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AND FUZZY MAPPINGS
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Abstract. In this paper, first we give a theorem which generalizes the Banach contraction
principle and fixed point theorems given by many authors, and then a fixed point theorem for a
multi-valued (θ, L)-weak contraction. We extend the notion of (θ, L)-weak contraction to fuzzy
mappings and obtain some fixed point theorems. A coincidence point theorem for a hybrid pair
of mappings f : X → X and T : X → W (X) is established. Later on we prove a fixed point
theorem for a different type of fuzzy mapping.

1. Introduction

Banach contraction principle plays a very important role in nonlinear analysis
and has many generalizations (cf. [14] and the references therein). Recently, Suzuki
gave a new type of generalization of the Banach contraction principle (cf. [20]).
Then Kikkawa and Suzuki gave another generalization, which generalizes the work
of Suzuki (cf. [20, Theorem 1]) and the Nadler fixed point theorem (cf. [16]). In
[3], M. Berinde and V. Berinde extended the notion of weak contraction from
single valued mappings to multi-valued mappings and obtained some convergence
theorems for the Picard iteration associated with multi-valued weak contractions.
As mentioned by Berinde and Berinde (cf. [3]), a lot of well-known contractive
conditions considered in the literature contains (θ, L)-weak contraction as a special
case. But this case, under consideration in this paper, is very general as unlike
others the condition that θ + L < 1 is not required. For details one is referred to
[3]. In [12], Kamran further extended the notion of weak contraction and introduced
the notion of multi-valued f -weak contraction and generalized multi-valued f -weak
contraction. In this paper in Theorem 3.1, we generalize the work of Kikkawa and
Suzuki (cf. [14, Theorem 2]), Nadler (cf. [16]), Kamran (cf. [12, Theorem 2.9]),
and Berinde and Berinde (cf. [3, Theorem 3]. In Theorem 3.4, we proved a fixed
point theorem for a multi-valued (θ, L)-weak contraction defined on a nonempty
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closed subset of a complete and convex metric space. In Theorem 4.1, a fixed point
theorem for a (θ, L)-weak contractive fuzzy mapping is obtained which extends the
result of Berinde and Berinde (cf. [3, Theorem 3]). In Theorem 4.2, a coincidence
point theorem for a hybrid pair of mappings f : X → X and T : X → W (X); and
in Theorem 4.3, a fixed point theorems for a (α, L)-weak contractive fuzzy mapping
are obtained (definitions follow). Finally in Theorem 4.5 and in Theorem 4.7, we
prove fixed point theorems for a different type of fuzzy mapping T : X → K(X).

2. Basic definitions and lemmas

In this section first we give the following basic definitions and lemmas for multi-
valued mappings, and then that for the fuzzy mappings. (X, d) always represents a
metric space, H represents the Hausdorff distance induced by the metric d, CB(X)
denotes the family of nonempty closed and bounded subsets of X, and C(X) the
family of nonempty compact subsets of X. Let P(X) be the family of all nonempty
subsets of X, and let T : X → P(X) be a multi-valued mapping. An element
x ∈ X such that x ∈ T (x) is called a fixed point of T . We denote by Fix(T ) the
set of all fixed points of T , i.e.,

Fix(T ) = {x ∈ X : x ∈ T (x)}.
Note that, x is a fixed point of a multi-valued mapping T if and only if d(x, T (x)) =
0, whenever T (x) is a closed subset of X.

Lemma 2.1. [16] Let A and B be nonempty compact subsets of a metric space
(X, d). If a ∈ A, then there exists b ∈ B such that d(a, b) ≤ H(A,B).

Definition 2.2. Let (X, d) be a complete metric space. X is said to be
(metrically) convex if X has the property that for each x, y ∈ X with x 6= y there
exists z ∈ X, x 6= z 6= y such that

d(x, z) + d(z, y) = d(x, y).

Lemma 2.3. [5] If K is a nonempty closed subset of a complete and metrically
convex metric space (X, d), then for any x ∈ K, y 6∈ K, there exists a point z ∈ ∂K
(the boundary of K) such that

d(x, z) + d(z, y) = d(x, y).

Definition 2.4. A multi-valued mapping T : X → CB(X) is said to be a
multi-valued weak contraction or a multi-valued (θ, L)-weak contraction if and only
if there exist two constants θ ∈ [0, 1) and L ≥ 0 such that

H(T (x), T (y)) ≤ θd(x, y) + Ld(y, T (x)),

for all x, y ∈ X.



Fixed point theorems for multi-valued and fuzzy mappings 9

Definition 2.5. Let f : X → X and T : X → CB(X). The mapping T is
said to be a multi-valued (f, θ, L)-weak contraction if and only if there exist two
constants θ ∈ [0, 1) and L ≥ 0 such that

H(T (x), T (y)) ≤ θd(f(x), f(y)) + Ld(f(y), T (x)),

for all x, y ∈ X.

Lemma 2.6. [16] If A,B ∈ CB(X) and x ∈ A, then for each positive number
α there exists y ∈ B such that d(x, y) ≤ H(A,B) + α, i.e., d(x, y) ≤ qH(A,B)
where q > 1.

Lemma 2.7. [16] Let {An} be a sequence of sets in CB(X), and suppose that
limn→∞H(An, A) = 0, where A ∈ CB(X). Then if xn ∈ An, n = 1, 2, . . . , and if
limn→∞ xn = x0, it follows that x0 ∈ A.

Definition 2.8. [21] Let (X, d) be a metric space, f : X → X be a self-
mapping and T : X → CB(X) be a multi-valued mapping. The mappings f and T
are called R-weakly commuting if for a given x ∈ X, f(T (x)) ∈ CB(X) and there
exists some real number R such that

H(f(T (x)), T (f(x))) ≤ Rd(f(x), T (x)).

Definition 2.9. [11] The mappings f : X → X and T : X → CB(X) are
weakly compatible if they commute at their coincidence points, i.e., if f(T (x)) =
T (f(x)) whenever f(x) ∈ T (x).

Definition 2.10. [13] Let T : X → CB(X). The mapping f : X → X is said
to be T -weakly commuting at x ∈ X if f(f(x)) ∈ T (f(x)).

Note that R-weakly commuting mappings commute at their coincidence points.
A real linear space X with a metric d is called a metric linear space if d(x +

z, y + z) = d(x, y) and αn → α, xn → x =⇒ αnxn → αx. Let (X, d) be a metric
linear space. A fuzzy set A in a metric linear space X is a function from X into
[0, 1]. If x ∈ X, the function value A(x) is called the grade of membership of x in
A. The α-level set (or α-cut set) of A, denoted by Aα, is defined by

Aα = {x : A(x) ≥ α} if α ∈ (0, 1],

A0 = {x : A(x) > 0}.

