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COEFFICIENT INEQUALITIES FOR CERTAIN CLASSES
OF ANALYTIC FUNCTIONS OF COMPLEX ORDER

B. A. Frasin

Abstract. Let Qb(Φ, Ψ; α) be the class of normalized analytic functions defined in the open
unit disk and satisfying

Re

{
1 +

1

b

(
f(z) ∗ Φ(z)

f(z) ∗Ψ(z)
− 1

)}
> α

for nonzero complex number b and for 0 ≤ α < 1. Sufficient condition, involving coefficient
inequalities, for f(z) to be in the class Qb(Φ, Ψ; α) is obtained. Our main result contains some
interesting corollaries as special cases.

1. Introduction and definitions

Let A denote the class of functions f(z) of the form

f(z) = z +
∞∑

n=2
anzn,

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. Furthermore,
let P be the class of functions p(z) of the form p(z) = 1 +

∑∞
n=1 pnzn, which are

analytic in U .
A function f(z) ∈ A is said to be starlike of complex order b (b ∈ C∗ := C\{0})

and type α (0 ≤ α < 1), that is f(z) ∈ S∗b (α), if and only if

Re
{

1 +
1
b

(
zf ′(z)
f(z)

− 1
)}

> α (z ∈ U ; b ∈ C∗),

and is said to be convex of complex order b (b ∈ C∗) and type α (0 ≤ α < 1),
denoted by Cb(α) if and only if

Re
{

1 +
1
b

zf ′′(z)
f ′(z)

}
> α (z ∈ U ; b ∈ C∗).

Note that S∗b (0) = S∗b and Cb(0) = Cb are the classes considered earlier by Nasr and
Auof [6] and Wiatrowski [10]. Also, S∗1 (α) = S∗(α) and C1(α) = C(α) which are,
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respectively, the familiar classes of starlike functions of order α (0 ≤ α < 1) and
convex functions of order α (0 ≤ α < 1).

Further, let Pb(α) denote the class of functions f(z) ∈ A such that

Re
{

1 +
1
b
(f ′(z)− 1)

}
> α (0 ≤ α < 1, z ∈ U ; b ∈ C∗).

When b = 1, the class P1(α) reduces to the class P(α) of analytic functions studied
in [5, 7, 9].

Given two analytic functions f(z) = z+
∑∞

n=2 anzn and g(z) = z+
∑∞

n=2 cnzn

their convolution or Hadamard product f(z) ∗ g(z) is defined by

f(z) ∗ g(z) = z +
∞∑

n=2
ancnzn (z ∈ U).

By using this product we introduce the class of prestarlike functions of complex
order b (b ∈ C∗) and type α (0 ≤ α < 1), which is denoted byRb(α). Thus f(z) ∈ A
is said to be prestarlike function of complex order b (b ∈ C∗ and type α (0 ≤ α < 1),
if and only if f(z)∗sα(z) ∈ S∗b (α) where sα(z) = z(1−z)2α−2 = z+

∑∞
n=2 C(α, n)zn;

C(α, n) =
∏n

j=2
j−2α
(n−1)! (n ≥ 2). It may be noted that Rb(0) = Cb(0) and Rb(1/2) =

S∗b (1/2). When b = 1, the class R1(α) reduces to the class R(α) of prestarlike
functions of order α (0 ≤ α < 1) (see [8]).

Making use of the Hadamard product, Frasin [1] introduced and studied the
following class of analytic functions:

Definition 1.1. Let b (b ∈ C∗) and α (0 ≤ α < 1) be given. Let the functions

Φ(z) = z +
∞∑

n=2
λnzn and Ψ(z) = z +

∞∑
n=2

µnzn

be analytic in U , such that λn ≥ 0, µn ≥ 0 and λn ≥ µn for n ≥ 2, we say that
f(z) ∈ A is in Qb(Φ,Ψ; α) if f(z) ∗Ψ(z) 6= 0 and

Re
{

1 +
1
b

(
f(z) ∗ Φ(z)
f(z) ∗Ψ(z)

− 1
)}

> α (z ∈ U).

We note that, by suitably choosing of Φ(z) and Ψ(z) we obtain the above
subclasses of A of complex order b and type α : Qb

(
z

(1−z)2 , z
1−z ; α

)
= S∗b (α);

Qb

(
z+z2

(1−z)3 , z
(1−z)2 ;α

)
= Cb(α); Qb

(
z

(1−z)2 , z; α
)

= Pb(α) and

Qb

(
z+(1−2α)z2

(1−z)3−2α , z
(1−z)2−2α ; α

)
= Rb(α).

In fact many new subclasses of A of complex order b and type α can be defined
and studied by suitably choosing Φ(z) and Ψ(z). For example,

Qb

(
z

1−z , z;α
)

:= Tb(α) =
{

f(z) ∈ A : Re
{

1 + 1
b

(
f(z)

z − 1
)}

> α
}

,

and

Qb

(
z+z2

(1−z)3 , z;α
)

: Mb(α) =
{
f(z) ∈ A : Re

{
1 + 1

b ((zf ′(z))′ − 1)
}

> α
}

and so on.



