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RADIUS ESTIMATES OF A SUBCLASS
OF UNIVALENT FUNCTIONS

Maslina Darus and Rabha W. Ibrahim

Abstract. For analytic functions f normalized by f(0) = f/(0) — 1 = 0 in the open unit

disk U, a class Pn(\) of f defined by \D?(ﬁ)\ < A, where D¢ denotes the fractional derivative

of order o, m < a < m+ 1, m € Ny, is introduced. In this article, we study the problem when
%f(rz) € Po(N),3< a<4.

1. Introduction

Let H be the class of functions analytic in U := {# € C : |z| < 1} and
H[a, n] be the subclass of H consisting of functions of the form f(z) = a + anz™ +

ani12" 1 4+ ---. Let A be the subclass of H consisting of functions of the form
f(z2)=z2z4 > anz", zeU. (1)
n=2

Let S be the subclass of A consisting of all univalent functions f(z) in U.

In [1], Srivastava and Owa, gave definitions for fractional operators (derivative
and integral) in the complex z-plane C as follows:

DEFINITION 1.1. The fractional derivative D¢ of order « is defined, for a
function f(z), by

1L d (z_fQ d 0<a<l
D?f(z) = { T'(1—-a) dz fo -0 ¢, < 7

(diz)m—‘_lD?_Tnf(Z% m§a<m+1, mENo.

where the function f(z) is analytic in simply-connected region of the complex z-
plane C containing the origin and the multiplicity of (z — ¢)™% is removed by
requiring log(z — ¢) to be real when (z — ¢) > 0.
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For f(z) € A, we define the class P,(\) of f(z) if f(z) satisfies f(zz) # 0,
(z€U) and

‘Dﬂjéﬂ‘gx zeU, 2)

for some real A > 0 and m < a <m+ 1, m € Nj.
Obradovié¢ and Ponnusamy [2] have studied the subclass Pa(A) for f(z) € A
satisfying £&) £ 0, (z € U) and ‘(ﬁ)/w < A, (z € U) for some real A > 0.

Recently, Kuroki et al. studied the subclass P3(\) for f(z) € A satisfying

@ #0, (2 €U) and ‘(f(zz))m} <\, (2 € U) for some real A > 0 (see [3]).

In this work, we study the problem when 1 f(rz) € P,()), 3 < o < 4. For this
purpose, we need the following result.

LemMA 1.1. [4] If f(2) € S and

z oo
=1+ b, 2", 3
O ®)
then > (n —1)|b,]? < 1.
n=1
2. Results

First we derive the following result.

THEOREM 2.1. Let f € A and ;&5 =1+ 32,7, ba2" # 0, (2 € U). If f(2)

satisfies
[e]

> nn—=1)(n=2)--(n—m)lb,| <A,
n=m-+1

A>0,m<a<m+1, meNy), then f(z) € Py()).
Proof. By Definition 1.1, we observe

e (5| ¢ B MO [ g

f(2) Fm+1-«
< fo:mﬂ n(n—1)(n—2)---(n—m)b,|
- F(m+2—a)

< S nn=1)(n—2)-(n—m)ba| < A.

n=m-+1

Hence, f(z) € Po()\). m

COROLLARY 2.2. Let f € A and 755 =1+ 3777 ba2" #0, (2 € U). If f(2)

satisfies
o0

> n(n=1)(n = 2)(n—=3)[bn| <A,

n=4

(A>0,3<a<4), then f(z) € Py(N).
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Proof. By letting m = 3 in Theorem 2.1. m

THEOREM 2.3. Let f € S and A > 0. Then the function *f(rz), (r > 0,
z € U) belongs to the class Po(\) for 3 <a <4 and 0 < r < rg(N), where ro(N) is
the smallest root of the equation
F(r) :==r?(Ai(r) — 11(1 — r*) As(r) + 47(1 — r?)2A3(r) — 97(1 — r?)> Ay(r)
+96(1 —r?)*A5(r) — 36(1 — r°)°Ag(r)) — A*(1 =13 =0, (4)

where
Ay (r) := 5+ 42472 + 2989r* + 3544r° 4 989r% 4 8810,
Ag(r) := 5+ 197r% + 668r* + 268r° + 1475 + 910
As(r) :=5+86r? + 108" — 14r° + 9r®,
Ay(r) :=5+23r% —p* — 305
As(r) := 1+ 47 + 14,
1

in the interval (0,1).

Proof. Let f € S. Since & # 0, (2 € U), if we write 775 = 1+ 3277, b2,
then we have

Z oo
— =1+ b, )2",
Ty 2

for 0 < r < 1. It follows from Lemma 1.1 that

2 (n=1)[bn|* < 35 (n—1)[ba|? < 1.
n=4 n=1

To verify that L f(rz) € Pa(A) for 3 < o < 4, we have to show that

18

nn—1)(n—2)(n—3)r"ba] <\, (A>0, 3<a<4) (5)

n=4

by mean of Corollary 2.2. Now by the Cauchy-Schwarz inequality for the left-hand
side of (5), we have

S (= 1)(n=2)(n = 3)r"b,|
= 3= (nn =)= 22 - 827 ) (0= i)
< (S w2 =0 =22 =32 E) (5 0= 0l l2)’
< (5 - —22m-3prn)

3
I
b
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= ﬁ [?”2 (Al(v") —11(1 = 1) Ag(r) +47(1 — 1*)? A3(r)

1
2

—97(1 — 12)3 Ay (r) + 96(1 — r2) A5 (r) — 36(1 — r2)5A6(r))]

Consequently, f(rz) € Po()) for 3 < a < 4 and 0 < r < ro(X), where ro() is
the positive solution for the equation (4), which satisfies that F(0) = —\? < 0
and F(1) = A1(1) > 0. Hence (4) has a solution r()) in the interval (0,1). This
completes the proof of the theorem. m
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