Here B denotes the closure of the (non-fuzzy) set B.

Definition 2.11. A fuzzy set A is said to be an approximate quantity if and
only if Aα is compact and convex in X for each α ∈ [0, 1] and supx∈X A(x) = 1.

Let F(X) be the collection of all fuzzy sets in X and W (X) be a sub-collection
of all approximate quantities. When A is an approximate quantity and A(x0) = 1
for some x0 ∈ X, A is identified with an approximation of x0. For x ∈ X, let
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{x} ∈ W (X) with membership function equal to the characteristic function χx of
the set {x}.

Definition 2.12. Let A,B ∈ W (X), α ∈ [0, 1]. Then we define

pα(A, B) = inf
x∈Aα, y∈Bα

d(x, y),

p(A, B) = sup
α

pα(A, B),

Dα(A, B) = H(Aα, Bα),

D(A, B) = sup
α

Dα(A,B).

where H is the Hausdorff distance induced by the metric d.

The function Dα(A, B) is called an α-distance between A,B ∈ W (X), and
D a metric on W (X). We note that pα is a non-decreasing function of α and
thus p(A,B) = p1(A, B). In particular if A = {x}, then p({x}, B) = p1(x,B) =
d(x,B1). Next we define an order on the family W (X), which characterizes the
accuracy of a given quantity.

Definition 2.13. Let A,B ∈ W (X). Then A is said to be more accurate
than B, denoted by A ⊂ B (or B includes A), if and only if A(x) ≤ B(x) for each
x ∈ X.

The relation ⊂ induces a partial order on the family W (X).

Definition 2.14. Let X be an arbitrary set and Y be any metric linear space.
F is called a fuzzy mapping if and only if F is a mapping from the set X into W (Y ).

Definition 2.15. For F : X → W (X), we say that u ∈ X is a fixed point of
F if {u} ⊂ F (u), i.e. if u ∈ F (u)1.

Lemma 2.16. [10] Let x ∈ X and A ∈ W (X). Then {x} ⊂ A if and only if
pα(x,A) = 0 for each α ∈ [0, 1].

Remark 2.17. Note that from the above lemma it follows that for A ∈ W (X),
{x} ⊂ A if and only if p({x}, A) = 0. If no confusion arises instead of p({x}, A),
we will write p(x,A).

Lemma 2.18. [10] pα(x,A) ≤ d(x, y) + pα(y, A) for each x, y ∈ X.

Lemma 2.19. [10] If {x0} ⊂ A, then pα(x0, B) ≤ Dα(A,B) for each B ∈
W (X).

Lemma 2.20. [15] Let (X, d) be a complete metric linear space, F : X → W (X)
be a fuzzy mapping and x0 ∈ X. Then there exists x1 ∈ X such that {x1} ⊂ F (x0).

Remark 2.21. Let f : X → X be a self map and T : X → W (X) be a fuzzy
mapping such that ∪{T (X)}α ⊆ f(X) for each α ∈ [0, 1]. Then from Lemma 2.20,



Fixed point theorems for multi-valued and fuzzy mappings 11

it follows that for any chosen point x0 ∈ X there exist points x1, y1 ∈ X such that
y1 = f(x1) and {y1} ⊂ T (x0). Here T (x)α = {y ∈ X : T (x)(y) ≥ α}.

Definition 2.22. Let f : X → X be a self mapping and T : X → W (X) be
a fuzzy mapping. Then a point u ∈ X is said to be a coincidence point of f and T
if {f(u)} ⊂ T (u), i.e. if f(u) ∈ T (u)1.

Definition 2.23. A fuzzy mapping T : X → W (X) is said to be a weak
contraction or a (θ, L)-weak contraction if and only if there exist two constants
θ ∈ [0, 1) and L ≥ 0 such that

D(T (x), T (y)) ≤ θd(x, y) + Lp(y, T (x)),

for all x, y ∈ X.

Definition 2.24. A fuzzy mapping T : X → F(X) is said to be a weak
contraction or a (θ, L)-weak contraction if and only if there exist two constants
θ ∈ [0, 1) and L ≥ 0 such that

H(T (x)α(x), T (y)α(y)) ≤ θd(x, y) + Ld(y, T (x)α(x)),

for all x, y ∈ X where T (x)α(x), T (y)α(y) are in CB(X).

Definition 2.25. For a complete metric linear space X, let f : X → X be
a self mapping and F : X → W (X) a fuzzy mapping. T is said to be a f -weak
contraction or a (f, θ, L)-weak contraction if and only if there exist two constants
θ ∈ [0, 1) and L ≥ 0 such that

D(T (x), T (y)) ≤ θd(f(x), f(y)) + Lp(f(y), T (x)).

Definition 2.26. A fuzzy mapping T : X → W (X) is said to be a generalized
(α,L)-weak contraction if there exists a functions α : [0,+∞) → [0, 1) satisfying
lim supr→t+ α(r) < 1 for every t ∈ [0, +∞), such that

D(T (x), T (y)) ≤ α(d(x, y))d(x, y) + Lp(y, T (x)),

for all x, y ∈ X and L ≥ 0.

Lemma 2.27. [17] Let A be a subset of X. Let {Aα : α ∈ [0, 1]} be a family of
subsets of A such that

(i) A0 = A,
(ii) α ≤ β implies Aβ ⊆ Aα,
(iii) α1 ≤ α2 ≤ · · · ≤ αn, limn→∞ αn = α implies Aα =

⋃∞
k=1 Aαk

.
Then the function φ : X → I defined by φ(x) = sup{α ∈ I : x ∈ Aα} has the
property that Aα = {x ∈ X : φ(x) ≥ α}.

Conversely, in any fuzzy set µ in X the family of α-level sets of µ satisfies the
above conditions from (i) to (iii).

The function φ in the above lemma is actually defined on the set A, but we
can extend it to X by defining φ(x) = 0 for all x ∈ X − A. This lemma is known
as Negoite-Ralescu representation theorem.
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3. Multi-valued mappings

In this section we prove all the main theorems of this paper regarding multi-
valued mappings. Theorem 3.1 gives a generalization of Banach contraction prin-
ciple. In Theorem 3.2 we have stated and proved a further generalization of Theo-
rem 3.1 and Banach contraction theorem, and Theorem 3.4 concerns a multi-valued
non-self weak contraction and its fixed point. In proving the existence of a fixed
point of such a mapping, we follow the technique of Assad and Kirk (cf. [5]). Our
theorems extend the results of several authors.

