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Abstract. A theorem on the expansion of the derivative f("1:72:-7n)  where f € Ly, and
the derivatives of singular integrals into the series of band-limited functions (entire functions of
exponential type), which converges in Ly, for 1 < p < ¢ < 00, is proved. The norms of their items
are estimated by best approximations by “an angle”.

1. Introduction and preliminaries

Theorems which refer to an approximation by an angle from trigonometric
polynomials of 27-periodic functions are proved in the paper [6]. The main results
of that paper is the converse theorem of approximation by which the modulus of
smoothness wy(f (’“))q of the derivative f(") is estimated by the best approximation
by the angle Y(f), of the function f in the norm of the L, space, 1 <p < g < 0.

The proof of the converse theorem of approximation is based on the theory of
representation of a derivative of a function. Therefore, the complete proof of the
corresponding theorem of representation of the derivative f("1:72:") into a series
whose terms are entire functions of the exponential type is given in this paper. This
theorem is mentioned in the paper [7] with a short instruction for its proof. Since
the proof of this theorem is complex and long and the theorem has significant uses
in approximation theory, the complete proof is given in this paper.

We also expand into a series the derivatives of singular integrals of a function,
which are formed by the general Fejér’s kernel. This theorem enables us to get new
results which are related to the approximation by an angle and the mixed modulus
of smoothness of the derivative of the function f(z1,...,%,) € L,(R™). Therefore,
this theorem is important for obtaining new results.
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236 M. Tomié

Approximation by an angle of functions of several variables is a good tool for
examination of classes (spaces) of functions with a dominant mixed modulus of
smoothness, (see [3], [6]).

Results concerning these classes (spaces) have been obtained by M.K. Potapov
in [3] and his other related papers. Book [4] deals with several classes of Besov-
Hardy-Sobolev function spaces on the Euclidean n-space. It also covers spaces in
which properties of dominating mixed smoothness is predominate.

For simplicity, the theorem of representation will be proved for the case n = 2,

i.e. for functions of two variables f(z,y) € L,(R?), 1 < p < co. As usual, we say
that the function f = f(z1,...,2,) € Lp(R™), 1 < p < o0, if it is measurable on

R™ and if
“+oo “+oo %
||f||p</ / |f(:r1,....a:n)|pdx1...dxn) < oo.
— 00 — 00
Let gy, (21, ...,2n) € L,(R™) be an entire function of exponential type v; > 0 with
respect to the variable z;, ¢ = 1,...,n, and, in general, it is an ordinary function

with respect to other variables.
In particular, if g,, € L,, 1 <p < oo and v; = 0, then g,, = 0, (see [2]).
The quantity

le/i1 seesVim (f)p = inf

; €L
guj P

m
f - Z gl’ij
j=1

;o (v, >0), (1.1)

p

i

is called the best approximation by the m-dimensional angle of a function f with
respect to the variables z;,, ..., 2;,, (1 <i; <n, 1 <j<m < n).

We will use the general Fejér integral, which is, for a function f of one variable,
defined by the following equality (see [1])

Knf = Knf(x) = %/m fa— )0 (A;) gt A0, (12)

where

COS U — COS 21U
P(u) = ——5— (|21 <o00). (1.3)

Tu2

It was proved in [1] that K f is an entire function of type A if 1’;(3'2' € L(R) or

lf im € Ly(R). Also, it was proved in [1] that K f = f if f is an entire function of

type T < %, under the condition % € La(R).

For a function f(z,y) € L,(R?), 1 < p < oo, we form the following functions
(see [5]):

Ky = Kpcflen) = 5 [ )@ [5@—0]dt w>0,  (4)

Kooyf:Koo,,f(:r,y)zz Oof(x,u)q) z(y—u) du, v >0,
IR .
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K;uzf = Kuuf(xay) = KMOOKOOVfa v, > 0. (16>
The function K, f is entire of exponential type p with respect to x, and K, f is
entire of type v with respect to y, if f(z,y) € L,(R?). The function K, f is entire
of type u with respect to x and of type v with respect to y.

