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OPTIMAL FOURTH ORDER FAMILY OF ITERATIVE METHODS

Sanjay K. Khattri and S. Abbasbandy

Abstract. In this work, we construct a family of optimal fourth order iterative methods
requiring three evaluations. During each iterative step, methods need evaluation of two derivatives
and one function. According to the Kung and Traub conjecture an optimal iterative method
without memory based on 3 evaluations could achieve an optimal convergence order of 4. The
proposed iterative family of methods are especially appropriate for finding zeros of functions
whose derivative is easy to evaluate. For example, polynomial functions and functions defined via
integrals.

1. Introduction

According to the Kung and Traub’s conjecture an optimal iterative method
without memory based on n evaluations could achieve optimal convergence order
2n−1 [10]. One of the best known optimal second order method based on two
functional evaluations for solving the equation f(x) = 0 is the Newton’s method
which is given as follows (NM)

xn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, 2, 3, . . . , and |f ′(xn)| 6= 0, (1)

[3, 5, 15]. There exists numerous modifications of the Newton’s method which
improve the convergence rate (see [3, 4, 5, 10, 15] and references therein). We are
interested in finding zeros of functions defined via integrals: f(x) :=

∫ x

a
g(t) dt +

G(x). Clearly for such functions numerical evaluation of derivatives is easier than
evaluating function itself if G(x) is a constant or a polynomial function [5].

Let us consider iterative methods which require more derivative evaluations
than functions. Many iterative methods are developed by considering various quad-
rature rules in the Newton’s theorem

f(x) = f(xn) +
∫ x

xn

f ′(t) dt. (2)
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Weerakoon et al. obtained the following cubically convergent iterative method (WF)

xn+1 = xn − 2f(xn)
(f ′(xn) + f ′(xn − f(xn)/f ′(xn)))

, (3)

by using the trapezoidal rule in the equation (2) [15]. While Frontini et al. consid-
ered the midpoint quadrature rule in (2) and Homieier et al. considered properties
of vanishing derivative to obtain the following cubical iterative method (FH)

xn+1 = xn − f(xn)
f ′(xn − f(xn)/(2 f ′(xn)))

, (4)

[3, 4]. Furthermore Homeier derived the following cubically convergent iterative
method (HH)

xn+1 = xn − f(xn)
2

(
1

f ′(xn)
+

1
f ′(xn − f(xn)/f ′(xn))

)
, (5)

by using the Newton’s theorem (2) for the inverse function x = f(y) [5]. We
notice that the quadratic convergent Newton’s method require evaluations of one
function and one derivative while the cubic methods (3)–(5) require evaluations
of two derivatives and one function during each iteration. It was shown by the
Homeier et al. that finding zeros of functions defined via integrals is easier by the
method (4) than by the optimal Newton method [5]. The cubic methods (3)–(5)
require three evaluations. Therefore by the Kung and Traub conjecture they are not
optimal [10]. In this work, we develop an optimal family of quartically convergent
methods requiring two evaluations of derivatives and one evaluation of function
during each iteration. The next section presents our contribution.

2. New optimal fourth order iterative methods

To develop optimal methods requesting evaluations of two derivatives and one
function during each iteration, we consider the iterative method

yn = xn − 2
3

f(xn)
f ′(xn)

,

xn+1 = xn − f(xn)
f ′(xn)

[
1 +

4∑
j=1

αj

(
f ′(yn)
f ′(xn)

)j]
,





(6)

where αj ∈ R. We prove that the methods of the preceding family are fourth order
convergent through the theorem.