Theorem 3.1. Let (X, d) be a complete metric space and let T : X → CB(X).
Suppose that there exists two constants θ ∈ [0, 1) and L ≥ 0 such that

η(θ)d(x, T (x)) ≤ d(x, y) implies H(T (x), T (y)) ≤ θd(x, y) + Ld(y, T (x))

for all x, y ∈ X, where η : [0, 1) → ( 1
2+L , 1

1+L ] defined by η(θ) = 1
1+θ+L is a strictly

decreasing function. Then
(i) there exists z ∈ X such that z ∈ T (z), i.e., Fix(T ) 6= ∅;
(ii) for any point x0 ∈ X, there exists an orbit {xn} of T at x0 with xn+1 ∈

T (xn) such that {xn} converges to a fixed point z of T for which the following
estimates hold:

d(xn, z) ≤ hn

1− h
d(x0, x1) for n = 0, 1, 2, . . .

and

d(xn, z) ≤ h

1− h
d(xn−1, xn) for n = 1, 2, . . . ,

for some h < 1.

Proof. (i) Suppose q > 1. We select a sequence {xn} in X in the following
way. Let x0 ∈ X and x1 ∈ T (x0). Then we have η(θ)d(x0, T (x0)) ≤ η(θ)d(x0, x1) ≤
d(x0, x1). Hence from the given hypothesis we have,

H(T (x0), T (x1)) ≤ θd(x0, x1) + Ld(x1, T (x0)) = θd(x0, x1).

There exists a point x2 ∈ T (x1) such that

d(x1, x2) ≤ qH(T (x0), T (x1)) ≤ q[θd(x0, x1) + Ld(x1, T (x0))] ≤ qθd(x0, x1).

Since the above inequality is valid for any q ≥ 1, we choose q > 1 such that
h = qθ < 1 for any θ ∈ [0, 1). Thus, d(x1, x2) ≤ hd(x0, x1).

Let x3 ∈ T (x2) be such that d(x2, x3) ≤ qH(T (x1), T (x2)). Note that
η(θ)d(x1, T (x1)) ≤ η(θ)d(x1, x2) ≤ d(x1, x2), and so by the given hypothesis,
H(T (x1), T (x2)) ≤ θd(x1, x2) + Ld(x2, T (x1)) = θd(x1, x2). Hence we have,
d(x2, x3) ≤ hd(x1, x2). Proceeding in this way we can obtain a sequence {xn}
in X such that d(xn−1, xn) ≤ hd(xn−2, xn−1). It can easily be shown that {xn} is
a Cauchy sequence in X. Since X is complete let xn → z ∈ X.
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Next we show that d(z, T (x)) ≤ θd(z, x) + Ld(x, z) for all x ∈ X\{z}. Since
xn → z, for x ∈ X\{z} there exists ν ∈ N such that d(z, xn) ≤ 1

3d(z, x) for all
n ∈ N with n ≥ ν. Then we have,

η(θ)d(xn, T (xn)) ≤ d(xn, T (xn)) ≤ d(xn, xn+1) ≤ d(xn, z) + d(z, xn+1)

≤ 1
3
d(z, x) +

1
3
d(x, z) =

2
3
d(x, z) = d(x, z)− 1

3
d(x, z)

≤ d(x, z)− d(xn, z) ≤ d(x, xn) + d(xn, z)− d(xn, z)

= d(x, xn),

i.e., η(θ)d(xn, T (xn)) ≤ d(xn, x) for n ≥ ν, which implies H(T (xn), T (x)) ≤
θd(xn, x) + Ld(x, T (xn)) for n ≥ ν. For n ≥ ν, this implies

d(xn+1, T (x)) ≤ θd(xn, x) + Ld(x, T (xn))

≤ θd(xn, x) + Ld(x, xn+1).

Taking n → ∞ we have, d(z, T (x)) ≤ θd(z, x) + Ld(x, z) for all x ∈ X\{z}. Next
we show that

H(T (x), T (z)) ≤ θd(x, z) + Ld(z, T (x)) for all x ∈ X. (1)

Equation (1) is satisfied when x = z. Now we take x 6= z. For every n ∈ N
there exists yn ∈ T (x) such that d(z, yn) ≤ d(z, T (x)) + 1

nd(x, z) as d(z, T (x)) =
infy∈T (x) d(z, y). Consider the following

d(x, T (x)) ≤ d(x, yn) ≤ d(x, z) + d(z, yn)

≤ d(x, z) + d(z, T (x)) +
1
n

d(x, z)

≤ d(x, z) + (θ + L)d(x, z) +
1
n

d(x, z)

= (1 + θ + L +
1
n

)d(x, z).

Dividing both sides by 1 + θ + L we have,

1
1 + θ + L

d(x, T (x)) ≤ (1 +
1

n(1 + θ + L)
)d(x, z),

for any n, and hence η(θ)d(x, T (x)) ≤ d(x, z). Then by the given hypothesis,
H(T (x), T (z)) ≤ θd(x, z) + Ld(z, T (x)) is satisfied for all x ∈ X. Now we have,

d(z, T (z)) = lim
n→∞

d(xn+1, T (z)) ≤ lim
n→∞

H(T (xn), T (z))

≤ lim
n→∞

{θd(xn, z) + Ld(z, T (xn))}
≤ lim

n→∞
{θd(xn, z) + L[d(z, xn+1) + d(xn+1, T (xn))]} = 0,

which implies d(z, T (z)) = 0, and hence z ∈ T (z), i.e., FixT 6= ∅ as T (z) is closed.
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To prove (ii) let us proceed as follows: The sequence {xn} obtained in the
proof of (i) are such that xn+1 ∈ T (xn) for n ≥ 0 and satisfies

d(xn, xn+1) ≤ hd(xn−1, xn) ≤ h2d(xn−2, xn−1) ≤ · · · ≤ hnd(x0, x1).

Also we have

d(xn+k, xn+k+1) ≤ hk+1d(xn−1, xn) for any k ≥ 0.

Using the above inequalities we have

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

≤ hnd(x0, x1) + hn+1d(x0, x1) + · · ·+ hn+p−1d(x0, x1)

= hn (1− hp)
1− h

d(x0, x1), (2)

and

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

≤ hd(xn−1, xn) + h2d(xn−1, xn) + · · ·+ hpd(xn−1, xn)

=
h(1− hp)

1− h
d(xn−1, xn). (3)

Taking p → ∞, and noting the fact that limn→∞ d(xn, xn+p) = d(xn, z) and
limp→∞ hp = 0, from (2) and (3) we obtain the assertion (ii) of the Theorem.

The above theorem is a generalization of Theorem 2 of Kikkawa and Suzuki
(cf. [14]) which is obtained when L = 0. It is also a generalization of Theorem 3 of
Berinde and Berinde (cf. [3]).

