorem 3.1] Noiri proved that if A € 7%, then the subspace (A,74)
is S-closed if and only if it is S-closed relative to (X, 7). Combining this result
with Theorem 1, it is easy to show that for A € 7, if (A, 74) is s-closed then it is
S-closed. The theorem below is a strong improvement of this corollary.

THEOREM 21. Let A be an arbitrary subset of (X, 7). If (A,74) is s-closed
then it is S-closed.

Proof. Let {U, : o € V} C SO (A, 74) be a cover of A. By assumption, there
is a finite Vo C V such that A = J,cv, scla(Ua). So, A = ey, cla(Us). =

THEOREM 22. Let A € 7% be a subset of an e.d. space (X, 7). Then, (A, Ta)
is S-closed if and only if it is s-closed.

Proof. Let (A,74) be S-closed. By [32, Theorem 3.1] it is equivalent A being
S-closed relative to (X, 7). By means of [27, Theorem 14] and Theorem 1, the
latter is equivalent (A, 74) being s-closed. m

REMARK 5. The following is an interesting consequence of [27, Theorem 14]:
for any subset A of (X, 7) such that (A,74) is e.d., (A,74) is S-closed if and only
if A is s-closed.

In [14, Theorem 2.7] the author proved that if A € 7% is an S-closed subspace
of (X,7), then (sclx (A), Tseiy(4)) is also S-closed. Since sclx(A4) = intx (clx (A))
for any A € PO (X, 7) [20, Proposition 2.7(a)], by the use of Theorem 22 it follows
that if A € 7% is an s-closed subspace of an e.d. (X,7), then (SClx(A),TSCIX(A))
is s-closed too. This result shall be extended to A € PO (X, 7) (in e.d. spaces) in
Theorem 23 below.

LEMMA 12. For any (X, 7) and S1,S2 C X,
int (cl (S1 U S2)) = int (cl (int (cl (S1)) Uint (c1(S2))))-

Proof. Clearly, int (cl (S1)) Uint (cl(S2)) C int (c1 (S U S2)). Next, we calcu-
late as follows: int (cl (S; U S2)) C cl(int (cl (S; U S2))) = cl (int (c1 (S1) Ucl(S2)))
=cl(int (c1(S1))) Ucl (int (¢l (S2))) by the dual to Lemma 4. So,

int (cl(S1 U S2)) C el (int (c1(S1)) Uint (c1(S2))) C el (int (cl (S U S))),

and this concludes the proof. m
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LEMMA 13. Let (X, 7) be e.d. Then for every Sy,52 C X,
int (cl (81 U S3)) = int (¢l (S1)) Uint (cl (S2)).
Proof. Follows easily from Lemma 12. m

LEMMA 14. In any (X,7), if A C X and U € SO (SClx(A),TSdX(A)) then
UNAeSO(A,Ta).

Proof. For a certain O € 7, V.= O Nsclx(A) C U C clyiyay(V). Then
V CcU Ceclx(V)nsclx(A) C clx (Oﬁch(A)) Nsclx(A4) Celx(ONA)Nsclx(A) C
clx (O N A). Therefore we obtain

ONACUNACAdx(ONA)NA=cli(ONA). =

THEOREM 23. Let (A,74) be an s-closed subspace of e.d. (X,T), where A €
PO (X, 7). Then the subspace (SClx(A),TSdX(A)) 18 s-closed.

Proof. Let {U, : a € V} C SO (sclx(A), Tsely(a)) cover sclx(A). By Lem-
ma 14 the family {U,NA : o € V} C SO (A4, 74) forms a cover of A. Since (A, 74)
is s-closed, A = J,cy, scla(Ua N A) for some finite Vo C V. Hence by Lemma 3

and by [20, Proposition 2.7(a)] we get A C U ey, (intx (clx(A)) Nsclx (Uy)), and
since (X, 1) is e.d. we have by Lemmas 13 and 4

sclx(A) C intx (c1X< U (intx(clx(A)) msclx(Ua))>)

aeVy

= U (intx(clx(A))ﬂintX(CIX(SC1X(Ua))))~
aEVy

So, as scly(Ua) € SC(X,7), a € Vo, we obtain scly(A) = U,cv, Sclsciy (a)(Ua)-
Thus sclx(A) is s-closed. m

LEMMA 15. Let A € SO(X,7). If (thX(A),TintX(A)) s s-closed, then for
any cover {V; : i € V} C SPO (X, 1) of A there is some finite Vo C V such that
A C Uy, clra (V).

Proof. Let () # intx (A) C A C ey Vi, where V; € SPO (X, 7) for each i € V.
Then inty (A) = ;e (intx (4) NV;) and by Lemma 9 we have

intx(A) nv;, e SPO (intX(A)aTintX(A))
for i € V. By hypothesis there exists a finite Vo C V with

intx(A) = U scling  (4) (intx (4) N V;)
i€V
(see Theorem 5). Making use of Lemmas 3 and 8 we get

intx (4) C | selx (intx (4) N (intx (4) N V7)) € | elx (intx (clx (V7).
i€V 1€V
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On the other hand, by [2, Theorem 1.5(c)], cl o (V) = clx (intx (clx (V))) for each
V € SPO (X, 7). Therefore, since A € SO (X, 7),

AC U clya(V;). m

1€V

THEOREM 24. Let A € SO (X, 7). If the subspace (intX(A),Timx(A)) 8 -
closed then (A, 74) is S-closed.

