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GENERALIZED a-WEYL’S THEOREM FOR DIRECT SUMS
Anuradha Gupta and Neeru Kashyap

Abstract. If T and S are Hilbert space operators obeying generalized a-Weyl’s theorem,
then it does not necessarily imply that the direct sum 7' @ S obeys generalized a-Weyl’s theorem.
In this paper we explore certain conditions on 7' and S so that the direct sum 7' @ S obeys
generalized a-Weyl’s theorem.

1. Introduction

Let H be an infinite dimensional separable Hilbert space. Let B(H) be the
algebra of all operators on H (bounded linear transformations of H into itself).
For an operator T € B(H), let o(T'), 0,(T) and 04(T") denote the spectrum, point
spectrum and approximate point spectrum of T, respectively. Let «(T") and B(T)
denote the dimension of the kernel ker T" and the codimension of the range R(T'),
respectively. An operator T' € B(H) is called an upper semi-Fredholm if o(7") < o0
and T'(H) is closed, while T € B(H) is called a lower semi-Fredholm if 8(T) < oc.
However, T is called a semi-Fredholm operator if T is either an upper or a lower
semi-Fredholm and T is said to be a Fredholm operator if it is both an upper and a
lower semi-Fredholm. If T' € B(H) is semi-Fredholm, then the index of T is defined
by

ind(T) = o(T) — B(T).

The ascent of T is defined by the smallest non-negative integer p := p(T') such
that N(T?P) = N(TP*™!). If such an integer does not exist we put p(T) = oo.
Analogously, the descent of T', is defined by the smallest nonnegative integer g :=
q(T) such that R(T9) = R(T9') and if such an integer does not exist we put
q(T) = oc.

An operator T € B(H) is called a Weyl operator if it is a Fredholm operator
of index 0, while T' € B(H) is called a Browder if it is a Fredholm operator of finite
ascent and descent. The essential spectrum o.(7T") and the Weyl spectrum oy (T')
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of T are defined by

0.(T)={Ae€ C:T — A is not Fredholm},
ow(T)={A€ C:T — Al is not Weyl}.

For T € B(H), define the set LD(H) by
LD(H)={T € B(H) : p(T) < 0o and R(TP'') is closed}.

An operator T € B(H) is said to be left Drazin invertible if 7' € LD(H). We say
that A € 0,(T) is a left pole of T, if T — A\ € LD(H). We denote by 7%(T) the set
of all left poles of T.

We say that Weyl’s theorem holds for T if
o(T) \ ow(T) = Eo(T),

where Eo(T) is the set of all isolated point of o(T") which are eigenvalues of finite
multiplicity.

For a bounded linear operator T" and a nonnegative integer n we define 7T;, to be
the restriction of T' to R(T™) viewed as a map from R(7T™) into itself (in particular
To =T). If for some integer n, the range space R(T") is closed and T, is an upper
(resp., a lower) semi-Fredholm operator, then T is called an upper (resp., a lower)
semi B-Fredholm operator. In this situation, 7}, is a semi-Fredholm operator and
ind(7;,) = ind(T;,) for each m > n [3, Proposition 2.1]. It permits us to define the
index of a semi B-Fredholm operator T" as the index of the semi-Fredholm operator
T,, where n is any integer such that R(T™) is closed and T), is a semi-Fredholm
operator. Moreover if T,, is a Fredholm operator, then T is called a B-Fredholm
operator. A semi B-Fredholm operator is an upper or a lower semi B-Fredholm
operator.

An operator T € B(H) is called a B-Weyl operator if it is a B-Fredholm
operator of index 0. The B-Fredholm spectrum opr(7") and the B-Weyl spectrum
opw (T) of T are defined as

opr(T)={A€ C:T — Al is not a B-Fredholm operator},
opw(T) ={\ € C:T — A is not a B-Weyl operator}.

We say that generalized Weyl’s theorem holds for T if
o(T)\opw(T) = E(T),

where E(T) is the set of isolated eigenvalues of T' ([2], Definition 2.13), and that
generalized Browder’s theorem holds for T if o(T) \ opw (T') = n(T), where 7(T)
is the set of all poles of T

Let SBF(H) be the class of all semi B-Fredholm operators on H, USBF (H)
be the class of all upper semi B-Fredholm operators on H and USBF~(H) be the
class of all T € USBF(H) such that ind(7T") < 0. Also let

Ouspf-(T) ={A€ C:T — Al is not in USBF~ (H)}.
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We say T obeys generalized a-Weyl’s theorem if
0a(T) \ ousps-(T') = E*(T),
where E(T) is the set of all eigenvalues of T which are isolated in o,(T) ([2],
Definition 2.13). We know that [2]
generalized a-Weyl’s theorem = generalized Weyl’s theorem = Weyl’s theorem.