Corollary 3.1.1. [14, Theorem 2] Define a strictly decreasing function η
from [0, 1) onto ( 1

2 , 1] by η(r) = 1
1+r . Let (X, d) be a complete metric space and let

T be a mapping from X into CB(X). Assume that there exists r ∈ [0, 1) such that

η(r)d(x, T (x)) ≤ d(x, y) implies H(T (x), T (y)) ≤ rd(x, y)

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ T (z).

Corollary 3.1.2. (Nadler [16]) Let (X, d) be a complete metric space and let
T be a mapping from X into CB(X). If there exists r ∈ [0, 1) such that

H(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X,

then there exists z ∈ X such that z ∈ Tz.

Proof. Given that T satisfies the condition of Nadler’s theorem, i.e.,

H(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X and r ∈ [0, 1), (4)

we have to prove that there exists z ∈ X such that z ∈ T (z).
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For any x ∈ X, y ∈ T (x) we have d(y, T (y)) ≤ H(T (x), T (y)). Hence by (4)
we have,

d(y, T (y)) ≤ H(T (x), T (y)) ≤ rd(x, y),

i.e., η(r)d(y, T (y)) ≤ rd(x, y), i.e.

η(r)d(x, T (x)) ≤ d(y, x) = d(x, y) (5)

as r < 1 and η(r) < 1. Hence by (4), (5) and Theorem 3.1 for L = 0, it follows
that there exists z ∈ X such that z ∈ T (z).

Theorem 3.2. Let (X, d) be a metric space, T : X → CB(X) and f : X → X.
Suppose that there exists two constants θ ∈ [0, 1) and L ≥ 0 such that

η(θ)d(f(x), T (x)) ≤ d(f(x), f(y)) implies

H(T (x), T (y)) ≤ θd(f(x), f(y)) + Ld(f(y), T (x))

for all x, y ∈ X, where η : [0, 1) → ( 1
2+L , 1

1+L ] defined by η(θ) = 1
1+θ+L is a strictly

decreasing function, T (X) ⊂ f(X) and f(X) is complete. Then
(i) the set of coincidence point of f and T , C(f, T ) is nonempty.
(ii) for any x0 ∈ X, there exists an f -orbit Of (x0) = {f(xn) : n = 1, 2, 3 . . . }

of T at the point x0 such that f(xn) → f(u), where u is a coincidence point of f
and T , for which the following estimates hold:

d(f(xn), f(u)) ≤ hn

1− h
d(f(x0), f(x1)), n = 0, 1, 2, . . . ,

d(f(xn), f(u)) ≤ h

1− h
d(f(xn−1), f(xn)), n = 1, 2, . . . .

for a certain constant h < 1. Further, if f is R-weakly commuting at u and
f(f(u)) = f(u), then f and T have a common fixed point.

Proof. Let x0 ∈ X, and x1 ∈ X such that f(x1) ∈ T (x0). Then
η(θ)d(f(x0), T (x0)) ≤ d(f(x0), f(x1)), and so by the given hypothesis we have

H(T (x0), T (x1)) ≤ θd(f(x0), f(x1)) + Ld(f(x1), T (x0)) = θd(f(x0), f(x1)).

Let x2 ∈ X be such that f(x2) ∈ T (x1) and then d(f(x1), f(x2)) ≤ qH(T (x0), T (x1))
≤ hd(f(x0), f(x1)), where q > 1 and q is chosen in such a way that h = qθ < 1.
Now

η(θ)d(f(x1), T (x1)) ≤ η(θ)d(f(x1), f(x2)) ≤ d(f(x1), f(x2)),

which implies

H(T (x1), T (x2)) ≤ θd(f(x1), f(x2)) + Ld(f(x2), T (x1)) = θd(f(x1), f(x2)).

Let x3 ∈ X be such that f(x3) ∈ T (x2) and then d(f(x2), f(x3)) ≤ qH(T (x1), T (x2))
≤ hd(f(x1), f(x2)) ≤ h2d(f(x0), f(x1)). Proceeding in this way we obtain a se-
quence {f(xn)} in X. It can easily be shown that the sequence {f(xn)} is a
Cauchy sequence in X. Since f(X) is complete, the sequence converges to some
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point f(u) ∈ f(X). So there exists a positive integer ν such that for all x ∈ X \{u}
we have d(f(xn), f(u)) ≤ 1

3d(f(x), f(u)) for n ≥ ν. Then for n ≥ ν we can write

η(θ)d(f(xn), T (xn)) ≤ d(f(xn), T (xn)) ≤ d(f(xn), f(xn+1))

≤ d(f(xn), f(u)) + d(f(u), f(xn+1))

≤ 1
3
d(f(x), f(u)) +

1
3
d(f(x), f(u))

= d(f(x), f(u))− 1
3
d(f(x), f(u))

≤ d(f(x), f(u))− d(f(xn), f(u))

≤ d(f(x), f(xn)) + d(f(xn), f(u))− d(f(xn), f(u))

= d(f(xn), f(x)).

Hence from the given hypothesis it follows that

H(T (xn), T (x)) ≤ θd(d(xn), f(x)) + Ld(f(x), T (xn)).

This implies for any n ≥ ν,

d(f(xn+1), T (x)) ≤ H(T (xn), T (x))

≤ θd(f(xn), f(x)) + Ld(f(x), T (xn))

≤ θd(f(xn), f(x)) + Ld(f(x), f(xn+1)) + Ld(f(xn+1), T (xn))

= θd(f(xn), f(x)) + Ld(f(x), f(xn+1)).

Hence taking n → ∞ we have d(f(u), T (x) ≤ θd(f(u), f(x)) + Ld(f(x), f(u)) =
(θ + L)d(f(x), f(u)) for x ∈ X \ {u}. Next we show

H(T (x), T (u)) ≤ θd(f(x), f(u)) + Ld(f(u), T (x)) (6)

for all x ∈ X. It is true if x = u. Suppose x 6= u. Since d(f(u), T (x)) =
infv∈T (x) d(f(u), v), for each n ∈ N we can obtain a sequence {vn} in T (x) such
that d(f(u), vn) ≤ d(f(u), T (x)) + 1

nd(f(x), f(u)) for each n ∈ N. Hence for x 6= u
we have

d(f(x), T (x)) ≤ d(f(x), vn) ≤ d(f(x), f(u)) + d(f(u), vn)

≤ d(f(x), f(u)) + d(f(u), T (x)) +
1
n

d(f(x), f(u))

≤ d(f(x), f(u)) + (θ + L)d(f(x), f(u)) +
1
n

d(f(x), f(u))

= (1 + θ + L +
1
n

)d(f(x), f(u)).

