
MATEMATIQKI VESNIK

63, 1 (2011), 41–43
March 2011

originalni nauqni rad
research paper

A NOTE ON STAR COMPACT SPACES WITH A Gδ-DIAGONAL

Yan-Kui Song

Abstract. In this note we give an example of a Hausdorff, star compact space with a Gδ-
diagonal which is not metrizable, which answers negatively a question of van Mill, Tkachuk and
Wilson (Problem 4.8 in [J. van Mill, V.V. Tkachuk, R.G. Wilson, Classes defined by stars and
neighbourhood assignments, Topology Appl. 154 (2007), 2127–2134]).

1. Introduction

By a space we mean a topological space. Let A be a subset of a space X and
U be a family of subsets of X. The star of the set A with respect to U , denoted by
St(A,U), is the set

⋃{U ∈ U : U ∩A 6= ∅}.

Definition 1.1. [2] Let P be a class (or a property) of a space X. X is said
to be star P (or star-determined by P) if for every open cover U of X there exists
a subspace Y of X such that Y ∈ P and St(Y,U) = X.

By the above definition, a space X is called star compact if for every open
cover U of X there exists a compact subset K of X such that St(K,U) = X. In [3],
a star compact space is called K-starcompact. It is not difficult to see that every
countably compact space is star compact (see [3]). Since every countably compact
space with a Gδ-diagonal is metrizable, van Mill, Tkachuk and Wilson asked the
following question:

Problem 1.2. [2, Problem 4.8] Is a star compact space metrizable if it has a
point-countable base?

If a space X has a Gδ-diagonal, then X has a point-countable base. The
purpose of this note is to construct an example stated in the abstract which gives
a negative answer to the above question in the class of Hausdorff spaces.
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Throughout the paper, the cardinality of a set A is denoted by |A|. Let ω be
the first infinite cardinal. Other terms and symbols that we do not define will be
used as in [1].

2. An example of a Hausdorff, star compact space with a Gδ-diagonal

Example 2.1. There exists a Hausdorff, star compact space with a Gδ-
diagonal which is not metrizable.

Proof. Let

A = {an : n ∈ ω} and B = {bm : m ∈ ω},
Y = {〈an, bm〉 : n ∈ ω, m ∈ ω},

and let
X = Y ∪A ∪ {a} where a /∈ Y ∪A.

We topologize X as follows: every point of Y is isolated; a basic neighborhood of
a point an ∈ A for each n ∈ ω takes the form

Uan(m) = {an} ∪ {〈an, bi〉 : i > m} for m ∈ ω

and a basic neighborhood of a takes the form

Ua(n) = {a} ∪
⋃
{〈ai, bm〉 : i > n, m ∈ ω}.

Clearly, X is a Hausdorff space by the construction of the topology of X.
However, X is not regular since the point a can not be separated from the closed
subset A by disjoint open subsets of X. Thus, X is not metrizable. But X has a
Gδ-diagonal. In fact,

Um =
⋃
n∈ω

(Uan(m)× Uan(m)) ∪ (Ua(m)× Ua(m))

∪
⋃
{〈〈an, bm〉, 〈an, bm〉〉 : n ∈ ω, m ∈ ω} for each m ∈ ω.

Then Um is an open subset of X ×X and 4 =
⋂

m∈ω Um, which shows that X has
a Gδ-diagonal.

We show that X is star compact. Let U be an open cover of X. For each
n ∈ ω, there exists Un ∈ U such that an ∈ Un, so there exists mn ∈ ω such that
〈an, bmn〉 ∈ Un. If we put S1 = {〈an, bmn〉 : n ∈ ω} ∪ {a}, then S1 is a convergent
sequence with the limit point {a}, hence S1 is compact and

{an : n ∈ ω} ⊆ St(S1,U).

On the other hand, choose Ua ∈ U such that a ∈ Ua, Then there exists n ∈ ω such
that Ua(n) ⊆ Ua, hence

Ua(n) ⊆ St(S1,U),
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since Ua ∩S1 6= ∅. Finally, for i ≤ n, {ai} ∪ {〈ai, bm〉 : m ∈ ω} is compact, so there
exists a finite subset Fi ⊆ {ai} ∪ {〈ai, bm〉 : m ∈ ω} such that

{ai} ∪ {〈ai, bm〉 : m ∈ ω} ⊆ St(Fi,U).

Put F = S1 ∪ ∪{Fi : i ≤ n}. Then F is a compact subset of X and X = St(F,U),
which completes the proof.

Remark 2.2. The author does not know if there exists a regular star compact
space with a point-countable base, which is not metrizable.
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