We say T obeys generalized a-Browder’s theorem if

Ousbf— (T) = 0q (T) \ ﬂ-a(T)'

An operator is called T polaroid if all isolated points of the spectrum of T" are poles
of the resolvent of T and is called isoloid if each A € 0;4,(T') is an eigenvalue of T,
where 0;5,(T) is the set of isolated points of o(T'). An operator T is called a-isoloid
if every A € 0%%°(T) is an eigenvalue of T', where 02°(T) is the set of isolated points
of 0,(T'). Every a-isoloid operator is isoloid but the converse is generally not true.

2. Generalized a-Weyl’s theorem for direct sums

Let H and K be nonzero complex Hilbert spaces. Although T' € B(H) and
S € B(K) satisfy generalized a-Weyl’s theorem, we do not guarantee that their
orthogonal direct sum T & S satisfies generalized a-Weyl’s theorem.

EXAMPLE 2.1. Let us define S for each z € (z;) € I* by
S(x1,x2,23,... ,&k...) = (0,121, 2Za, ... ,Qk_1Tp—_1,...)

where (o) is a sequence of complex numbers such that 0 < |a;| < Tand > 77, |a;| <
00. 0(S) = 04(S) = {0}. It can be proved that R(S™) # R(S™) for any n = 1,2,...
Thus, oy~ (S) = {0}. Since E*(S) = ¢, it follows that S satisfies generalized a-
Weyl’s theorem. Define T on X = I'&!! by T = S&0. Now N(T) = {0}, 0(T) =
0q.(T) = {0}, E“(T) = {0}. As R(T™) = R(S™) @ {0}, R(T™) is not closed for any
ne€N. SoT ¢ USBF~ and o,4,4- (T) = {0}. Thus, 0,(T) \ ousps- (T) # E*(T).
Hence T does not satisfy generalized a-Weyl’s theorem.

In this section we discuss certain conditions on 7" and S to ensure that
generalized a-Weyl’s theorem holds for T'@® S. W.Y. Lee [6] proved that if
T € B(H) and S € B(K) are isoloid and satisfy Weyl’s theorem such that
ow(T ® S) = ow(T) Uow(S) then Weyl’s theorem holds for T S. We now
prove the result for generalized a-Weyl’s theorem:

THEOREM 2.2. Suppose that generalized a- Weyl’s theorem holds for T € B(H)
and S € B(K). If T and S are a-isoloid and o,g- (T ® S) = oysps-(T) U
Oushf-(S), then generalized a-Weyl’s theorem holds for T @ S.

Proof. We know 0,(T ® S) = 0,(T) U 0,(S) for any pair of operators. If T
and S are a-isoloid, then

EYT @ 8) = [E4(T) N pa(5)] U [pa(T) N E*(S)] U [E*(T) N E*(S)]
where p,(.) = C\ ou(.).
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If generalized a-Weyl’s theorem holds for T and S, then
[Uu (T) U O'a(S)] \ [Uusbf* (T) U Uusbf* (S)]
= [EY(T) N pa(S)] U [pa(T) N E*(S)] U [E*(T) N E*(S)].
Thus7 Ea(T S2) S) = [UG(T) U UU«(SH \ [Uusbf (T) U Ousbf (S)]
If Ousbf— (T S S) = Ouysbf— (T) U Ousbf— ( ) then Ea(T D S) - O’a(T S3] S) \
ousvf- (T @ S). Hence generalized a-Weyl’s theorem holds for 7@ S. m

THEOREM 2.3. Suppose T € B(H) has no isolated point in its approzimate
spectrum and S € B(K) satisfies generalized a-Weyl’s theorem. If o, (T ® S)
= 04(T) Uoyusps-(S), then generalized a-Weyl’s theorem holds for T & S.

Proof. As 0,(T & S) = 0,(T) Uo,(S) for any pair of operators, we have

0a(T @ 8) \ Ouspy— (T & S) = [0a(T) Uaa(S)]\ [0a(T) Uoysp-(5)]
0a(9) \ [0a(T) Uoyas-(S)]

= [0a(5) \ ousps- (S)]\ a(T)

=E*(S) N pa(T)

where p,(T) = C\ 0,(T).

Let 02*°(T') be the set of isolated points of 0,(T) and ¢%°(T & S) be the set
of isolated points of 04(T ® S) = 0,(T) U a,(S). If 0i5°(T) = ¢ it implies that
04(T) = 02(T), where c2°(T) = 0,(T) \ 0i5°(T) is the set of all accumulation
points of 0,(T). Thus we have

0 (T ® S) = [0.°(T) U o (S)]\ [(02°(T) N 05°(S)) U (05°(T) N 0™ (S))]

(T (
< (T)\ 05e(8)) U (02°°(8) \ 05*“(T))
)

1
.9

)

= 0,°() N pa(T).