and so 1
1+θ+Ld(f(x), T (x)) ≤ (1 + 1

(1+θ+L)n )d(f(x), f(u)) for any n, and hence

η(θ)d(f(x), T (x)) ≤ d(f(x), f(u)),
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which implies H(T (x), T (u)) ≤ θd(f(x), f(u)) + Ld(f(u), T (x)), and hence (6) is
proved. Now

d(f(u), T (u)) = lim
n→∞

d(f(xn+1), T (u)) ≤ lim
n→∞

H(T (xn), T (u))

≤ lim
n→∞

[θd(f(xn), f(u)) + Ld(f(u), T (xn))]

≤ lim
n→∞

[θd(f(xn), f(u)) + Ld(f(u), f(xn+1) + d(f(xn+1), T (xn))]

= 0,

and hence f(u) ∈ T (u) which completes the proof of (i).
To prove (ii) let us proceed as follows: The sequence {f(xn)} obtained in the

proof of (i) are such that f(xn+1) ∈ T (xn) for n ≥ 0 and satisfies

d(f(xn), f(xn+1)) ≤ hd(f(xn−1), f(xn)) ≤ h2d(f(xn−2), f(xn−1))

≤ · · · ≤ hnd(f(x0), f(x1)).

Also we have

d(f(xn+k), f(xn+k+1)) ≤ hk+1d(f(xn−1), f(xn)) for any k ≥ 0 and n ≥ 1.

Using the above inequalities we have

d(f(xn), f(xn+p))

≤ d(f(xn), f(xn+1)) + d(f(xn+1), f(xn+2)) + · · ·+ d(f(xn+p−1), f(xn+p))

≤ hnd(f(x0), f(x1)) + hn+1d(f(x0), f(x1)) + · · ·+ hn+p−1d(f(x0), f(x1))

= hn (1− hp)
1− h

d(f(x0), f(x1)), (7)

and

d(f(xn), f(xn+p))

≤ d(f(xn), f(xn+1)) + d(f(xn+1), f(xn+2)) + · · ·+ d(f(xn+p−1), f(xn+p))

≤ hd(f(xn−1), f(xn)) + h2d(f(xn−1), f(xn)) + · · ·+ hpd(f(xn−1), f(xn))

=
h(1− hp)

1− h
d(f(xn−1), f(xn)). (8)

Taking p →∞, and noting the fact that limn→∞ d(f(xn), f(xn+p)) = d(f(xn), f(u))
and limp→∞ hp = 0, from (7) and (8) we obtain the assertion (ii) of the Theorem.

If f is R-weakly commuting at u we have H(f(T (u)), T (f(u))) ≤
Rd(f(u), T (u)). As f(u) ∈ T (u) this implies f(T (u)) = T (f(u)). Again f(f(u)) =
f(u), and so f(u) ∈ T (u) implies f(f(u)) ∈ f(T (u)) = T (f(u)), i.e., f(u) ∈
T (f(u)). Hence, f(u) is a fixed point of both f and T , i.e., f and T have a com-
mon fixed point.

Remark 3.3. In Definition 2.9 we need f(T (x)) ∈ CB(X). If f is continuous
and T (x) ∈ C(X), then f(T (X)) also belongs to C(X). The above theorem is
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a generalization of Theorem 3.1, since by taking f as the identity mappings in
Theorem 3.2 we obtain Theorem 3.1. It is easy to see that the map f : X → X
is T -weakly commuting at a coincidence point of f and T . Hence Theorem 3.2
is generalization of Theorem 2.9 of Kamran (cf. [12]). In some sense the above
theorem is also a generalization of Theorem 3 of Kikkawa and Suzuki (cf. [14]) in
two directions: The mapping T is multi-valued and we have an additional term in
the second inequality. If we take L = 0 and T : X → X (single-valued), then we
get Theorem 3 of [14] without the continuity condition on the mapping f , but with
an additional condition that f(X) is complete. If X is assumed to be compact then
f(X) is compact when f is continuous.

Theorem 3.4. Let K be a nonempty closed subset of a complete and convex
metric space (X, d) and T : K → CB(X) be a multi-valued (θ, L)-weak contraction
(see Definition 2.4). If T (x) ⊂ K for each x ∈ ∂K (the boundary of K), then T
has a fixed point.

Proof. We select a sequence {xn} in the following way. Let x0 ∈ K and
x′1 ∈ T (x0). If x′1 ∈ K let x1 = x′1; otherwise select a point x1 ∈ ∂K s.t. d(x0, x1)+
d(x1, x

′
1) = d(x0, x

′
1). Thus x1 ∈ K and by Lemma 2.6 we can choose a point x′2 ∈

T (x1) so that d(x′1, x
′
2) ≤ H(T (x0), T (x1)) + θ, where θ < 1. Now put x′2 = x2 if

x′2 ∈ K, otherwise let x2 be a point of ∂K such that d(x1, x2)+d(x2, x
′
2) = d(x1, x

′
2).

By induction we can obtain a sequence {xn}, {x′n} such that for n = 1, 2, 3, . . .

(i) x′n+1 ∈ T (xn)
(ii) d(x′n, x′n+1) ≤ H(T (xn−1), T (xn)) + θn where
(iii) x′n+1 = xn+1 if x′n+1 ∈ K, or
(iv) d(xn, xn+1) + d(xn+1, x

′
n+1) = d(xn, x′n+1) if x′n+1 6∈ K. Now let

P = {xi ∈ {xn} : xi = x′i, i = 1, 2, . . . }
Q = {xi ∈ {xn} : xi 6= x′i, i = 1, 2, . . . }.

Observe that if xn ∈ Q for some n, then xn+1 ∈ P . Now for n ≥ 2 we estimate the
distance d(xn, xn+1). There arises three cases:

Case 1. The case that xn ∈ P and xn+1 ∈ P . In this case we have,

d(xn, xn+1) = d(x′n, x′n+1) ≤ H(T (xn−1), T (xn)) + θn

≤ θd(xn−1, xn) + Ld(xn, T (xn−1)) + θn

≤ θd(xn−1, xn) + θn.

Case 2. The case that xn ∈ P and xn+1 ∈ Q. In this case we use (iv) and
proceeding in the same way as Case 1 we obtain,

d(xn, xn+1) ≤ d(xn, x′n+1) = d(x′n, x′n+1) ≤ H(T (xn−1), T (xn)) ≤ θd(xn−1, xn)+θn.

