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ON s-CLOSEDNESS AND S-CLOSEDNESS
IN TOPOLOGICAL SPACES

Zbigniew Duszyński

Abstract. Some properties of sets s-closed or S-closed relative to a space, and s-closed
or S-closed subspaces, are obtained. Relationships between some of them are indicated. New
characterizations of Hausdorff spaces in terms of s-closedness and α-compactness relative to a
space, are obtained.

1. Preliminaries

Throughout the paper (X, τ) (or (Y, σ)) denotes a topological space. For a
subset S of (X, τ), int (S) (or intX(S)), cl (S) (or clX(S), or clτ (X)) stand for
the interior of S and the closure of S, respectively. If X0 ⊂ X, then (X0, τX0)
denotes a subspace of (X, τ), and intX0(.), clX0(.) are interior and closure operators
(respectively) in (X0, τX0). CO (X, τ) is the intersection of τ and {X \ S : S ∈
τ}. A subset S of (X, τ) is said to be regular open (resp. regular closed) if S =
int (cl (S)) (resp. S = cl (int (S))). A set S is said to be α-open [28] (resp. semi-
open [22], semi-closed [8], preopen [25], semi-preopen (or β-open) [2,1]) in (X, τ), if
S ⊂ int (cl (int (S))) (resp. S ⊂ cl (int (S)), S ⊃ int (cl (S)), S ⊂ int (cl (S)), S ⊂
cl (int (cl (S)))). A subset S of (X, τ) is semi-open if and only if there exists a U ∈ τ
such that U ⊂ S ⊂ cl (U) [22]. The collection of all regular open (resp. regular
closed, α-open, semi-open, semi-closed, preopen, semi-preopen) subsets of (X, τ)
is denoted by RO (X, τ) (resp. RC (X, τ), τα, SO (X, τ), SC (X, τ), PO (X, τ),
SPO (X, τ)). The family τα forms a topology on X such that τ ⊂ τα. An S is said
to be semi-regular [10] (see also [5] and [41]) if it is both semi-closed and semi-open
in (X, τ). We denote SO (X, τ) ∩ SC (X, τ) = SR (X, τ). We have in each (X, τ),
RO (X, τ) ∪ RC(X, τ) ⊂ SR (X, τ) [41, Lemma 2.3], and RO (X, τ) ∩ RC(X, τ) =
CO (X, τ) (see for instance [11, ]). The semi-closure [8] (resp. the semi-interior
[8]) of an S ⊂ X is the intersection of all semi-closed subsets of (X, τ) containing S
(resp. the union of all semi-open subsets of (X, τ) contained in S), and is denoted
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respectively by scl (S) (or sclX(S)) and sintX(S). The union of any family of semi-
open subsets of (X, τ) is semi-open as well [22].

A space (X, τ) is said to be extremally disconnected (briefly e.d.) if cl (S) ∈ τ
for any S ∈ τ .

A subset A of a space (X, τ) is said to be s-closed [10] (resp. S-closed [32],
N -closed [7], quasi-H-closed [38]) relative to (X, τ), if every cover {Vα}α∈∇ ⊂
SO (X, τ) (resp. {Vα}α∈∇ ⊂ SO (X, τ), {Vα}α∈∇ ⊂ τ , {Vα}α∈∇ ⊂ τ) of A admits
a finite subfamily ∇0 ⊂ ∇ such that A ⊂ ⋃

α∈∇0
scl (Vα) (resp. A ⊂ ⋃

α∈∇0
cl (Vα),

A ⊂ ⋃
α∈∇0

int (cl (Vα)), A ⊂ ⋃
α∈∇0

cl (Vα)). In the case A = X, (X, τ) is said to
be s-closed [10] (resp. S-closed [42]). (X0, τX0) is called an s-closed (resp. S-closed)
subspace of (X, τ) if it is s-closed (resp. S-closed) as a space.

The following results are useful in the sequel:
1. Let S ⊂ A ∈ SO (X, τ). Then S ∈ SO (X, τ) if and only if S ∈ SO (A, τA) [29,

Theorem 5].
2. In any space (X, τ),

scl (S) = S ∪ int (cl (S)) [2, Theorem 1.5(a)],

clτα(S) = S ∪ cl (int (cl (S))) [2, Theorem 1.5(c)]

3. In any space (X, τ), clτα(V ) = clτ (V ) for each V ∈ SO (X, τ) [17, Lemma 1(i)].
4. In any e.d. space (X, τ), τα = SO(X, τ) [19, Theorem 2.9].

2. s-closedness

In [4] the following two results have been stated.

Theorem 1. [4, Theorem 1] Let A ∈ PO (X, τ). Then (A, τA) is s-closed if
and only if A is s-closed relative to (X, τ).

Theorem 2. [4, Theorem 2] Let A ⊂ B ⊂ X, where B ∈ PO(X, τ). Then,
the set A is s-closed relative to (B, τB) if and only if it is s-closed relative to (X, τ).

Proofs for these theorems are based on [12, Theorem 2.7], which states that
SR (A, τA) = SR (X, τ) ∩ A (i.e., SR (A, τA) = {S ∩ A : S ∈ SR (X, τ)}) for any
space (X, τ) and any A ∈ PO(X, τ). Unfortunately, the proof for SR (A, τA) ⊂
SR (X, τ) ∩A given in [12] is far from clear (it is worth to see [20, Lemma 3]). We
shall give a proof for [12, Theorem 2.7]. It will make use of the subsequent lemmas.

Lemma 1. [37, Teorema 3.2] Let X0 be an arbitrary subset of a space (X, τ).
If A ∈ SO (X0, τX0), then A = X0 ∩B for some B ∈ SO (X, τ).