For v =0, p =0 we put Kooof = 0, Kocof =0, Kgof =0, and K,of = 0,
Ko, f =0, u>0,v>0.
Denote
Xuwf = Kopoof + Kacov f — Kapou f. (1.7)
Then (see [5, Lemma 1]):
If— X;wf”p < CYW(f)pv
1f = Kapoofllp < CYu(f)ps Vi = Yuoo
If = Koo fllp < CYu(f)p, Yy =Yoo (1.10)
for u >0,v>0,1<p< oo, where C is an absolute constant.
From the entire functions K,,,, f and x . f we form the following entire functions
§ij = &ijf = Kaivrginr [ — Koirrgi | — Kaigi+1 f + Kaigi f
= —{xoi2s f — Xoip2i-1f — Xp2i-12i [ + X2i-1ei-1 (1.11)
where 4,7 =0,1,2,...,n and [2071] = 271 for i > 1, [2°7}] = 0.

Functions &;; = &; f are entire of type 2/ with respect to z and of type 2771
with respect to y. In view of (1.11) and (1.8) we conclude that

[€ijllp < CY2i-1)25-11(f)p (1.12)
forl1<p<oo,i,j=0,1,2,....
We note that Yo(f)p = Yoo(f)p = || fllp for f € Ly, 1 <p < 0.

The symbol a < b, a > 0, b > 0, denotes that a < Cb, where C is a positive
constant.

As usual, the derivative f("72) of a function f(z,y) is
ot +7“2f
dxT1OyT2
As a consequence of the theorem of representation [5, Theorem 2] we get

f(7"1ﬂ“2) _ r,=0,1,2,...

)

LeEMMA 1. If f(z,y) € L,(R?), 1 < p < oo, then the following equality holds
mn Ly
[e.e] o0 oo o0
flxyy) = Koof + 3 Toj+ > Uin+ >3 > &j (1.13)
j=2 i=2 i=1j=1
where &;; are entire functions of type 2°T1 with respect to x, and of type 27T with
respect to y, given in (1.11); Ty; are entire functions of type 2 with respect to x,
and of type 27 with respect to y; Usa are entire functions of type 2¢ with respect to x
and of type 2 with respect to y. We define
Toy = Koof, Toj=Kaoif — Koo f, J=2,3,...,

Ui2 :K2i2f—K2i—12f’ 222’37 (114)
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Proof. For fixed numbers p and N denote the sum

;LN = Z Z ij = Z Z[XQ’ 195 — Xai-12i-1 — (X2i2i — X2i2i-1)]

1=17= i=17=
"
= Zl[Xz'iflzN — Xai-11 — (X2i2v — X2i1)]
Jj=
“w
= Zl[(XW 198 = Xaian) + (X2i1 — X2i-11)] = —(X2w2y — X12~) + Xa2e1 — X11-
j:
Therefore
Sun = Sunf = —Xxanon f + x12v [+ x201f — X111, (1.15)
Xi1f + Sunf = —Xouon f + X128 [ + X201 f- (1.16)
We get
f=af+8unf)=Ff—xiovf+f—xou1f + xouan f = f (1.17)
and then
Hf - (Xllf + SMNf)”p < Yion (f)p + YQ"I(f)p + Youon (f)p' (1-18)
Since Yy on — 0, You; — 0, Youonv — 0 as u, N — o0, then from (1.18) we get
f = X11f+ Z Z &ijf. (1.19)
i=1j=

We need to represent x11f into a series of entire functions whose norms (up to
a constant factor) are smaller than the best approximation by the angle Y. From
the equality x11f = Kooof + Koo2f — Koo we represent into a series the functions
Koo f and Koo f. Denote the sum

Sy=Snf= g:l ngf, (1.20)
j=

Torf = Koof, Tojf =Kooif —Kooinf, j=2,3,...
It holds that

N
SN =Koaf + > (Koo — Kogj-1) = Kyon f. (1.21)
=2
Therefore
Kosof = SN = Kooof = Koon f = Kooo(f — Koon f), (1.22)

from which we get

HK200f - SN”P L Yooon (f)p =Yon (f)p' (1-23)
Since Yonv — 0 as N — oo, we conclude that in L, the following equality holds