Case 3. The case that xn ∈ Q and xn+1 ∈ P . From the construction of the
sequence {xn} it is clear that two consecutive terms of {xn} can not be in Q, and
hence xn−1 ∈ P and x′n−1 = xn−1. Using this below we obtain,

d(xn, xn+1) ≤ d(xn, x′n) + d(x′n, xn+1)
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= d(xn, x′n) + d(x′n, x′n+1)

≤ d(xn, x′n) + H(T (xn−1), T (xn)) + θn

≤ d(xn, x′n) + θd(xn−1, xn) + θn ( as in Case 1)

≤ d(xn, x′n) + d(xn−1, xn) + θn

= d(xn−1, x
′
n) + θn = d(x′n−1, x

′
n) + θn

≤ H(T (xn−2), T (xn−1)) + θn−1 + θn ( as in Case 2)

≤ θd(xn−2, xn−1) + θn−1 + θn.

The only other possibility, xn ∈ Q, xn+1 ∈ Q can not occur. Thur for n ≥ 2 we
have

d(xn, xn+1) ≤
{

θd(xn−1, xn) + θn, or
θd(xn−2, xn−1) + θn−1 + θn

(9)

Let δ = θ−1/2 max{d(x0, x1), d(x1, x2)}. Now as in [5], it can be we proved that for
n ≥ 1,

d(xn, xn+1) ≤ θn/2(δ + n). (10)

From (10) it follows that

d(xk, xN ) ≤ δ
∞∑

i=N

(θ1/2)i +
∞∑

i=N

i(θ1/2)i, k > N ≥ 1.

This implies {xn} is a Cauchy sequence in K, and since X is complete and K is
closed, {xn} converges to a point in K. Let u = limn→∞ xn. Hence there exists a
subsequence {xnk

} of {xn} each of whose terms is in the set P (i.e., xnk
= x′nk

for
k = 1, 2, . . . ). Thus by (i), x′nk

∈ T (xnk−1) for k = 1, 2, . . . , and since xnk−1 → u
as k →∞ we have T (xnk−1) → T (u) as k →∞ in the Hausdorff metric. Hence it
follows from Lemma 2.7 that u ∈ T (u), i.e., T has a fixed point, which completes
the proof.

4. Fuzzy mappings

Many authors considered the class of fuzzy sets with nonempty compact α-cut
sets in a metric space or nonempty compact convex α-cut sets in a metric linear
space, but some have given attention to class of fuzzy sets with nonempty closed and
bounded α-cut sets in a metric space. Theorems 4.1–4.3 deal with fuzzy mappings
with α-cut sets as nonempty, compact and convex subsets of X. Next following the
work in [2, 7, 22], we present Theorem 4.5 and Theorem 4.7 concerning a different
kind of fuzzy mappings with special α-cut sets as nonempty, closed and bounded
subsets of X.

Theorem 4.1. Let (X, d) be a complete metric linear space and T : X →
W (X) be a (θ, L)-weak contractive fuzzy mapping (see Definition 2.24). Then

(i) Fix(T ) 6= ∅;
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(ii) For any x0 ∈ X, there exists an orbit {xn}∞n=0 of T at the point x0 that
converges to a fixed point u of T , for which the following estimates hold:

d(xn, u) ≤ θn

1− θ
d(x0, x1), n = 0, 1, 2, . . . ,

d(xn, u) ≤ θ

1− θ
d(xn−1, xn), n = 1, 2, . . . .

Proof. Let x0 ∈ X. Then there exists x1 ∈ X such that {x1} ⊂ T (x0).
If D(T (x0), T (x1)) = 0, then T (x0) = T (x1), i.e., {x1} ⊂ T (x1), which actually
means that Fix(T ) 6= ∅. Let D(T (x0), T (x1)) 6= 0. Then by Lemmas 2.20 and
2.21, we can find x2 ∈ X such that {x2} ⊂ T (x1) and

d(x1, x2) ≤ H(T (x0)1, T (x1)1) = D1(T (x0), T (x1))

≤ D(T (x0), T (x1)) ≤ θd(x0, x1) + Lp(x1, T (x0))

≤ θd(x0, x1).

If D(T (x1), T (x2)) = 0 then T (x1) = T (x2), i.e., {x2} ⊂ T (x2). Otherwise, we
assume D(T (x1), T (x2)) 6= 0 and x3 ∈ X such that {x3} ⊂ T (x2) and

d(x2, x3) ≤ H(T (x1)1, T (x2)1) = D1(T (x1), T (x2))

≤ D(T (x1), T (x2)) ≤ θd(x1, x2) + Lp(x2, T (x1))

≤ θd(x1, x2).

In this manner, we obtain an orbit {xn}∞n=0 at x0 for T satisfying

d(xn, xn+1) ≤ θd(xn−1, xn), n = 1, 2, . . . . (11)

From (11) we obtain inductively,

d(xn, xn+1) ≤ θnd(x0, x1) and d(xn+k, xn+k+1) ≤ θk+1d(xn−1, xn) (12)

for k ∈ N, n ≥ 1. Now from (12) we have,

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

= (θn + θn+1 + · · ·+ θn+p−1)d(x0, x1)

=
θn(1− θp)

1− θ
d(x0, x1), (13)

which in view of 0 < θ < 1 shows that {xn} is a Cauchy sequence. Since
(X, d) is complete, it follows that {xn}∞n=0 converges to some point in X. Let
u = limn→∞ xn. Then we have,

p(u, T (u)) ≤ d(u, xn+1) + p(xn+1, T (u))

≤ d(u, xn+1) + D(T (xn), T (u))

≤ d(u, xn+1) + θd(xn, u) + Lp(u, T (xn))

≤ d(u, xn+1) + θd(xn, u) + Ld(u, xn+1) + Lp(xn+1, T (xn)).
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Noting that p(xn+1, T (xn)) = 0 and taking n → ∞ we have, p(u, T (u)) ≤ 0 =⇒
p(u, T (u)) = 0 =⇒ {u} ⊂ T (u).

From (13) taking p →∞ we have

d(xn, u) ≤ θn

1− θ
d(x0, x1), n = 0, 1, 2, . . .

Again by (12) we have

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

= (θ + θ2 + · · ·+ θp)d(xn−1, xn)

=
θ(1− θp)

1− θ
d(xn−1, xn).

Taking p →∞ we have,

d(xn, u) ≤ θ

1− θ
d(xn−1, xn).

Hence the proof is complete.

Theorem 4.2. Let (X, d) be a complete metric linear space, f : X → X be a
self mapping, and T : X → W (X) be a (f, θ, L)-weak contractive fuzzy mapping (see
Definition 2.25). Suppose ∪{T (X)}α ⊆ f(X) for α ∈ [0, 1] and f(X) is complete.
Then there exists u ∈ X such that u is a coincidence point of f and T , that is
{f(u)} ⊂ T (u). Here T (x)α = {y ∈ X : (T (x))(y) ≥ α}.