Lemma 2. Let (X, τ) be a space and X0 ∈ PO(X, τ).
(a) [34, Lemma 2.2] One has B ∩X0 ∈ SO (X0, τX0) for every B ∈ SO (X, τ).
(b) [34, Lemma 2.3] One has B ∩X0 ∈ SC (X0, τX0) for every B ∈ SC (X, τ).
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Corollary 1. If A ∈ PO(X, τ) then SR (X, τ) ∩A ⊂ SR (A, τA).

Lemma 3. [34, Theorem 2.4]. If A ⊂ X0 ∈ PO(X, τ) then X0 ∩ sclX(A) =
sclX0(A).

Lemma 4. [33, Lemma 3.5] If either A ∈ SO (X, τ) or B ∈ SO (X, τ) then

int (cl (A ∩B)) = int (cl (A)) ∩ int (cl (B)).

Lemma 5. Let (X, τ) be any space. The following statements are equivalent:
(a) S ∈ SR (X, τ).
(b) [10, Proposition 2.1(c)] There exists a set U ∈ RO(X, τ) such that U ⊂ S ⊂

clX(U).
(c) [41, Lemma 2.2(iii)] S = sclX

(
sintX(S)

)
.

Lemma 6. (compare [10, Proposition 2.2]) If S ∈ SPO (X, τ) then scl (S) ∈
SR (X, τ).

Proof. By the use of [2, Theorem 1.5(a)] we obtain

int (cl (S)) ⊂ scl (S) = S∪int (cl (S)) ⊂ cl (int (cl (S)))∪int (cl (S)) = cl (int (cl (S))).

Thus, by Lemma 5(b), scl (S) ∈ SR (X, τ).

Theorem 3. [12, Theorem 2.7] For any space (X, τ), if X0 ∈ PO(X, τ) then

SR (X0, τX0) = SR (X, τ) ∩X0.

Proof. In view of Corollary 1 only the inclusion SR (X0, τX0) ⊂ SR (X, τ)∩X0

requires a proof. Let S ∈ SR (X0, τX0) be arbitrarily chosen. By Lemmas 5(c) and 3
we have sclX0

(
sintX0(S)

)
= X0 ∩ sclX

(
sintX0(S)

)
.

Obviously sintX0(S) ∈ SO
(
X0, τX0), so by Lemma 1, sintX0(S) = X0 ∩ B for

some set B ∈ SO (X, τ). We are to show that X0 ∩ B ∈ SPO (X, τ). Indeed, by
Lemma 4 we have the following inclusions:

X0 ∩B ⊂ int (cl (X0)) ∩ cl (int (B)) ⊂
⊂ cl

(
int (cl (X0)) ∩ int (cl (B))

)
= cl (int (cl (X0 ∩B))).

Finally, sclX(X0 ∩B) ∈ SR (X, τ), by Lemma 6, and the proof is complete.
Remark 1. Theorems 1 and 2 may be proved independently of Theorem 3 by

using Lemmas 1, 2(a), 3, and Lemma 7 below. Details are omitted (it is worth to
see for instance [32, Theorems 3.1 and 3.2] and left to the reader.

Lemma 7. Let B ∈ PO(X, τ) and V ∈ SO (X, τ). Then B ∩ scl (V ) ⊂
scl (B ∩ V ).

Proof. By [2, Theorem 1.5(a)] and Lemma 4 we have B ∩ scl (V ) = B ∩ (
V ∪

int (cl (V ))
)

= (B ∩V )∪ (
B ∩ int (cl (V ))

) ⊂ (B ∩V )∪ (
int (cl (B))∩ int (cl (V ))

)
=

scl (B ∩ V ).
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Remark 2. It is interesting to recall that if B ∈ PO(X, τ) and V ∈ SO (X, τ),
then B∩cl (V ) ⊂ cl (B ∩ V ) [35, Lemma 2.1]. The latter inclusion is equivalent the
following: B∩clτα(V ) ⊂ clτα(B∩V ) for every B ∈ PO(X, τα) and V ∈ SO (X, τα).
It is so since SO (X, τα) = SO (X, τ) [28, Proposition 3], PO (X, τα) = PO (X, τ)
[20, Corollary 2.5(a)], clτα(V ) = clτ (V ) [17, Lemma 1(i)], and clτα(B ∩ V ) ⊃
clτ (B ∩ V ) (to prove this one use Lemma 4 and [2, Theorem 1.5(c)]).

We omit details in the proofs of the next three corollaries.

Corollary 2. Let A ⊂ X0 ⊂ X1 ⊂ X and X0, X1 ∈ PO (X, τ). Then A is
s-closed relative to (X0, τX0) if and only if A is s-closed relative to (X1, τX1).

Proof. Theorem 2.

Corollary 3. Let A ∈ PO(X0, τX0) and X0 ∈ PO(X, τ). Then A is an
s-closed subspace of (X0, τX0) if and only if A is an s-closed subspace of (X, τ).

Proof. This follows from Theorems 1–2 and [26, Lemma 2.2]: if A ∈
PO(X0, τX0) and X0 ∈ PO(X, τ) then A ∈ PO(X, τ).

Corollary 3 improves [4, Corollary 1].

Corollary 4. Let A ∈ PO(X0, τX0), X0 ∈ PO(X1, τX1), and X1 ∈
PO(X, τ). Then A is an s-closed subspace of (X0, τX0) if and only if it is an
s-closed subspace of (X1, τX1).

Proof. By Corollary 2 and [26, Lemma 2.2].

Definition 1. A subset S of a space (X, τ) is said to be sspo-closed relative
to (X, τ) if, for every cover {Vα : α ∈ ∇} ⊂ SPO (X, τ) of S there is a finite set of
indices ∇0 ⊂ ∇ such that S ⊂ ⋃

α∈∇0
sclX(Vα). If S = X, then (X, τ) is called an

sspo-closed space.