) X

Koo f = Z Tojf = Koof + Z T5;. (1.24)
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Then
[Tor fIl = ([ K2 f | < ([ fI]- (1.25)
For Ty; f the following holds
Tajf = Koni f — Kooi-1f = Kooo(Koo2i f) = Kaoo(Koo2i-1 f)
= Koo (Koo2i f) = Kooof + Koo f — Kaoo(Koo2i-1f)
= Kooo(Koo2i f = [) + Kooo(f — Koczi-1 f)-
From this equality we get

T2 Il < Yoo2i-1(f)p + Yoc2i—2(f)p K Ya2i—2(f)p = Yoi—2(f)p, J=2,3,

(1.26)
To represent functions Ko f note the sum
"
S, = ZQUizf, Uinf = Kaiof — Kai-12f. (1.27)
The following holds
"
SM = Z K2i2f - K2i—12f = KQMQf - KQQf. (128)
i=2
Hence
Koaf —Koof =S = Koo f — Koo f (1.29)
and || Koo f — Koo f — Sullp < [[Koc2(f — Kanoo f)]| and then
||Koo2f - K22f - SN”P < Y2“'00(f)p = You (f)p- (1-3())
When p — oo then Y. — 0, which means that
Koo f = Koo f © > Ui (1.31)
i=2

From (1.19) and in view of (1.24) and (1.31) we get (1.13). Lemma 1 has been
proved. m

REMARK 1. Let us emphasize that ||U;z|| is also estimated by the best approx-
imation by one-dimensional angle. We have

Uinf = Kaiof — Kapim1af = Keo2(Kaio f) — Kooz (Kai-100 f)
= Koo2(Kyino f) = Koo2 f + Koc2 f — Koc2(Kai-100f)
= Kooa(Koiso f — [) + Koo2(f — Koi-100 f).
From this equality we get

Uiafllp < 1 K2ic0f = fIl + If = Kaimioo Il < Yaizioo(f)p + Yai-200 (f)p-

Hence

HUZQf” < YQifzoo(f)p = }/Qi*2 (f)pa Z = 2737 s (132)
REMARK 2. For the series
o0 o0 o0 o0 o0 o0
Y2 9 =9oo+ > 9o+ D gio+ Do D Gij (1.33)
i=0;=0 i=1 i=1 i=1j=1
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denote
goo = Kaof,  goj = Togjr1)f, 7=1,2,...

) . 1.34
giO:U(i+1)2f7 i=12,..., gij:é-ijv ,j=12,... ( )

Then
o905 = >, Togenyf = D2 Toif, D2 gio= > Ugryef = 2- Uinf  (1.35)
j=1 j=1 j=2 i=1 i=1 i=2

and the equality (1.13) from Lemma 1 becomes

f(z, ) Z Z Gijs  9ij = 9ij [- (1.36)

1=0j=

Therefore, for norms of the terms of this series the following holds

lgooll < [I£1l; llgojll < Yai-1(f)p, J=1,2,...
||gi0|| <<}/2i—1(f)p, 1=1,2,..., ||g2]|| < YQi—le—l(f)p, i,j = 1,2,...

LEMMA 2. For the function f(z,y) € L,(R?), 1 < p < oo, in the sense of L,
the following equalities hold

K2H+1oof = Z%) Z g”f, n = 1,2, ce (137)
1=0j=

2u+1f = Z Z gZJf’ V= 1,2,. A (138)
1=0j=

Proof. For a fixed number p denote the partial sums of the series (1.36) by

Gun =Gunf= Z Z gij f = goo + Z goj + Z gio + Z Z Gij- (1.39)

=0 5= 1=17=

Using the equality (1.34) for G, x we have
nw N
G,u,N = K2 + Z T2 (7+1) + Z U(7,+1 Z Z 6]