We have that 0,(T & S) =

EYT®8)=ad(TdS)No,(TdS)
= 0,°(8) N pa(T) N ()
— B(S) N pu(T),

Thus, 0,(T ® S) \ ouspr- (T ® S) = E*(T ® S). Hence T' ® S satisfies generalized
a-Weyl’s theorem. m

Let 01(T) denote the compliment of 0,4~ (1) in 04(T) ie. 01(T) = 04(T) \
ousvf- (T'). A straight forward application of Theorem 2.3 leads to the following
corollaries.

op(T) U o, (S) for every pair of operators, therefore

COROLLARY 2.4. Suppose T € B(H) is such that 0i*°(T) = ¢ and S € B(K)
satisfies generalized a-Weyl’s theorem with oi*°(S)Nop(S) = ¢ and o1 (T & S) = ¢,
then T @ S satisfies generalized a-Weyl’s theorem.
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~ Proof. Since S satisfies generalized a-Weyl’s theorem, therefore given condition
oi%°(S) Nop(S) = ¢ implies that o4(S) = ousps-(5). Now o1(T @ S) = ¢ gives

a

that 0,5~ (T D S) = 0o(T®S) = 04(T)Uoyer-(S). Thus from Theorem 2.3, we
have that T' & S satisfies generalized a-Weyl’s theorem. m

COROLLARY 2.5. Suppose T € B(H) is such that o1(T) U c%°(T) = ¢ and
S € B(K) satisfies generalized a-Weyl’s theorem. If 0,55~ (T @ S) = oyspp- (T) U
Oushf-(S), then generalized a-Weyl’s theorem holds for T @ S.

DEFINITION 2.6. An operator T' € B(H) is called left-polaroid if every isolated
point of the spectrum of o, (7T) is left pole of T.

THEOREM 2.7. Suppose generalized a-Browder’s theorem holds for T € B(H)
and S € B(K). Suppose T and S are left-polaroid and oz, (T®S) = oyspp- (T)U
Oushf-(S), then generalized a-Browder’s theorem holds for T @ S.

Proof. If T and S are left -polaroid , then
(T & S) = [7°(T) N pa(S)] U [pa(T) N7 (S)] U [x*(T) N 7*(S)]
where po(.) = C\ g4(.).
Since generalized a-Browder’s theorem holds for 7" and S, we have
[0a(T) U aa(S)\ [oushr— (T) U ousys—(5)]
= [(T) N pa(9)] U [pa(T) Nw®(S)] U [x*(T) N (5]

Thus, 7(T' @ 5) = [0a(T) U 0a(S)]\ [ousps- (T) U ouspy- (5)]-
If O'usbf* (T S3) S) = Uusbf* (T) U O'usbf* (S)7 then 7T'a(T D S) = Ua(T D S) \
ousvf- (T' @ S). Hence, generalized a-Browder’s theorem holds for 7@ S. m

3. Generalized Weyl’s theorem for direct sums

We know that generalized a-Weyl’s theorem = generalized Weyl’s theorem [2].
Thus we have the following similar results of generalized Weyl’s theorem for direct
sum of operators:

THEOREM 3.1. Suppose that generalized Weyl’s theorem holds for T € B(H)
and S € B(K). If T and S are isoloid and opw (T @ S) = opw (T)Uopw (S), then
generalized Weyl’s theorem holds for T & S.

A straight forward application of Theorem 3.1 leads to the following corollary.

COROLLARY 3.2. Suppose T' € B(H) is an isoloid operator that satisfies gen-
eralized Weyl’s theorem, then T @ S satisfies generalized Weyl’s theorem whenever
S € B(K) is a normal operator.

Proof. Tt is shown in [4] that if K is a Hilbert space and an operator S € B(K)
satisfies opp(S) = opw(9), then opw (T & S) = opw(T) U opw (S) for every
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Hilbert space H and T € B(H). As S € B(K) is a normal operator we have
opw (T ®S) =0opw(T)Uopw(S). Since every normal operator is isoloid and sat-
isfies generalized Weyl’s theorem [1], therefore S is isoloid and satisfies generalized
Weyl’s theorem. Hence the required result follows from the Theorem 3.1. m

THEOREM 3.3. Suppose T € B(H) has no isolated point in its spectrum and
S € B(K) satisfies generalized Weyl’s theorem. Suppose opw (T @ S) = o(T) U
opw (S), then generalized Weyl’s theorem holds for T & S.

We denote by 0o (T") the complement of opw (T') in o (T). We have the following
consequences of the above result.

COROLLARY 3.4. Suppose T € B(H) is such that 0,50(T) = ¢ and S € B(K)
satisfies generalized Weyl’s theorem with 0;50(S) Nop(S) = ¢ and oo(T & S) = ¢,
then T @ S satisfies generalized Weyl’s theorem.

COROLLARY 3.5. Suppose T € B(H) is such that oo(T) U 04s0(T) = ¢ and
S € B(K) satisfies generalized Weyl’s theorem. If o gy (T®S) = opw (T)Uopw (S),
then generalized Weyl’s theorem holds for T @ S.

THEOREM 3.6. Suppose generalized Browder’s theorem holds for T € B(H)
and S € B(K). Suppose T and S are polaroid and opw(T ® S) =
opw(T)Uopw/(S), then generalized Browder’s theorem holds for T @ S.
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