Theorem 4. In any space (X, τ) and for any subset S of it, the following
statements are equivalent:

(a) S is sspo-closed relative to (X, τ),

(b) S is s-closed relative to (X, τ).

Proof. (a)⇒(b). Obvious, since SO (X, τ) ⊂ SPO (X, τ).

(a)⇐(b). Let {Vα : α ∈ ∇} ⊂ SPO (X, τ) cover a set S. Then, S ⊂⋃
α∈∇ sclX(Vα). Since S is s-closed relative to (X, τ) if and only if each semi-

regular cover of S admits a finite subcover [10, Proposition 4.1], application of
Lemma 6 completes the proof.

Lemma 8. Let A be an arbitrary subset of a space (X, τ). If U ∈ SPO (A, τA)
then

intX(A) ∩ U ⊂ clX
(
intX

(
clX(U)

))
.
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Proof. Using the equality intX(E) = intA(E) ∩ intX(A) that holds for any
subset E ⊂ A [36, Exercise 7(vi)], we calculate as follows:

intX(A) ∩ U ⊂ intX(A) ∩ clA
(
intA

(
clA(U)

)) ⊂ intX(A) ∩ clX
(
intA

(
clA(U)

)) ⊂
⊂ clX

(
intX(A) ∩ intA

(
clA(U)

))
= clX

(
intX

(
clA(U)

))

⊂ clX
(
intX

(
clX(U)

))
.

Corollary 5. If A ∈ τ and U ∈ SPO (A, τA), then U ∈ SPO (X, τ).

Corollary 6. If A ∈ τ and U ∈ SPO (A, τA), then clA(U) ∈ SPO (X, τ).

Lemma 9. If A ∈ τ and V ∈ SPO (X, τ), then A ∩ V ∈ SPO (A, τA).

Proof. We have

A ∩ V ⊂ A ∩ clX
(
intX

(
clX(V )

)) ⊂ clA
(
A ∩ intX

(
clX(V )

))
=

= clA
(
intA

(
A ∩ clX(V )

)) ⊂ clA
(
intA

(
clA(A ∩ V )

))
.

Theorem 5. Let (X, τ) be a space and A ∈ τ . The following are equivalent:
(a) (A, τA) is sspo-closed,
(b) (A, τA) is s-closed.

Proof. (a)⇒(b). Making use of Theorems 1 and 4 we will show A is sspo-
closed relative to (X, τ). Suppose {Vα : α ∈ ∇} ⊂ SPO (X, τ) is a cover of
A. By Lemma 9, {A ∩ Vα : α ∈ ∇} ⊂ SPO (A, τA) covers A and hence we get
A =

⋃
α∈∇0

sclA(A∩Vα) for some finite ∇0 ⊂ ∇. It is easy to see that by Lemma 3,
A ⊂ ⋃

α∈∇0
sclX(Vα). Thus (A, τA) is s-closed.

(a)⇐(b). Suppose A is s-closed relative to (X, τ) (utilize Theorem 1). Let
{Uα : α ∈ ∇} ⊂ SPO (A, τA) be a cover of A. We have {Uα : α ∈ ∇} ⊂ SPO (X, τ)
(Corollary 2) and A ⊂ ⋃

α∈∇ sclX(Uα), where {sclX(Uα) : α ∈ ∇} ⊂ SR (X, τ).
By [10, Proposition 4.1], A ⊂ ⋃

α∈∇0
sclX(Uα) for some finite ∇0 ⊂ ∇. Hence,

using Lemma 3 we get that A =
⋃

α∈∇0
sclA(Uα). This completes the proof.

Lemma 10. [12] (compare also [24, Example 3.3(ii)]). If V ∈ SO (X, τ) and
W ⊂ X, the following holds:

V ∩ scl (W ) ⊂ cl
(
scl (V ∩W )

)
.

Theorem 6. Let A,B ∈ SC (X, τ) and A ∩ B ∈ SO (X, τ). If A and B are
both s-closed relative to (X, τ), then A ∩B is also s-closed relative to (X, τ).

Proof. Let A ∩ B ⊂ ⋃
α∈∇ Vα where Vα ∈ SO (X, τ) for each α ∈ ∇. We have

A ⊂ (X\B)∪⋃
α∈∇ Vα and B ⊂ (X\A)∪⋃

α∈∇ Vα, where X\A,X\B ∈ SO (X, τ).
By hypothesis there are finite subfamilies ∇1,∇2 ⊂ ∇ with

A ⊂ scl (X \B) ∪
⋃

α∈∇1

scl (Vα) and

B ⊂ scl (X \A) ∪
⋃

α∈∇2

scl (Vα).
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It follows easily from Lemma 10 that

A ∩B = (A ∩B) ∩ (A ∪B) ⊂
⋃

α∈∇1

scl (Vα) ∪
⋃

α∈∇2

scl (Vα).

Thus, A ∩B is s-closed relative to (X, τ).

Corollary 7. If A,B ∈ SC (X, τ), A ∩ B ∈ SO (X, τ), and A,B are both
s-closed relative to (X, τ), then A ∩B is an s-closed subspace of (X, τ).

Proof. Follows from Theorem 6 and [20, Theorem 4].
It is of worth to compare Corollary 7 with [14, Theorem 2.2].

Theorem 7. Let A,B ∈ SO (X, τ) and A ∩B = ∅. If a set A ∪B is s-closed
relative to (X, τ), then B and A are s-closed relative to (X, τ).