= Ko + Z Kogir1 — Kagi + Z Kyit1g — Kaig + Z Z &ij

j=1 i=1 i=1j=

n
= Koo + Koonv+1 — Koo + Kout1g — Koo + Y Z &ij-

i=1j=1
Therefore
nw N
Gun = Kouv1g + Kogn+1 — Kog + Z Z (1.40)
Expressing £ by x, and then by K, we get (see (1.15))
u N
Z Z 5” == K2u+12N+1 - K22N+1 - K2u+12 + K22. (141)

i=1j=1
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From (1.40), using (1.41), it follows

nw N
GuNf == Z Gij = K2;4,+12N+1 f (1.42)
=0 j=0

Now in view of (1.42) we get
Koerioof — Gun f = Koo f — Koignss f = Koprrog (f — Kogwin f) - (143)
and then
[Eautroof = Gun fllp < Yooon (f)p = Yo (f)p- (1.44)
Since Yo — 0 as N — oo, then, based on (1.44), we conclude that (1.37) holds.
Equality (1.38) can be proved in the same way. Lemma 2 has been proved. m

REMARK 3. By definition of the best approximation by an angle we have
Voi(£)o = inf 1f = (o + 92e5)llp = inf 17 = sl
because gooo = 0 (due to the assumption that g € L,,, 1 < p < 00). Therefore

YOj(f)p:Yooj(f)P:Y}(f)pa ]:1727
In the same way

YiO(f)p = YiOO(f)p = Yi(f)pv i=12,..., YEJO(f)p = Hf”p

2. Representation of the derivative of a function

In this paragraph we will prove a theorem about the representation into a
series of the derivative of singular integrals (1.4) and (1.5) and the derivative of
a function. The terms of the series are entire functions whose norm is estimated
using the best approximation by an angle.

THEOREM 2.1. Let f(z,y) € L,(R?), and let for non-negative integers r; and
numbers {1
op =1+ -+ -, i:1a2a 1SPSQ<O<3;
p q
the following inequalities hold

> 2 i+ )7 G+ 1) Y (f)p < o0
i=1j=1

o0 o0

2+ 1))y <o, (G DTY(f)p < oo
i=1 j=1

(2.1)

Then the functions Kout+1oof, Koav+1 f, f(x,y) have derivatives which belong to
the space Lq and in the sense of Ly the following equalities hold

K f (Tl;TZ) (2 E& 4(?“1#’2) =1.2 2.9
( 2“‘*’100) Z:OZOQW y M gLy ey ()
1=0j=
o v
(Koo2"+1f)(rl)m) (2 Z:O Zogi;hrz)? v= 172a"'7 (23)
1=0j=
o0 0O
jor @3 5 g, (24)

s
Il

o
<
I

o
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where the entire functions g;; are given by equalities (1.34), (1,14) and (1.11).

Proof. We will prove that the equality (1.37) holds in the sense of L,. Denote

puo P
Gon=Gnf =X > 9if=Gup—Gun, P>N+1, (2.5)
i=0j=N+1
q

i i 9ij (2.6)

i=0j=N+1

=lIGinllE =

q

In the proof of this theorem we will follow the pattern of the proofs of the corre-
sponding theorem in paper [6] which corresponds to the periodic functions.

For a given number ¢ denote [g] + 1 = m. This means that m € {2,3,...} and
that -Z < 1. Therefore, it follows from (2.6) that

as [[(5 S tgom) avay [ (2.7

i=0 j=N+1
Denote
8ij = 1gss|™. (2.8)
Now we have
M P m
A< //(z > 5”) dz dy. (2.9)
i=0 j=N+1

Since m is a natural number, it is

(= 5 5ij)mzéo...i S 1 b (2.10)

i=0 j=N+1 im=0j1=N+1  jn=N+1k=1

Now from (2.7), in view of (2.8), (2.9) and (2.10), we get

1% 1% P P m
A<Y % Y oy / [T 6105, de dy. (2.11)
i1=0 k=1

im=0j1=N+1 im=N+1
From the equality
H oyt = 11 DD, (2.12)