Proof. Let x0 ∈ X and y0 = f(x0). Since ∪{T (X)}α ⊂ f(X) for each
α ∈ [0, 1], by Remark 2.21 for x0 ∈ X there exist points x1, y1 ∈ X such that
y1 = f(x1) and {y1} ⊂ T (x0). By Remark 2.21 and Lemma 2.1, for x1 ∈ X there
exist points x2, y2 ∈ X such that y2 = f(x2) and {y2} ⊂ T (x1), and

d(y1, y2) ≤ H(T (x0)1, T (x1)1) ≤ D(T (x0), T (x1))

≤ θd(f(x0), f(x1)) + Lp(f(x1), T (x0)) = θd(y0, y1).

By repeating this process we can select points xk, yk ∈ X such that yk = f(xk) and
{yk} ⊂ T (xk−1), and hence

d(yk, yk+1) ≤ H(T (xk−1)1, T (xk)1) ≤ D(T (xk−1), T (xk))

≤ θd(f(xk−1), f(xk)) + Lp(f(xk), T (xk−1)) = θd(yk−1, yk).
(14)

From (14) we obtain inductively,

d(yn, yn+1) ≤ θnd(y0, y1) and d(yn+k, yn+k+1) ≤ θk+1d(yk−1, yk) (15)

for all k ∈ N, n ≥ 1.
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Now from (15), we have for any p ≥ 1,

d(yn, yn+p) ≤ d(yn, yn+1) + d(yn+1, yn+2) + · · ·+ d(yn+p−1, yn+p)

≤ (θn + θn+1 + · · ·+ θn+p−1)d(y0, y1)

=
θn(1− θp)

1− θ
d(y0, y1).

In view of 0 < θ < 1, we see that {yn} is a Cauchy sequence. Since f(X) is
complete, {yn} converges to some point in f(X). Let y = limn→∞ yn and u ∈ X
be such that y = f(u). Now

p(f(u), T (u)) = p(y, T (u)) ≤ d(y, yk+1) + p(yk+1, T (u))

≤ d(y, yk+1) + D(T (xk), T (u))

≤ d(y, yk+1) + θd(f(xk), f(u)) + Lp(f(u), T (xk))

≤ d(y, yk+1) + θd(yk, y) + L[d(y, yk+1) + p(yk+1, T (xk))].

Noting that p(yk+1, T (xk)) = 0 and the fact that yk → y as k → ∞ we have,
p(f(u), T (u)) = 0, i.e., {f(u)} ⊂ T (u).

Theorem 4.3. Let (X, d) be a complete metric linear space and T : X →
W (X) be a generalized (α, L)-weak contraction (see Definition 2.26). Then T has
a fixed point.

Proof. Let x0 ∈ X. Then by Lemma 2.20, there exists x1 ∈ X such that
{x1} ⊂ T (x0). Now by Lemma 2.20 and Lemma 2.1, there exists a point x2 ∈ X
such that {x2} ⊂ T (x1) and

d(x1, x2) ≤ H(T (x0)1, T (x1)1) ≤ D(T (x0), T (x1))

≤ α(d(x0, x1))d(x0, x1) + Lp(x1, T (x0)) ≤ d(x0, x1).

By repeating this process we can select a point xk+1 ∈ X such that {xk+1} ∈ T (xk)
and

d(xk, xk+1) ≤ H(T (xk−1)1, T (xk)1) ≤ D(T (xk−1), T (xk))

≤ α(d(xk−1, xk))d(xk−1, xk) + Lp((xk−1, T (xk)) ≤ d(xk−1, xk).
(16)

Let dk = d(xk−1, xk). Since dk is a non-increasing sequence of nonnegative real
numbers, therefore limk→∞ dk = c ≥ 0. By hypothesis we get lim supt→c+ α(t) <
1. Therefore there exists k0 such that k ≥ k0 implies that α(dk) < h, where
lim supt→c+ α(t) < h < 1. Now by (16) we deduce that the sequence {dk} satisfies
the following recurrence inequality:

dk+1 ≤ α(dk)dk ≤ α(dk)α(dk−1)dk−1 · · ·

≤
k∏

i=1

α(di)d1 ≤
k0−1∏

i=1

α(di)
k∏

i=k0

α(di)d1 ≤
k0−1∏

i=1

α(di)hk−k0+1d1

= Chk, (where C is a generic positive constant).
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Hence for p ≥ 1 we have,

d(xk, xk+p) ≤ d(xk, xk+1) + d(xk+1, xk+2) + · · ·+ d(xk+p−1, xk+p)

= dk+1 + dk+2 + · · ·+ dk+p−1 ≤ C(hk + hk+1 + · · ·+ hk+p−1)

= C
hk(1− hp)

1− h
.

which in view of 0 < h < 1 shows that {xk} is a Cauchy sequence. Since X is
complete, the sequence {xk} converges to some point in X. Let u = limk→∞ xk.
Now we have,

p(u, T (u)) ≤ d(u, xk+1) + p(xk+1, T (u))

≤ d(u, xk+1) + D(T (xk), T (u))

≤ d(u, xk+1) + α(d(xk, u))d(xk, u) + Lp(u, T (xk))

≤ d(u, xk+1) + α(d(xk, u))d(xk, u) + L[d(u, xk+1) + p(xk+1, T (xk))].

Using the fact that xk+1 ∈ T (xk) and the fact that xk → u we have, p(u, T (u)) ≤ 0,
i.e., p(u, T (u)) = 0, i.e., {u} ⊂ T (u). Hence the proof is complete.

Note. Du first introduced the concept of Reich-functions as follows (cf. [8]):

Definition 4.4. A function φ : [0,∞) → [0, 1) is called to be a Reich-function
(R-function for short) if for each t ∈ [0,∞) there exists rt ∈ [0, 1) and εt > 0 such
that φ(s) ≤ rt for all s ∈ [t, t + εt).

Examples. Let φ : [0,∞) → [0, 1) be a function.
(i) Obviously, if φ is defined by φ(t) = c, where c ∈ [0, 1), then φ is a R-

function;
(ii) If φ is nondecreasing function, then φ is a R-function;
(iii) It is easy to see that if φ satisfies lim sups→t+ φ(s) < 1 for all t ∈ [0,∞),

then φ is a R-function.
Note that in Theorem 4.3, α is a R-function and so the proof of showing the

sequence {xk} is Cauchy can be done in another way as follows. Since α is a R-
function, there exists rc ∈ [0, 1) and εc > 0 such that φ(s) ≤ rc for all s ∈ [c, c+ εc).
Again {dk} being non-increasing and dk → c as k → ∞, there exists k0 such that
for all k ≥ k0 we have dk ∈ [c, c + εc). Hence, by (16) we have

dk+1 ≤ α(dk)dk ≤ rcdk ≤ r2
cdk−1 ≤ · · · ≤ rk−k0+1

c dk0 ≤ rk
c

dk0

rk0−1
c

.