Proof. Similar to that of Theorem 28 below—one uses Lemma 10.
The notion of S-connectedness has been introduced by Pipitone and Russo in

[37]: (X, τ) is S-connected if there are no two nonempty sets A1, A2 ∈ SO (X, τ)
such that X = A1 ∪ A2 and A1 ∩ A2 = ∅. A space that is not S-connected is said
to be S-disconnected.

Corollary 8. Let (X, τ) be an S-disconnected and s-closed space. Then there
exists a nonempty set B ∈ SO (X, τ) which is s-closed relative to (X, τ) and is an
s-closed subspace of (X, τ).

Proof. By Theorem 7 and [21, Theorem 4].

Theorem 8. Let (X, τ) be s-closed and A ∈ SR (X, τ). Then X \ A is an
s-closed subspace of (X, τ).

Proof. Let X \ A ⊂ ⋃
α∈∇ Vα where {Vα : α ∈ ∇} ⊂ SR (X, τ). Then

X = A ∪ ⋃
α∈∇ Vα, and by [10, Proposition 3.1] there exists some finite ∇0 ⊂ ∇

with X = A ∪ ⋃
α∈∇0

Vα. So, X \ A is s-closed relative to (X, τ) and by [21,
Theorem 4] it is an s-closed subspace.

Theorem 9. Let A ∈ CO (X, τ) be a set s-closed relative to (X, τ). Then
(X, τ) is s-closed if and only if X \A is an s-closed subspace of it.

Proof. Necessity. Theorem 8. Sufficiency. By Theorem 1, X \ A is s-closed
relative to (X, τ). Hence X = A∪(X\A) is s-closed relative to (X, τ) [4, Theorem 4];
i.e., (X, τ) is s-closed.

Lemma 11. Let B ∈ SR (X, τ), A ⊂ X, and A ∪ B be s-closed relative to
(X, τ). Then, A \B is s-closed relative to (X, τ).

Proof. Follows easily from [10, Proposition 4.1] and the identity A \ B =
(A ∪B) ∩ (X \B).
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Theorem 10. Let, in a space (X, τ), (A, τA) and (B, τB) be s-closed subspaces.
If A ∈ τα and B ∈ CO(X, τ), then (A \B, τA\B) is an s-closed subspace of (X, τ).

Proof. By Theorem 1, A and B are s-closed relative to (X, τ). Using [4,
Theorem 4] and Lemma 11 we get that A \ B is s-closed relative to (X, τ). It is
enough now to recall that CO (X, τ) = CO (X, τα)

Remark 3. The above Theorems 7 to 10 should be compared with respective
Theorems 28 to 31 in the sequel (Section 4).

Recall the following notions [10, p.227]: a point x of a space (X, τ) is said to
be a semi θ-adherent point of a subset S ⊂ X if S ∩ sclX(U) 6= ∅ for every set
U ∈ SO (X, τ) with x ∈ U . The set of all semi θ-adherent points of an S is called
the semi θ-closure of S in (X, τ). A set S ⊂ X is called semi θ-closed if the semi
θ-closure of S is S.

Theorem 11. Let A ∈ SPO (X, τ). If A ∪ (
X \ sclX(A)

)
is s-closed relative

to (X, τ), then A is s-closed relative to (X, τ).

Proof. Let A ⊂ ⋃
α∈∇ Vα where {Vα : α ∈ ∇} ⊂ SR (X, τ). By Lemma 6,

sclX(A) ∈ SR (X, τ) and hence sclX(A) is semi θ-closed [12, Proposition 2.3(b)].
Thus, for each x ∈ X \ sclX(A) there exists Vx ∈ SO (X, τ) with x ∈ Vx, such that
sclX(Vx) ⊂ X \ sclX(A). The family {sclX(Vx) : x ∈ X \ sclX(A)} ∪ {Vα : α ∈ ∇}
covers the set A∪ (

X \ sclX(A)
)
. Thus, by hypothesis, there exists a finite ∇0 ⊂ ∇

with A ⊂ ⋃
α∈∇0

Vα.

Corollary 9. Let (X, τ) be an s-closed space and A ∈ SPO (X, τ). If
sclX(A) \A ∈ SR (X, τ) then A is s-closed relative to (X, τ).

Proof. By the proof of Theorem 8 the set X \ (
sclX(A) \A

)
is s-closed relative

to (X, τ). Apply now Theorem 11.

A space (X, τ) is said to be weakly-T2 [40], if each point of X can be expressed
as an intersection of regular closed subsets of (X, τ). In [10, Proposition 4.3] the
following is proved: if K is s-closed relative to a weakly-T2 space, then K is semi
θ-closed in (X, τ).

Theorem 12. Let A ( X be a set s-closed relative to (X, τ). Assume that

for each x ∈ X \A and y ∈ A, there exist sets

Vx ∈ τα, Vy ∈ SO (X, τ), Vx 3 x, Vy 3 y, with Vx ∩ Vy = ∅. (1)

Then, A is semi θ-closed in (X, τ).

Proof. Pick an arbitrary x0 ∈ X\A. For each y ∈ A, there exist sets Vx0,y ∈ τα,
Vx0,y 3 x0, and Vy ∈ SO (X, τ), Vy 3 y, with Vx0,y ∩ Vy = ∅. Thus, {Vy : y ∈ A}
covers A and, as A is s-closed relative to (X, τ), we have A ⊂ ⋃n

i=1 scl (Vyi) for
some y1, . . . , yn ∈ A. Making use of Lemma 7 (or Lemma 10) we get Vx0,yi ∩
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scl (Vyi
) = ∅, i = 1, . . . , n. We have also A ⊂ ⋃n

i=1 scl (Vyi
) = V ∈ SO (X, τ) and

x0 ∈
⋂n

i=1 Vx0,yi
= B ∈ τα. So, by [17, Lemma 1(i)],

B ∩ clτ (V ) = B ∩ clτα(V ) ⊂ clτα(B ∩ V ) = ∅,
where clτ (V ) ∈ SR (X, τ). This implies that x0 ∈ X \clτ (V ) ∈ SR (X, τ); i.e., there
is a U ∈ SO (X, τ) containing x0 such that sclX(U)∩A = ∅. Thus, x0 is not a semi
θ-adherent point of A and hence A is semi θ-closed.