Proof. Let A = |J,cy Us where U; € SO (A, 74) for each i € V. By [29, The-
orem 5], U; € SO (X, 7). Since SO (X,7) C SPO (X, 7), from Lemma 15 we infer
that for some finite Vo C V, A C Uy, clre (Ui) = Uy, cl-(Ui) [17, Lemma 1(i)].
Consequently, A = J;cy, cla(U;). m

By [19, Theorem 2.9] we have for each subset S of X that cl,«(S) = sclx(S5).
Thus, by [17, Lemma 1(i)], it leads to the following theorem.

THEOREM 25. Let (X,7) be an e.d. space. Any of the two conditions: ‘for
every semi-open (or open) cover U of A C X there is a finite subfamily Uy with
A C scly (U L{o) ’. coincides with any of the properties: ‘A is S-closed relative to
(X,7)’, ‘A is s-closed relative to (X,T)’, ‘A is N -closed relative to (X,7)’, ‘A is
quasi H-closed relative to (X, 7).

Proof. We use [27, Theorem 14] (the reader is advised to compare [27, Theo-
rem 2. m

The following result has been stated in [5, Theorem 2]: a space (X,7) is S-
closed if and only if every cover {V, : a« € V} C RC(X,7) of X admits a finite
subcover. This fact is a particular case of our next theorem.

THEOREM 26. A subset A of (X,T) is S-closed relative to (X, T) if and only
if every cover {V, : a € V} C RC(X,7) of A admits a finite subcover.

Proof. Necessity. Let A C |J,cy Vo where V,, € RC(X,7) C SO (X,7) for
each a € V. So, by our assumption, A C J,cy, ¢l (Va) = U,ev, Vo for some finite
Vo C V.

Sufficiency. Let A C J ey Va Where V,, € SO (X, 7) for each a € V. Ob-
viously A C J,ev ¢l (Vo) and since cl (S) = cl(int (S)) for every S € SO (X, 1)
[30, Lemma 2], we get by hypothesis that there exists a finite Vo C V with
A CUpev, (Vo). =

LEMMA 16. Let A € RO (X, 7). Then for each G C A, G € RO (X, 7) if and
only if G € RO (A, 74).

Proof. Strong necessity. Let A € 7. We have
G=AnNintx(clx(G)) = int x (A Neclx(G)) = intx (cla(G)) = int4(cla(G)).

Sufficiency. This has been shown in the proof of [4, Theorem 6]. m



212 Z. Duszyniski

In [31, Theorem 1.3] the following was proved: (X, 7) is S-closed if and only
if its every proper subset S € RO (X, 1) is S-closed.

THEOREM 27. Let A € RO (X, 7). Then, the subspace (A,Ta) is S-closed if
and only if every proper subset G C A with G € RO (X, 1) is S-closed.

THEOREM 28. Let A € SO (X,7), B € PO(X,7), AN B = 0. If the union
AU B is S-closed relative to (X, T), then B is S-closed relative to (X, ).

Proof. Let a family F C SO (X, 7) be a cover of B. Then, the family F U {A}
covers AU B. There exist Vi,...,V,, € F such that AU B C cl(A) U], c1(V;).
So, by [35, Lemma 2.1] (see Remark 2) we obtain B C | J-_; cl(V;). This completes
the proof. m

By [13, Theorem 1] the author has proved that a space (X, 7) is S-disconnected

if and only if there exists nonempty U; € SO (X, 7), Us € 7 such that X = U;UUs
and () = U; N U,. Directly from this result together with Theorem 28, follows

COROLLARY 10. Let (X,7) be an S-disconnected and S-closed space. Then

there exists a nonempty set B € 7% which is S-closed relative to (X, 7) (hence it is
also such a subspace of (X,7) [32, Theorem 3.1]).

THEOREM 29. Let (X, 7) be S-closed and A € CO (X, 7). Then X \ A is an
S-closed subspace of (X, 7).

Proof. Let X \ A C U,ey Va where {V, : a« € V} € RC(X,7). By [5,
Theorem 2] there is a finite Vo C V such that X C AUU,cv, Va- From Theo-
rem 26 we infer that X \ A is S-closed relative to (X, 7). Therefore, in view of [32,
Theorem 3.1], X \ A is S-closed as a subspace. m

THEOREM 30. Let A € CO(X,7) be an S-closed subspace of (X, 7). Then,
(X, 7) is S-closed if and only if X \ A is an S-closed subspace of (X, 7).

Proof. Necessity. Theorem 29.

Sufficiency. By [32, Theorem 3.1], the set X \ A is S-closed relative to (X, 7).
Thus, by [32, Theorem 3.6], X = AU (X \ A) is S-closed relative to (X, 7); i.e.,
(X,7) is S-closed. m

LEMMA 17. Let A C X be arbitrary, B € RC(X,7), an let AU B be S-closed
relative to (X, 7). Then A\ B is S-closed relative to (X, T).

Proof. This follows from Theorem 26. m

THEOREM 31. Let (A,74) and (B,75) be S-closed subspaces of (X, 7). If
A,B € CO(X,T) then (A\ B,74\p) is S-closed too.

Proof. Use [32, Theorems 3.1 and 3.6] and Lemma 17. m
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