= r,s=1
r<s
we get
1

kii Dy, = ( I DrDs> " (2.13)

r,s=1
r<s

Denoting Dy, = d;, j,, from (2.11), using (2.13), we get

1

© © P m—
AsT o ow //(H g8 )" dedy. (200
i1=0 i .]rn*N+1 r, 5 1

=0 j1=N+1
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m(m—

We apply the Holder integral inequality to the product of v = #1) factors of

power %, based on which we get

1 2
m m—1 m m m(m—1)
//< H Sirjréz-sjs) dl’dy S H |://(51rjr5h]s) 2 d.’Edy . (215)

r,s=1 r,s=1
r<s r<s

Denote
Frs = /\/(5i7‘j7‘5isjs)§ dx dy (216)

Now from (2.14), in view of (2.15) and (2.16), it follows that
2

w o P P m &
A< Y o2 X o X T @)™y, (2.17)
i1=0  im=0j1=N+1  jm=N+1, =1
r<s

We will now estimate numbers I',;. For numbers o = pr‘17 o = p—‘;q the

equality é + % =1 holds. Therefore we can apply the Holder inequality based on
which we get

q q

s < (||gi7~jr||aq/2)2 (Hgisjs o/q/2)2 . (2-18)

Functions g;; = g¢;;f are entire of exponential type 2 with respect to x and 27

with respect to y. Therefore, based on the inequality of S.M. Nikol’skii [2, 3.3.5]
we conclude that the following holds

TRRCESICES :
(9,5, laqr2) > < 2 o (1gis. o) (2.19)
L (i) - ) :
(”gisjs a/q/2)2 <2 2 (”gisjs P)2' (220)
Using the equality
q 1 q (1 1) 1 1 ,
———==|-==]4+=-==, pe{ad}, 2.21
2p B 2\p ¢ 2 p { J (2.21)

from (2.18), based on (2.19) and (2.20), we get

r, <2 +3e)(5 = 3) i +3) (5 = &) {2(2; +inaG—3)

(is + o )a(t - 1)

1
2
X }/[giT—l][QjT—l](f)pQ e )/[gis—l][gjs—l](f)P} . (2'22)

Denote

(i+5)a(; — )
Hij =2 P 1 }/[gi—l]pjfl](f)zn (223)

Since
rtin) (5= 2 ) et (5= 2 ) = [HGami) = Ga=i (5 - ) 220

(&%
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then from (2.22), using (2.23) and (2.24), we get

—(i.—i ) (2 =L s — ] 1_ 1 1 1
I, <2 (s r)(g )2 (j JT)(2 a)HQTJTHQ

isJs"

(2.25)

If we apply the Holder inequality (taking exponent o’ with respect to the first term,
and « to the second), then we can conclude in the same way that the following

inequality holds

_(ir - Zs)(% - é) _(jr _Js)(% é) 3 %

F’!‘S < 2 2 le]r isjs”
From inequalities (2.25) and (2.26) it follows that
: . 1 1 1 1
—|ts — |5 — 4 s 37 a 3
I's <2 | |( ) i ‘(2 a)Hierst
Denote
1 1 . - 1
s —r|\5 — 5 —|Js — Jri\gs —
a(isal'r) = | |(2 oz), b(js7jr) = |J J ‘(2
2
m 1 1 m(m—1)
Q = 1_.[ {a‘(i37iT)b(jsv.]7”)H T]THizjs} .
r,s=1
r<s

From (2.17), based on (2.27), (2.28), (2.29), we get

K K P P
ALY - XY 2, @
i1=0  im=0j1=N+1  jm=N+1

We will estimate the product Q. Using (2.13) we get

1
m l m—1 m 1
2 _ 2
I1 HJTHus =11 Hik-jk‘
1 k=1

r,8=
r<s

Now from (2.29), in view of (2.31), we get

m 1 2
Q= 11 Hyj, 1 {a(ls,lr>}m(m T (b} 0.
k=1 r,s=1 r,s=1
r<s r<s

Since a(is, i,) = a(ir,is) and a(i,,i,.) = 1, then

m 1

II a(iris) = H H a2(lr, is)-
r,s=1 r=1s=1

r<s

Also it is

m m %

[T 0(jr,js) = 1_[1 Hlb (Jrs Js)-
r,s=1 r s

r<s

1
[eY

The product @, in view of (2.32), (2.33) and (2.34), can be written as

1 1 1

Q= I 12, { M G- ib(r 3™ T}

)