Example 1. There exist a space (X, τ) which is not weakly-T2, and a subset
A ( X such that (1) of Theorem T12 holds. Indeed, if X = {a, b, c, d, e}, τ ={∅, X, {a, b}, {c, d}, {e}}, then consider A = {c, d, e}.

Remark 4. Recall that (X, τ) is called a semi-T2-space [23], if for any distinct
points x1, x2 ∈ X there exist disjoint V1, V2 ∈ SO (X, τ) with V1 3 x1 and V2 3 x2.
Using [19, Theorem 2.9] and the fact that (X, τ) is T2 if and only if (X, τα) is T2

[11, Theorem 3], we obtain that every e.d. semi-T2 space is T2. So, directly from
[10, Proposition 4.3] we infer what follows: in any e.d. semi-T2 space (X, τ), every
subset s-closed relative to (X, τ) is semi θ-closed in (X, τ).

A function f : (X, τ) → (Y, σ) is said to be semi-continuous [22] (resp. s-open
[6]) if f−1(V ) ∈ SO (X, τ) (resp. f(U) ∈ σ) for every V ∈ σ (resp. U ∈ SO (X, τ)).
An f is semi-continuous if and only if for every S ⊂ X, f

(
sclX(S)

) ⊂ clY (f(S)) [9,
Theorem 1.16].

Theorem 13. Consider a function f : (X, τ) → (Y, σ) and a subset G s-closed
relative to (X, τ).
(a) If f is semi-continuous and s-open then f(G) is N -closed relative to (Y, σ).
(b) If f is semi-continuous then f(G) is quasi H-closed relative to (Y, σ).

Proof. (a) Let {Vα : α ∈ ∇} ⊂ σ be a cover of f(G). Then
{
f−1(Vα) :

α ∈ ∇} ⊂ SO (X, τ) is a cover of G. There is a finite ∇0 ⊂ ∇ such that G ⊂⋃
α∈∇0

sclX
(
f−1(Vα)

)
. As f is semi-continuous and s-open, we obtain

f(G) ⊂
⋃

α∈∇0

f
(
sclX

(
f−1(Vα)

)) ⊂
⋃

α∈∇0

intY

(
clY

(
f
(
f−1(Vα)

)))

⊂
⋃

α∈∇0

intY

(
clY (Vα)

)
.

Thus, f(G) is N -closed relative to (Y, σ).
(b) Similar to the case (a).
Semi-continuity and s-openness are independent notions, as seen by the exam-

ple below.
Example 2. (a). Let X = {a, b, c}, τ =

{∅, X, {a, b}, {a}}, Y = {a, b, c, d},
and σ =

{∅, Y, {a}, {a, b}, {a, d}, {a, b, d}}. Define f : (X, τ) → (Y, σ) as the iden-
tity on X. One checks that f is semi-continuous. But, f is not s-open since
f({a, b}) /∈ σ.
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(b). Let X = {a, b, c}, τ =
{∅, X, {a, b}}, and σ =

{∅, X, {c}, {a, b}}. Let
again f : (X, τ) → (X, σ) be the identity on X. Then f is s-open not being
semi-continuous as f−1({c}) /∈ SO (X, τ).

Definition 2. A function f : (X, τ) → (Y, σ) is said to be SR-open (resp.
R-open), if f(U) ∈ SR (Y, σ) (resp. f(U) ∈ RO(Y, σ)) for every U ∈ SR (X, τ)
(resp. U ∈ RO(X, τ)).

Theorem 14. Let a set B be s-closed relative to (Y, σ). If a bijection f :
(X, τ) → (Y, σ) is SR-open then f−1(B) is s-closed relative to (X, τ).

Proof. Use [10, Proposition 4.1].
A function f : (X, τ) → (Y, σ) is called a.c.H. ([18, 25] and [39, Theorem 4]) if

f−1(V ) ∈ PO (X, τ) for every V ∈ σ.

Theorem 15. If a function f : (X, τ) → (Y, σ) is a.c.H. and R-open, then it
is SR-open.

Proof. Let A ∈ SR (X, τ). There exists a set U ∈ RO(X, τ) such that U ⊂ A ⊂
clX(U) [10, Proposition 2.1]. Since f is a.c.H., f

(
clX(S)

) ⊂ clY (f(S)) for every
S ∈ τ [39, Theorem 6]. Thus, by R-openness of f and, again, by [10, Proposition 2.1]
we obtain that f is SR-open.

3. Hausdorffness of spaces

In this section we offer some characterizations of T2 and semi-T2 spaces.

Theorem 16. A space (X, τ) is T2 if and only if, for each A ( X s-closed
relative to (X, τ) and each point x ∈ X \ A there exist disjoint sets U1, U2 ∈
RO(X, τ) with U1 3 x and U2 ⊃ A.