Coefficient inequalities for certain classes of analytic functions 75

In this paper, we obtain sufficient condition, involving coefficient inequalities,
for f(z) to be in the class Qb(Φ, Ψ;α). Several special cases and consequences of
these coefficient inequalities are also pointed out.

In order to derive our main results, we have to recall here the following lemmas:

Lemma 1.1. [4] A function p(z) ∈ P satisfies Re p(z) > 0 (z ∈ U) if and only
if p(z) 6= x−1

x+1 (z ∈ U) for all |x| = 1.

Lemma 1.2. A function f(z) ∈ A is in Qb(Φ, Ψ;α) if and only if 1 +∑∞
n=2 Anzn−1 6= 0 where

An =
λn + (2b− 1− 2αb)µn + x(λn − µn)

2b(1− α)
an

and λ1 = µ1 = 1.

Proof. Applying Lemma 1.1, we have

1 + 1
b

(
f(z)∗Φ(z)
f(z)∗Ψ(z) − 1

)
− α

1− α
6= x− 1

x + 1
(z ∈ U ; x ∈ C; |x| = 1). (1.1)

Then, we need not consider Lemma 1.1 for z = 0, because it follows that p(0) =
1 6= x−1

x+1 for all |x| = 1. From (1.1), it follows that

(x + 1)(f(z) ∗ Φ(z)) + (2b− 1− 2αb− x)(f(z) ∗Ψ(z)) 6= 0.

Thus, we have 2b(1 − α)z +
∑∞

n=2 [λn + (2b− 1− 2αb)µn + x(λn − µn)] anzn 6= 0
(z ∈ U ; x ∈ C; |x| = 1), or, equivalently,

2b(1− α)z
(

1 +
∞∑

n=2

λn + (2b− 1− 2αb)µn + x(λn − µn)
2b(1− α)

anzn−1

)
6= 0 (1.2)

(z ∈ U ; x ∈ C; |x| = 1). Now, dividing both sides of (1.2) by 2b(1 − α)z (z 6= 0),
we obtain

1 +
∞∑

n=2

λn + (2b− 1− 2αb)µn + x(λn − µn)
2b(1− α)

anzn−1 6= 0

(z ∈ U ; x ∈ C; |x| = 1), which completes the proof of Lemma 1.2.

2. Coefficient conditions for functions in the class Qb(Φ, Ψ;α)

With the help of Lemma 1.2, we have

Theorem 2.1. If f(z) ∈ A satisfies the following condition:
∞∑

n=2

(∣∣∣∣
n∑

l=1

{
l∑

k=1

(λk + (2b− 1− 2αb)µk)(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣

+
∣∣∣∣

n∑
l=1

{
l∑

k=1

(λk − µk)(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣
)
≤ 2 |b| (1− α)

(0 ≤ α < 1; b ∈ C∗; γ, δ ∈ R), then f(z) ∈ Qb(Φ,Ψ; α).
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Proof. Note that (1 − z)γ 6= 0, (1 + z)δ 6= 0 (γ, δ ∈ R; z ∈ U). Thus to prove
that 1 +

∑∞
n=2 Anzn−1 6= 0, it is sufficient that

(
1 +

∞∑
n=2

Anzn−1

)
(1− z)γ(1 + z)δ

= 1 +
∞∑

n=2

[
n∑

l=1

{∑l
k=1 Ak(−1)l−k

(
γ

l − k

)}(
δ

n− l

)]
zn−1 6= 0,

where A0 = 0 and A1 = 1. Therefore, if f(z) ∈ A satisfies
∞∑

n=2

∣∣∣∣
n∑

l=1

{
l∑

k=1

Ak(−1)l−k

(
γ

l − k

)}(
δ

n− l

)∣∣∣∣ ≤ 1,

that is, if

1
2 |b| (1− α)

∞∑
n=2

∣∣∣∣
n∑

l=1

{
l∑

k=1

(λk + (2b− 1− 2αb)µk

+x[λk − µk])(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣

≤ 1
2 |b| (1− α)

∞∑
n=2

(∣∣∣∣
n∑

l=1

{
l∑

k=1

(λk + (2b− 1− 2αb)µk)(−1)l−k

(
γ

l − k

)
ak

}
×

×
(

δ

n− l

)∣∣∣∣ + |x|
∣∣∣∣

n∑
l=1

{
l∑

k=1

(λk − µk)(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣
)

≤ 1 (0 ≤ α < 1; b ∈ C∗; x ∈ C; |x| = 1; γ, δ ∈ R),

then f(z) ∈ Qb(Φ,Ψ; α) and so the proof is completed.