)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)
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Now from (2.30) based on (2.35) it follows that

P , 11

" M P m ——=Ym
Ak Z Z Z Z HH2 {1;[[ ('Lra )(Jm]s)] 1}

i1=0  ipm=0j1=N+1  jnu=N+1lr=1
(2.36)
The terms in the sum (2.36) are products of m factors Li/m where
1

(
Lom m L
L, = H:;r l:Il[a(Zru s)b(]ra]s)]m_1, Q = 1:11 LZn

Therefore we can apply Holder’s inequality with the power % and get the inequality
1 1

m 1 12 P P m o . wT—Tm

A<T{X X > o 3 Hiy, Ialini)bGr o)) ™ |
r=1Y1=0  ip=0j1=N+1  jm=N+1 s=1

which can be written as

1 1

m 7 7 P L1 m 1
A<H{y 2 > o ZNHHTJT {1 fatir i T TG}
(2.37)
Denote
P P 1 m 1
M= %Y e ) Hig, H[ (iryis)] ™~ TL 0G5,
i1=0 im=0j1=N+1 Jm=N+1 s=1 t=1
(2.38)

r=12...,m. Since i, = 0,1,...,u4, jp = N+ 1,N+2,..., P for every r =
1,2,...,m, it is

My=My=---=M,, =M. (2.39)
For example, we will calculate M = M. Since a(i1,i1) =1, b(j1,71) =1, it is
M=M= 3> > - X HnJlH[(ZleS] H[(]h]t” :
i1=0  ipm=0j1=N+1  jm=N+1 5=2 t=2
(2.40)
We have
I P I3 o L m . %1
M = Z Z Hi1j1 Z [a(zlﬂb)}m [ (Zlvlm)}m X
i1=0j1=N+1 i2=0 =0
P 1 P 1
x 3 [T X Bl dm)] T (241)
Ja=N+1 Jm=N+1

For the sums Y a and b from equalities (2.41), based on (2.27) and (2.28), it
holds

m _1 _1
2 [a(in,in)] ™™t < C(p, ), f [b(j1,3:)]™ " < C(p,q) (2.42)
1,,=0 Je=N+1

for r,t =2,3,...,m. The constant C' depends only on p and gq.

From (2.41), based on (2.39) and (2.40), we get

“ P
i=0 j=N+1
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Now from (2.37), in view of (2.38), (2.39), (2.43) and (2.23), it follows that

(
w P (i el - 1)

A < Z Z 2 Y[gi—l][gj—l](f)p' (2'44)
i=0j=N+1
Using (2.5), (2.6) and (2.44) we deduce that
b P (i+5)a( - b 7
1Gup = Gunlly < {2 % 2 Y (e} (245)

=0 j=N+1
Based on the inequality (2.45) and the condition (2.1) we deduce that the sequence
G,n, N =0,1,2,... is a Cauchy sequence in the space L,. Since L, is complete,
then there exists a function h(z,y) € Ly such that imy_o [|Gun — h(z,y)]lq = 0,
ie.
Wz, y) L ZO > gir. (2.46)
i=0j=

In view of the equality (1.37), Lemma 2, and equality (2.46) we deduce that (see
[2, 1.3.9]) it holds that

KQ/H'loof = Z Z 9ij- (2'47)

=0 7=
Using the equality (2.47) in the next step we will prove equality (2.2).
For the sequence G, n the following equality holds

G =3 z 9", (2.48)

1=0j=
It follows that

G(T1,T2) _ G(Tlﬂ“z) _ - L (r1,m2) 9.49
|| nP uN ||q Z Z gz] ( : )
i=0 j=N-+1 q
Denote
n P (r1,r2) q o P q
B=|> > g;" =X X i (2.50)
1=0j=N+1 q i=0j=N+1 q

where ¢;; = ggl’m). The function ;; is an entire function of the same type as g;;.