Hence, for p ≥ 1 we have

d(xk, xk+p) ≤ d(xk, xk+1) + d(xk+1, xk+2) + · · ·+ d(xk+p−1, xk+p)

≤ (rk
c + rk+1

c + · · ·+ rk+p−1
c )

dk0

rk0−1
c

=
rk
c (1− rp

c )
1− rc

dk0

rk0−1
c

,

which in view of rc ∈ [0, 1) shows that {xk} is a Cauchy sequence.



24 R. K. Bose, M. K. Roychowdhury

Theorem 4.5. Let (X, d) be a complete metric space and T : X → F(X) be a
(θ, L)-weak contractive fuzzy mapping satisfying the condition that for each x ∈ X
there is α(x) ∈ (0, 1] such that T (x)α(x) is a nonempty closed bounded subset of X.
Then

(i) There exists a point u ∈ X such that u ∈ T (u)α(u);
(ii) For any x0 ∈ X, there exists an orbit {xn}∞n=0 of T at the point x0 that

converges to a point u ∈ X, for which the following estimates hold:

d(xn, u) ≤ hn

1− h
d(x0, x1), n = 0, 1, 2, . . . ,

d(xn, u) ≤ h

1− h
d(xn−1, xn), n = 1, 2, . . . .

for a certain constant h < 1, such that u ∈ T (u)α(u).

Proof. Let F : X → F(X) be a fuzzy mapping. By assumption, there exists
α(x) ∈ (0, 1] such that F (x)α(x) is a nonempty closed and bounded subset of X.
Let us now construct a sequence {xn} (n ≥ 0) as follows. By αn+1 we denote
αn+1 = α(xn) for n ≥ 0. Let x0 ∈ X. Let x1 ∈ T (x0)α1 and q > 1. Then there
exists a point x2 ∈ T (x1)α2 such that

d(x1, x2) ≤ qH(T (x0)α1 , T (x1)α2)

≤ qθd(x0, x1) + qLd(x1, T (x0)α1) ≤ qθd(x0, x1).

Let us choose q > 1 in such a way that h = qθ < 1 for any θ ∈ [0, 1), and then
d(x1, x2) ≤ hd(x0, x1). Now for x2 ∈ T (x1)α2 , there exists a point x3 ∈ T (x2)α3

such that

d(x2, x3) ≤ qH(T (x1)α2 , T (x2)α3)

≤ qθd(x1, x2) + qLd(x2, T (x1)α2) ≤ hd(x1, x2).

In this manner, we obtain an orbit {xn}∞n=0 at x0 for T satisfying

d(xn, xn+1) ≤ hd(xn−1, xn), n = 1, 2, . . . . (17)

From (17) we obtain inductively,

d(xn, xn+1) ≤ hnd(x0, x1) and d(xn+k, xn+k+1) ≤ hk+1d(xn−1, xn) (18)

for k ∈ N, n ≥ 1. Now from (18) we have

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

= (hn + hn+1 + · · ·+ hn+p−1)d(x0, x1)

=
hn(1− hp)

1− h
d(x0, x1), (19)

which in view of 0 < h < 1 shows that {xn} is a Cauchy sequence. Since
(X, d) is complete, it follows that {xn}∞n=0 converges to some point in X. Let
u = limn→∞ xn. Then we have,

d(u, T (u)α(u)) ≤ d(u, xn+1) + d(xn+1, T (u)α(u))



Fixed point theorems for multi-valued and fuzzy mappings 25

≤ d(u, xn+1) + d(T (xn)αn+1 , T (u)α(u))

≤ d(u, xn+1) + hd(xn, u) + qLd(u, T (xn)αn+1)

≤ d(u, xn+1) + hd(xn, u) + qLd(u, xn+1) + qLd(xn+1, T (xn)αn+1).

Noting that d(xn+1, T (xn)αn+1) = 0 and taking n → ∞ we have, d(u, T (u)α(u)) ≤
0 =⇒ d(u, T (u)α(u)) = 0 =⇒ u ∈ T (u)α(u).

From (19) taking p →∞ we have

d(xn, u) ≤ hn

1− h
d(x0, x1), n = 0, 1, 2, . . .

Again by (18) we have,

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

= (h + h2 + · · ·+ hp)d(xn−1, xn)

=
h(1− hp)

1− h
d(xn−1, xn).

Taking p →∞ we have, d(xn, u) ≤ h

1− h
d(xn−1, xn). This completes the proof.

Now we discuss a different type of fuzzy mapping. As defined earlier we know
a fuzzy set in X is a function with domain X and range in [0, 1], F(X) denotes
the collection of all fuzzy set in X and CB(X) represents the nonempty closed and
bounded subsets of X. Let K(X) be the set of all fuzzy sets µ : X → [0, 1] such
that µ̂ ∈ CB(X) where µ̂ = {x ∈ X : µ(x) = maxy∈X µ(y)}, i.e., K(X) = {µ ∈
F(X) : µ̂ ∈ CB(X)}.

A fuzzy mapping T is a mapping from X into K(X). For a fuzzy mapping T :
X → K(X) and a mapping Λ : K(X) → CB(X), the composition T̂ = Λ◦T : X →
CB(X) is defined as (Λ ◦ T )(x) = T̂ (x) = {y ∈ X : T (x)(y) = maxz∈X T (x)(z)}.
A point x∗ ∈ X is called a fixed point of a fuzzy mapping T : X → K(X) if
T (x∗)(x∗) ≥ T (x∗)(x) for all x ∈ X, i.e., T (x∗)(x∗) = maxy∈X T (x∗)(y).

Lemma 4.6. [2] A point x∗ ∈ X is a fixed point of a fuzzy mapping T : X →
K(X) if and only if x∗ is a fixed point of the induced mapping Λ◦T : X → CB(X).

Now we define α(x) = maxy∈X T (x)(y), and then T (x)α(x) = {y ∈ X :
T (x)(y) = maxz∈X T (x)(z)} = {y ∈ X : T (x)(y) ≥ α}. Then using Theorem 4.5
and Lemma 4.6, we get the following result.

Theorem 4.7. Let the fuzzy mapping T : X → K(X) be a (θ, L)-weak con-
tractive fuzzy mapping. Then T has a fixed point.

Proof. By Theorem 4.5, there exists u ∈ X such that u ∈ T (u)α(u). But here
α(u) by definition is maxy∈X T (u)(y), i.e. u ∈ T̂ (u), i.e., u is a fixed point of the
induced mapping T̂ . Then by Lemma 4.6, u is a fixed point of the fuzzy mapping
T : X → K(X).
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