Theorem 1. Let a sufficiently smooth function f : D ⊂ R → R has a simple
root γ ∈ D in the open interval D. Then the methods of the iterative family (6)
are at least fourth order convergent if α1 := 21/8 − α4, α2 := −9/2 − 3α4 and
α3 := 15/8 − 3α4. Here, α4 is a free real parameter. The methods of the family
satisfies the error equation

en+1 =
[(

64
27

α4 +
85
9

)
c2

3 − c2c3 +
1
9

c4

]
e4
n + O(e5

n).
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Proof. The Taylor series expansion of f(x) and f ′(xn) around the solution γ
is given as

f(xn) = f ′(γ)
(
en + c2en

2 + c3en
3 + c4en

4
)

+ O
(
en

5
)
, (7)

f ′(xn) = f ′(γ)
(
1 + 2 c2en + 3 c3en

2 + 4 c4en
3
)

+ O
(
en

4
)
. (8)

Using the equations (7) and (8) into the first step of the proposed method (6), we
obtain

yn − γ = 1/3en + 2/3 c2en
2 +

(
4/3 c3 − 4/3 c2

2
)
en

3 + O
(
en

4
)
, (9)

the Taylors series expansion of f ′(yn) around the solution γ

f ′(yn) =
∞∑

k=1

ck(yn − γ)k, (10)

from the preceding equation and the equation (9), we obtain

f ′(yn) = f ′(γ) +
2
3
f ′(γ)c2en +

1
3

f ′(γ)
(
4 c2

2 + c3

)
en

2

− 4
27

f ′(γ)
(−27 c3c2 + 18 c2

3 − c4

)
en

3 + O
(
en

4
)
. (11)

Dividing equations (11) and (12) yields

f ′(yn)
f ′(xn)

= 1− 4
3

c2en +
(

4 c2
2 − 8

3
c3

)
en

2

+
(

40
3

c3c2 − 32
3

c2
3 − 104

27
c4

)
en

3 + O
(
en

4
)
. (12)

Finally substituting from equations (7), (8) and (12) into the second step of the
proposed method (6)

en+1 = γ +(−α1 − α2 − α4 − α3) en +
1
3

c2 (19α4 + 7 α1 + 15 α3 + 11 α2 + 3) en
2

+
((38

3
α4 + 10 α3 + 14/3 α1 +

22
3

α2 + 2
)
c3

+
(
−34 α4 − 130

9
α2 − 22

3
α1 − 70

3
α3 − 2

)
c2

2
)
en

3

+
(497

27
α4c4 +

289
27

α2c4 +
131
9

α3c4 + 3 c4 + 4 c2
3 − 77

3
α1c2c3 +

185
27

α1c4

− 7 c3c2 +
2584
27

α3c2
3 +

460
9

α2c2
3 +

4252
27

α4c2
3 +

64
3

α1c2
3 − 253

3
α3c3c2

− 463
9

α2c3c2 − 373
3

α4c3c2

)
en

4 + O(en
5). (13)

In the preceding error equation the second and the third order terms are zero if
and only if: α1 = 21/8 − α4, α2 = −9/2 + 3α4 and α3 = 15/8 − 3α4. Therefore
the proposed method is at least fourth order convergent for any real choice of the
parameter α4. This completes our proof.
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As positively remarked by the reviewer: the first-step of the proposed method
is similar to the first-step of the Jarratt’s method, may be referred to as the Jarratt’s
correction, and to construct optimal fourth order methods Jarratt was the first to
introduce the ratio f ′(yn)/f ′(xn). Jarratt’s method is given as (JR)

yn = xn − 2
3

f(xn)
f ′(xn)

, xn+1 = xn − f(xn)
f ′(xn)

(
1− 3

2
f ′(yn)− f ′(xn)
3f ′(yn)− f ′(xn)

)
, (14)

[6]. For other fourth and higher order optimal methods, we refer to the admirable
literature [2, 8, 9, 11, 12, 13, 14].

4. Numerical Example

All the computations reported here are done in the programming language C++

on the Acer Aspire 5720ZG with Intel dual-core processor T2310 and with 2GB of
memory. For numerical precision, we are using the C++ library ARPREC [1].
The ARPREC library supports arbitrarily high level of numeric precision. In the
program, the precision in decimal digits is set at 2005 with the command “mp::mp
init(2005)”. To evaluate the integral the Tanh − Sinh quadrature scheme is used.
For evaluating quadrature to high precision, in the package ARPREC the primary
user working precision is set at 600 digits while the secondary working precision
is set at 1000 digits. For convergence, it is required that the distance of two
consecutive approximations (|xn+1 − xn|) be less than ε. And, the absolute value
of the function (|f(xn)|) also referred to as residual be less than ε. Apart from
the convergence criteria, our algorithm also uses maximum allowed iterations as
stopping criterion. Thus our algorithm stops if (i) |xn+1 − xn| < ε, (ii) |f(xn)| < ε,
(iii) itr > maxitr. Here, ε = 1×10−300, itr is the iteration counter for the algorithm
and maxitr = 100. We test the methods (1), (3) and the proposed method (6) for
the following functions