Therefore, we can use the same method we used to estimate quantity A.

Denote
q

bij (@) = lei] ™ (2.51)
The corresponding quantity I is

aq
B) = [[i6 @001 dedy= [[ 1@ 107 1 oy

(2.52)
Therefore we get (see (2.18))

[NJESY

q
2

[s(B) < (H‘Pi7~j1~ 0/11/2) :

ag/2)” (lpi;. (2.53)
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By applying another metrics inequality of S.M. Nikol’skii [2, 3.3.5] we get
3 etin(E-1) 3
irgellagr2)™ <2772 2 ({lgig, 1)

)

N

s+Js 7
wm><wprww%

(i,
Applying an inequality of Bernstein type [2, 3.2.2] we get

leisllp = lg5 ™|, < 2714972 gy .

From (2.54) based on (2.56) we get
q
2 rig+ r
(ERREP it e AN

In the same way we deduce

4 ¢, q 1. ..¢qg g 1, 4
s 5ts-——7 s 5t5-—=7
a,q/2)2<<21 (riy 2p a)2j (r25 2p a)Y[QQz‘S—l][st—l](f)p

(i, s,
The equality o; = r; + % - % is equivalent to the equality

qri q 1 qo; 1 1 ,
2+2p ﬁ72+2 3 B e{a,a'}.
Therefore the inequalities (2.57) and (2.58) can be written as

q

3 ige el Ly g, 1 1 4
(1#irj llagr2) ™ < 2 (2712 o)l (3t O‘)Y[QWI][zjrl](f)py

ceg 11 1, 1
< 2is (30155 )2%( 02+2 '))/[QQis—l][g_is—l](f)P'

N

(||<Pisjs a’q/2)

From (2.53), based on (2.60) and (2.61), it follows that

T, < 2lirtin(G=)9liati)(G—7)

X {2“(1012jrq02}/[gzr—1][gjr—1](f) ngqal2]4102}/[2“_1][2“_1](f) }
If we denote
Hij(B) = 2zq012]qozy[gl 1][2i - 1](f)

then it follows from (2.62) that
Ir..(B 2(7;r+j7‘)(%7l)?(is+js)(%7i/)H% B H% B
rs(B) < o o' H;; (B)H ; (B).

[
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(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

Expressing o’ using a and applying the same method as for I',s(A), we deduce

1

1
SRS S STV S SN
Lps(B) < 2710l Gm o i G2 g2, (BYHY (B).

(2.64)

Repeating the same method for which from (2.27) we obtained (2.44), we deduce

that the following holds

b JZOJ JZV:-H 21‘1012”021/[21 127~ 1](f)

(2.65)
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Based on (2.49), (2.50) and (2.65) we deduce that
1

GUr) gl 3 2140127972y 1 “ 2.66
I un e < 2 > 2 (Hep* (2:66)

j=0j=N+1

The condition (2.1) of the theorem and the inequality (2.66) mean that the sequence

GLT]{,’”), N =0,1,2,... is a Cauchy sequence in L,. Since L, is complete, there
exists a function 9 (z,y) € L, such that lim,, ||GLT]§’T2) —Y(z,y)|lg =0, ie.
(0 & r,r
U(a,y) = ZOZ glrre). (2.67)
1=075=0

In view of the equalities (2.47) and (2.67) we deduce that the following holds (see
2, 4.4.7])

(Koo )7 = (2, y). (2.68)

Hence, the equality (2.2) has been proved.
The equality (2.3) follows from the equality (2.2) when x and y are swapped.
The equality (2.4) can essentially be proved in the same way. We use Lemma

1, i.e.. the equality (1.36). In the following step we will prove that the equality
(1.36) holds in L,. The equality (1.36) can be written as