Proof. Necessity. Let x0 ∈ X \ A be arbitrary. By Hausdorffness of (X, τ),
for each y ∈ A there are disjoint Vx0,y, Vy ∈ τα with Vx0,y 3 x0 and Vy 3 y [17,
Theorem 3]. Since A is s-closed relative to (X, τ), A ⊂ ⋃n

i=1 scl (Vyi) for certain
y1, . . . , yn ∈ A. It is enough to show that

scl
( n⋂

i=1

Vx0,yi

)
∩ scl

( n⋃

i=1

scl (Vyi)
)

= ∅,

because scl (S) = int (cl (S)) for any S ∈ τα ⊂ PO(X, τ) [20, Proposition 2.7(a)].
Indeed, we get by Lemma 7 (for instance), [8, Theorem 1.7(4)], and Lemma 4:

scl
( n⋂

i=1

Vx0,yi

)
∩ scl

( n⋃

i=1

scl (Vyi)
)
⊂ scl

(
scl

( n⋂

i=1

Vx0,yi

)
∩

n⋃

i=1

scl (Vyi)
)

⊂ scl
(

scl
( n⋂

i=1

Vx0,yi

)
∩ scl

( n⋃

i=1

Vyi

))

= scl
(

int
(

cl
( n⋂

i=1

Vx0,yi ∩
n⋃

i=1

Vyi

)))
= scl (int (cl (∅))) = ∅.
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Thus, if we put

U1 = scl
( n⋂

i=1

Vx0,yi

)
∈ RO(X, τ), U2 = scl

( n⋃

i=1

scl (Vyi
)
)
∈ RO(X, τ),

then
x0 ∈ U1, A ⊂ U2, and U1 ∩ U2 = ∅.

Sufficiency. This is clear as every singleton is s-closed relative to (X, τ) (com-
pare [10, Proposition 4.1]).

Recall that a subset A of a space (X, τ) is said to be α-compact relative to
(X, τ) [3], if every τα-cover of A admits a finite subcover.

Theorem 17. A space (X, τ) is T2 if and only if, for each A ( X, α-compact
relative to (X, τ) and each point x ∈ X \ A, there exist disjoint sets U1, U2 ∈
RO(X, τ) with U1 3 x and U2 ⊃ A.

Proof. Very similar to that of Theorem 16 (after few modifications—details
left to the reader).

In [15] the author has proved that a space (X, τ) is semi-T2 if and only if,
for any distinct x, y ∈ X, there are sets Ux, Uy ∈ SR (X, τ) such that x ∈ Ux,
y ∈ Uy, Ux ∩ Uy = ∅. So, since every singleton is s-closed relative to (X, τ) [10,
Proposition 4.1], we get as a corollary

Theorem 18. Assume that for each subset A ( X, s-closed relative to (X, τ),
and for each point x ∈ X \ A, there exist disjoint U1, U2 ∈ SR (X, τ) with U1 3 x
and U2 ⊃ A. Then (X, τ) is semi-T2.

Combining Theorem 18 with [21, Theorem 6] we obtain the following charac-
terization of e.d. semi-T2 spaces.

Theorem 19. An e.d. space (X, τ) is semi-T2 if and only if, for any A ( X,
s-closed relative to (X, τ), and each x ∈ X \ A, there exist disjoint semi-regular
subsets U and V with U 3 x and V ⊃ A.

4. S-closedness

The following result has been stated by Khan, Ahmad, and Noiri [21, Theo-
rem 5]: if every semi-regular subset of an e.d. space (X, τ) is an s-closed subspace
of (X, τ), then (X, τ) is s-closed. In this theorem ’(X, τ) is s-closed’ may be re-
placed by ’(X, τ) is S-closed’ since in e.d. spaces these two notions coincide [27,
Theorem 14]. Moreover, the next result we state shows that after this replacement,
the assumption ’(X, τ) is e.d.’ becomes superfluous.

Theorem 20. If every semi-regular subset of (X, τ) is an s-closed subspace of
(X, τ), then (X, τ) is S-closed.

Proof. Suppose {Vα : α ∈ ∇} ⊂ SO (X, τ) is a cover of (X, τ). Take into
consideration a set clX(Vβ) 6= X with Vβ 6= ∅. Obviously, clX(Vβ) ∈ SR (X, τ) and
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hence X \ clX(Vβ) ∈ SR (X, τ) as well. By hypothesis X \ clX(Vβ) is an s-closed
subspace of (X, τ), and since it is open in (X, τ), we infer from Theorem 1 that
X \ clX(Vβ) is s-closed relative to (X, τ). We have X \ clX(Vβ) ⊂ ⋃

α∈∇ Vα and
there is a finite ∇0 ⊂ ∇ such that

X \ clX(Vβ) ⊂
⋃

α∈∇0

sclX(Vα).

Thus, one gets X =
⋃

α∈∇0∪{β} clX(Vα). This shows that (X, τ) is S-closed.

In [32, Theorem 3.1] Noiri proved that if A ∈ τα, then the subspace (A, τA)
is S-closed if and only if it is S-closed relative to (X, τ). Combining this result
with Theorem 1, it is easy to show that for A ∈ τα, if (A, τA) is s-closed then it is
S-closed. The theorem below is a strong improvement of this corollary.

Theorem 21. Let A be an arbitrary subset of (X, τ). If (A, τA) is s-closed
then it is S-closed.

Proof. Let {Uα : α ∈ ∇} ⊂ SO (A, τA) be a cover of A. By assumption, there
is a finite ∇0 ⊂ ∇ such that A =

⋃
α∈∇0

sclA(Uα). So, A =
⋃

α∈∇0
clA(Uα).

Theorem 22. Let A ∈ τα be a subset of an e.d. space (X, τ). Then, (A, τA)
is S-closed if and only if it is s-closed.

Proof. Let (A, τA) be S-closed. By [32, Theorem 3.1] it is equivalent A being
S-closed relative to (X, τ). By means of [27, Theorem 14] and Theorem 1, the
latter is equivalent (A, τA) being s-closed.

Remark 5. The following is an interesting consequence of [27, Theorem 14]:
for any subset A of (X, τ) such that (A, τA) is e.d., (A, τA) is S-closed if and only
if A is s-closed.