f1(x) = 2
∫ x

0

exp t cos t dt + 1 + exp π, γ = π,

f2(x) =
∫ x

0

t log (t + 1) dt− 1/4, γ = 1,

f3(x) =
∫ x

0

[exp−t3/2− exp t8/2] dt + 1/10, γ ≈ 0.9054.

To minimize the asymptotic error constant, we choose α4 = −255/64 in the
proposed method (PM) (6). Performance of the present method (6), the New-
ton method (1), the cubic method (3) and well known Jarratt’s method (14) is
compared in the Tables 1 and 2. The Tables 1 and 2 present distance between two
consecutive iteration and CPU time required by the three methods. Computational
results show that the proposed method and the Jarratt’s method require substan-
tial less time to converge than the optimal Newton method (1) or the third order
method (3). Which is expected because evaluation of derivatives for the functions
f1(x), f2(x) and f3(x) is computationally less expensive than evaluating functions.
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Consequently the optimal methods which require more derivative evaluations than
function evaluations are suitable for functions defined via integrals. To compute
the CPU time required, we are using the ARPREC command time(null) [1].

f1(x) with x0 = 3.1 f2(x) with x0 = 2.0

NM PM WF JR NM PM WF JR

4.2× 10−2 1.4× 10−1 8.1× 10−2 4.1× 10−1 3.7× 10−1 8.8× 10−1 8.2× 10−1 9.3× 10−1

9.0× 10−4 2.3× 10−4 1.2× 10−5 1.1× 10−7 1.2× 10−1 1.1× 10−1 1.6× 10−1 6.7× 10−2

4.0× 10−7 2.7× 10−17 2.2× 10−14 2.3× 10−27 1.2× 10−2 1.1× 10−5 2.9× 10−3 8.6× 10−6

8.1× 10−14 2.0× 10−80 5.9× 10−34 1.1× 10−1221.3× 10−4 3.0× 10−20 2.1× 10−8 2.4× 10−24

1.1× 10−27 1.1× 10−3202.0× 10−1012.0× 10−4881.4× 10−8 4.4× 10−80 7.0× 10−24 3.2× 10−96

5.3× 10−54 ******* 7.1× 10−258******* 1.6× 10−16 9.4× 10−3205.9× 10−70 4.8× 10−312

1.6× 10−107******* 4.1× 10−674******* 2.6× 10−65 ******* 1.9× 10−159*******

1.4× 10−210******* ******* ******* 3.7× 10−130******* 6.9× 10−457*******

9.8× 10−429******* ******* ******* 5.3× 10−254******* ******* *******

******* ******* ******* ******* 1.2× 10−534******* ******* *******

time = 113 time = 46 time = 76 time = 41 time = 122 time = 36 time = 79 time = 44

Table 1. |xn+1 − xn| with n ≥ 1 and total CPU time required for the function f1(x) and f2(x).

NM PM WF JR

2.1× 10−1 1.0× 10−1 7.1× 10−1 3.2× 10−2

4.9× 10−2 1.2× 10−4 7.4× 10−2 1.2× 10−6

6.2× 10−4 2.6× 10−16 6.6× 10−7 8.3× 10−23

9.2× 10−8 1.2× 10−65 3.1× 10−21 4.4× 10−72

4.1× 10−16 9.1× 10−260 2.1× 10−63 6.1× 10−280

7.1× 10−32 4.1× 10−10108.1× 10−189 1.4× 10−1090

9.1× 10−64 ******* 4.3× 10−534 *******

7.1× 10−128 ******* ******* *******

8.1× 10−264 ******* ******* *******

5.1× 10−528 ******* ******* *******

time = 142 time = 44 time = 71 time = 42

Table 2. |xn+1 − xn| with n ≥ 1 and total CPU time required for the function f3(x).
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