%) N M e’} e’} e’}
F=Gun= 2 X 0;+2 X gGij+ > 2 i

i=M+1j=0 i=0 j=N+1 i=M+1j=N+1

and then
M ) 00 00
E Z gu +12X X gy + > >, i

If = Gunllq <
i=M+1j= i=0 j=N+1 q i=M+1j=N+1 q
=X+ X+ Xs. (2.69)

For the sums ¥; it holds that ¥; <« X;(0), i = 1,2,3, where X;(0) is the corre-
sponding remainder of the series (2.1) for r; = 0, r2 = 0 (the sum of the series (2.1)
can be expressed in terms of one series, see Remark 3 from Section 1). Therefore
lf — Gunllg — 0 as M, N — oo. This means that the equality (1.36) holds in L,
i.e. the following holds

fay) @5 Z 9ij- (2.70)

1=0 7=
In view of the equality (2.70) and the condition (2.1), and using the method which
established the equality (2.2), we deduce that the sequence &y = ZZ 025209 Z(Jrl)
converges in L, and that (see [2, 4.4.5 and 4.4.7])

JEORCRS) Z o, (2.71)

=0 j=

Again, in the same way, we deduce that the following sequence converges in L,

szmﬁw zz“m

1=0 7= 1=0j=
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and that based on (2.71) the equality (2.4) holds. Theorem 2.1 has been proved. m

COROLLARY 1. In view of (2.4), (2.50) and (2.65) we conclude that under the
conditions of Theorem 2.1 the following inequality holds
1

||f(r1,r2)Hq < {f: ioz (i + 1)«71q—1(j + 1)024—1}/1.30():0}(1, (2.72)

i=0j=0
Ifg=pthen o, =r;,i=1,2,1<p< oo and we get the corresponding inequality
for the norm in the L, space.

COROLLARY 2. In the same way for ¢ = p the condition (2.1) becomes weaker
and the equalities (2.2), (2.3) and (2.4) hold in L,.

3. The consequences of the theorem of representation

Apart from the above given corollaries of the theorem of representation we also
give the following important corollary as a theorem.

THEOREM 3.1. Let the conditions of Theorem 2.1 hold for a function f(x,y).
Then
(K2}L+1(>Of)(rl)r2) = K2,1,+1oof(n’r2)7 (Koo2”+1 f)(rl’rz) = KOOQU-H f(rl’rz),(?).].)

(xzrar f)T172) = yougu f072) =12, (3.2)

Proof. Denote h(z,y) = f(""2) h € L,. Then based on Lemma 1 (the equality
(1.36)), the following equality holds

7”12() 1,72
flrora) 2 ZEQ e, (3-3)

=0 j=

and in view of Lemma 2, the equalities (1.37) and (1.38), and Theorem 2.1 the
following equalities hold

1o oo
K2u+1 f(rl7r2 i Z Z gjf(r17r2)7 M= 1727 DR} (34)
i=0j=0
Kogoin fOr172) @ > Z For) =12, (3.5)

Since gijf(rhm) is expressed by Kf(”“) (see equalities (1.34) and (1.11)), and
since for the entire functions K, f the equality (Km,f)(rwz) = wa(n,rz) holds
(see Lemma 1.4 in [7]), it is

gis ) = (gi ) = g g, (3.6)

Now from equalities (2.2), (2.3), (2.4) and equalities (3.3), (3.4), (3.5) and in view

of the equality (3.6), equalities (3.1) follow. The equality (3.2) is a consequence of
the equalities (3.1) and (1.7). Theorem 3.1 has been proved.

REMARK 4. The theorems we have proved enable us to prove the inequalities

by which the best approximation by an angle and the mixed modulus of smoothness
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in the norm of the space L, are estimated by the best approximation by an angle in
the norm of the space L,, 1 <p < ¢ < oo (the converse theorem of approximation
by an angle). The results can be used further to examine the space (the classes)
of functions which are defined by the mixed modulus of smoothness (spaces SH of
Nikol’skii type and spaces SB of Besov type).
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