In [14, Theorem 2.7] the author proved that if A ∈ τα is an S-closed subspace
of (X, τ), then

(
sclX(A), τsclX(A)

)
is also S-closed. Since sclX(A) = intX(clX(A))

for any A ∈ PO(X, τ) [20, Proposition 2.7(a)], by the use of Theorem 22 it follows
that if A ∈ τα is an s-closed subspace of an e.d. (X, τ), then

(
sclX(A), τsclX(A)

)
is s-closed too. This result shall be extended to A ∈ PO(X, τ) (in e.d. spaces) in
Theorem 23 below.

Lemma 12. For any (X, τ) and S1, S2 ⊂ X,

int (cl (S1 ∪ S2)) = int
(
cl

(
int (cl (S1)) ∪ int (cl (S2))

))
.

Proof. Clearly, int (cl (S1)) ∪ int (cl (S2)) ⊂ int (cl (S1 ∪ S2)). Next, we calcu-
late as follows: int (cl (S1 ∪ S2)) ⊂ cl (int (cl (S1 ∪ S2))) = cl

(
int

(
cl (S1) ∪ cl (S2)

))
= cl (int (cl (S1))) ∪ cl (int (cl (S2))) by the dual to Lemma 4. So,

int (cl (S1 ∪ S2)) ⊂ cl
(
int (cl (S1)) ∪ int (cl (S2))

) ⊂ cl (int (cl (S1 ∪ S2))),

and this concludes the proof.
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Lemma 13. Let (X, τ) be e.d. Then for every S1, S2 ⊂ X,

int (cl (S1 ∪ S2)) = int (cl (S1)) ∪ int (cl (S2)).

Proof. Follows easily from Lemma 12.

Lemma 14. In any (X, τ), if A ⊂ X and U ∈ SO
(
sclX(A), τsclX(A)

)
then

U ∩A ∈ SO (A, τA).

Proof. For a certain O ∈ τ , V = O ∩ sclX(A) ⊂ U ⊂ clsclX(A)(V ). Then
V ⊂ U ⊂ clX(V )∩ sclX(A) ⊂ clX

(
O∩ clX(A)

)∩ sclX(A) ⊂ clX(O∩A)∩ sclX(A) ⊂
clX(O ∩A). Therefore we obtain

O ∩A ⊂ U ∩A ⊂ clX(O ∩A) ∩A = clA(O ∩A).

Theorem 23. Let (A, τA) be an s-closed subspace of e.d. (X, τ), where A ∈
PO(X, τ). Then the subspace

(
sclX(A), τsclX(A)

)
is s-closed.

Proof. Let {Uα : α ∈ ∇} ⊂ SO
(
sclX(A), τsclX(A)

)
cover sclX(A). By Lem-

ma 14 the family {Uα ∩A : α ∈ ∇} ⊂ SO (A, τA) forms a cover of A. Since (A, τA)
is s-closed, A =

⋃
α∈∇0

sclA(Uα ∩ A) for some finite ∇0 ⊂ ∇. Hence by Lemma 3
and by [20, Proposition 2.7(a)] we get A ⊂ ⋃

α∈∇0

(
intX(clX(A)) ∩ sclX(Uα)

)
, and

since (X, τ) is e.d. we have by Lemmas 13 and 4

sclX(A) ⊂ intX

(
clX

( ⋃

α∈∇0

(
intX(clX(A)) ∩ sclX(Uα)

)))

=
⋃

α∈∇0

(
intX(clX(A)) ∩ intX(clX(sclX(Uα)))

)
.

So, as sclX(Uα) ∈ SC (X, τ), α ∈ ∇0, we obtain sclX(A) =
⋃

α∈∇0
sclsclX(A)(Uα).

Thus sclX(A) is s-closed.

Lemma 15. Let A ∈ SO (X, τ). If
(
intX(A), τintX(A)

)
is s-closed, then for

any cover {Vi : i ∈ ∇} ⊂ SPO (X, τ) of A there is some finite ∇0 ⊂ ∇ such that
A ⊂ ⋃

i∈∇0
clτα(Vi).

Proof. Let ∅ 6= intX(A) ⊂ A ⊂ ⋃
i∈∇ Vi, where Vi ∈ SPO (X, τ) for each i ∈ ∇.

Then intX(A) =
⋃

i∈∇
(
intX(A) ∩ Vi

)
and by Lemma 9 we have

intX(A) ∩ Vi ∈ SPO
(
intX(A), τintX(A)

)

for i ∈ ∇. By hypothesis there exists a finite ∇0 ⊂ ∇ with

intX(A) =
⋃

i∈∇0

sclintX(A)

(
intX(A) ∩ Vi

)

(see Theorem 5). Making use of Lemmas 3 and 8 we get

intX(A) ⊂
⋃

i∈∇0

sclX
(
intX(A) ∩ (intX(A) ∩ Vi)

) ⊂
⋃

i∈∇0

clX(intX(clX(Vi))).
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On the other hand, by [2, Theorem 1.5(c)], clτα(V ) = clX(intX(clX(V ))) for each
V ∈ SPO (X, τ). Therefore, since A ∈ SO (X, τ),

A ⊂
⋃

i∈∇0

clτα(Vi).

Theorem 24. Let A ∈ SO (X, τ). If the subspace
(
intX(A), τintX(A)

)
is s-

closed then (A, τA) is S-closed.

Proof. Let A =
⋃

i∈∇ Ui where Ui ∈ SO (A, τA) for each i ∈ ∇. By [29, The-
orem 5], Ui ∈ SO (X, τ). Since SO (X, τ) ⊂ SPO (X, τ), from Lemma 15 we infer
that for some finite ∇0 ⊂ ∇, A ⊂ ⋃

i∈∇0
clτα(Ui) =

⋃
i∈∇0

clτ (Ui) [17, Lemma 1(i)].
Consequently, A =

⋃
i∈∇0

clA(Ui).

By [19, Theorem 2.9] we have for each subset S of X that clτα(S) = sclX(S).
Thus, by [17, Lemma 1(i)], it leads to the following theorem.

Theorem 25. Let (X, τ) be an e.d. space. Any of the two conditions: ‘for
every semi-open (or open) cover U of A ⊂ X there is a finite subfamily U0 with
A ⊂ sclX

(⋃U0

)
’, coincides with any of the properties: ‘A is S-closed relative to

(X, τ)’, ‘A is s-closed relative to (X, τ)’, ‘A is N -closed relative to (X, τ)’, ‘A is
quasi H-closed relative to (X, τ)’.

Proof. We use [27, Theorem 14] (the reader is advised to compare [27, Theo-
rem 2].

The following result has been stated in [5, Theorem 2]: a space (X, τ) is S-
closed if and only if every cover {Vα : α ∈ ∇} ⊂ RC(X, τ) of X admits a finite
subcover. This fact is a particular case of our next theorem.

Theorem 26. A subset A of (X, τ) is S-closed relative to (X, τ) if and only
if every cover {Vα : α ∈ ∇} ⊂ RC(X, τ) of A admits a finite subcover.

Proof. Necessity. Let A ⊂ ⋃
α∈∇ Vα where Vα ∈ RC(X, τ) ⊂ SO (X, τ) for

each α ∈ ∇. So, by our assumption, A ⊂ ⋃
α∈∇0

cl (Vα) =
⋃

α∈∇0
Vα for some finite

∇0 ⊂ ∇.
Sufficiency. Let A ⊂ ⋃

α∈∇ Vα where Vα ∈ SO (X, τ) for each α ∈ ∇. Ob-
viously A ⊂ ⋃

α∈∇ cl (Vα) and since cl (S) = cl (int (S)) for every S ∈ SO (X, τ)
[30, Lemma 2], we get by hypothesis that there exists a finite ∇0 ⊂ ∇ with
A ⊂ ⋃

α∈∇0
cl (Vα).

Lemma 16. Let A ∈ RO(X, τ). Then for each G ⊂ A, G ∈ RO(X, τ) if and
only if G ∈ RO(A, τA).

Proof. Strong necessity. Let A ∈ τ . We have

G = A ∩ intX(clX(G)) = intX

(
A ∩ clX(G)

)
= intX(clA(G)) = intA(clA(G)).

Sufficiency. This has been shown in the proof of [4, Theorem 6].
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In [31, Theorem 1.3] the following was proved: (X, τ) is S-closed if and only
if its every proper subset S ∈ RO(X, τ) is S-closed.

Theorem 27. Let A ∈ RO(X, τ). Then, the subspace (A, τA) is S-closed if
and only if every proper subset G ⊂ A with G ∈ RO(X, τ) is S-closed.

Theorem 28. Let A ∈ SO (X, τ), B ∈ PO(X, τ), A ∩ B = ∅. If the union
A ∪B is S-closed relative to (X, τ), then B is S-closed relative to (X, τ).

Proof. Let a family F ⊂ SO (X, τ) be a cover of B. Then, the family F ∪ {A}
covers A ∪ B. There exist V1, . . . , Vn ∈ F such that A ∪ B ⊂ cl (A) ∪⋃n

i=1 cl (Vi).
So, by [35, Lemma 2.1] (see Remark 2) we obtain B ⊂ ⋃n

i=1 cl (Vi). This completes
the proof.

By [13, Theorem 1] the author has proved that a space (X, τ) is S-disconnected
if and only if there exists nonempty U1 ∈ SO (X, τ), U2 ∈ τα such that X = U1∪U2

and ∅ = U1 ∩ U2. Directly from this result together with Theorem 28, follows

Corollary 10. Let (X, τ) be an S-disconnected and S-closed space. Then
there exists a nonempty set B ∈ τα which is S-closed relative to (X, τ) (hence it is
also such a subspace of (X, τ) [32, Theorem 3.1]).

Theorem 29. Let (X, τ) be S-closed and A ∈ CO(X, τ). Then X \ A is an
S-closed subspace of (X, τ).

Proof. Let X \ A ⊂ ⋃
α∈∇ Vα where {Vα : α ∈ ∇} ⊂ RC(X, τ). By [5,

Theorem 2] there is a finite ∇0 ⊂ ∇ such that X ⊆ A ∪ ⋃
α∈∇0

Vα. From Theo-
rem 26 we infer that X \A is S-closed relative to (X, τ). Therefore, in view of [32,
Theorem 3.1], X \A is S-closed as a subspace.

Theorem 30. Let A ∈ CO(X, τ) be an S-closed subspace of (X, τ). Then,
(X, τ) is S-closed if and only if X \A is an S-closed subspace of (X, τ).

Proof. Necessity. Theorem 29.

Sufficiency. By [32, Theorem 3.1], the set X \A is S-closed relative to (X, τ).
Thus, by [32, Theorem 3.6], X = A ∪ (X \ A) is S-closed relative to (X, τ); i.e.,
(X, τ) is S-closed.

Lemma 17. Let A ⊂ X be arbitrary, B ∈ RC(X, τ), an let A ∪B be S-closed
relative to (X, τ). Then A \B is S-closed relative to (X, τ).

Proof. This follows from Theorem 26.

Theorem 31. Let (A, τA) and (B, τB) be S-closed subspaces of (X, τ). If
A,B ∈ CO (X, τ) then (A \B, τA\B) is S-closed too.

Proof. Use [32, Theorems 3.1 and 3.6] and Lemma 17.
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