3. Particular cases

By considering some special cases of the analytic functions Φ(z) and Ψ(z), we
deduce the following coefficient conditions for functions f(z) to be in the subclasses
S∗

α
(b), Cα(b), Pα(b) and Rα(b) of analytic functions of complex order b (b ∈ C∗)

and type α (0 ≤ α < 1) as defined in Section 1.
Letting Φ(z) = z/(1− z)2 and Ψ(z) = z/(1− z) in Theorem 2.1, we have

Corollary 3.1 If f(z) ∈ A satisfies the following condition:
∞∑

n=2

(∣∣∣∣
n∑

l=1

{
l∑

k=1

(k + 2b− 1− 2αb)(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣

+

∣∣∣∣∣
n∑

l=1

{
l∑

k=1

(k − 1)(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣∣

)
≤ 2 |b| (1− α)

for some α (0 ≤ α < 1), b ∈ C∗ and γ, δ ∈ R, then f(z) ∈ S∗α(b). In particular,
for γ = δ = 0, if f(z) ∈ A satisfies the following condition:

∞∑
n=2

{|n + 2b− 1− 2αb|+ (n− 1)} |an| ≤ 2 |b| (1− α)

for some α (0 ≤ α < 1) and b ∈ C∗, then f(z) ∈ S∗α(b).
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Letting Φ(z) = (z + z2)/(1 − z)3 and Ψ(z) = z/(1 − z)2 in Theorem 2.1, we
have

Corollary 3.2. If f(z) ∈ A satisfies the following condition:
∞∑

n=2

(∣∣∣∣
n∑

l=1

{
l∑

k=1

(k2 + (2b− 1− 2αb)k)(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣

+
∣∣∣∣

n∑
l=1

{
l∑

k=1

(k2 − k)(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣
)
≤ 2 |b| (1− α)

for some α (0 ≤ α < 1), b ∈ C∗ and γ, δ ∈ R, then f(z) ∈ Cb(α). In particular,
for γ = δ = 0, if f(z) ∈ A satisfies the following condition:

∞∑
n=2

n{|n− 1 + 2b|+ (n− 1)} |an| ≤ 2 |b| (1− α)

for some α (0 ≤ α < 1) and b ∈ C∗, then f(z) ∈ Cb(α).

Letting Φ(z) = (z + (1 − 2α)z2)/(1 − z)3−2α and Ψ(z) = z/(1 − z)2−2α in
Theorem 2.1, we have

Corollary 3.3. If f(z) ∈ A satisfies the following condition:
∞∑

n=2

(∣∣∣∣
n∑

l=1

{
l∑

k=1

(C(α, k)(k + (2b− 1− 2αb))(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣

+
∣∣∣∣

n∑
l=1

{
l∑

k=1

C(α, k)(k − 1)(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣
)
≤ 2 |b| (1− α)

for some α (0 ≤ α < 1), b ∈ C∗ and γ, δ ∈ R, then f(z) ∈ R
b
(α). In particular,

for γ = δ = 0, if f(z) ∈ A satisfies the following condition:
∞∑

n=2
C(α, n)[|n + 2b− 1− 2αb|+ (n− 1)] |an| ≤ |b| (1− α)

for some α (0 ≤ α < 1) and b ∈ C∗, then f(z) ∈ Rb(α).

Letting Φ(z) = z/(1− z)2 and Ψ(z) = z in Theorem 2.1, we have

Corollary 3.4. If f(z) ∈ A satisfies the following condition:
∞∑

n=2

∣∣∣∣
n∑

l=1

{
l∑

k=1

k(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣ ≤ |b| (1− α)

for some α (0 ≤ α < 1), b ∈ C∗ and γ, δ ∈ R, then f(z) ∈ Pb(α). In particular,
for γ = δ = 0, if f(z) ∈ A satisfies the following condition

∑∞
n=2 n |an| ≤ |b| (1−α)

for some α (0 ≤ α < 1) and b ∈ C∗, then f(z) ∈ P
b
(α).

Letting Φ(z) = z/(1− z) and Ψ(z) = z in Theorem 2.1, we have

Corollary 3.5. If f(z) ∈ A satisfies the following condition
∞∑

n=2

∣∣∣∣
n∑

l=1

{
l∑

k=1

(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣ ≤ |b| (1− α)
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for some α (0 ≤ α < 1), b ∈ C∗ and γ, δ ∈ R, then f(z) ∈ Tb(α). In particular,
for γ = δ = 0, if f(z) ∈ A satisfies the following condition

∑∞
n=2 |an| ≤ |b| (1− α)

for some α (0 ≤ α < 1) and b ∈ C∗, then f(z) ∈ T
b
(α).

Remark 3.6. (i) If we set α = 0 in Corollary 3.1 and Corollary 3.2, we have
sufficient conditions for functions f(z) to be in the classes S∗(b) and C(b) obtained
by Hayami and Owa in [2].

(ii) If we set b = 1 in Corollary 3.1 and Corollary 3.2, we have sufficient
conditions for functions f(z) to be in the classes S∗(α) and C(α) obtained by
Hayami et al. in [4].

(iii) If we set b = 1 in Corollary 3.4 and Corollary 3.5, we have sufficient
conditions for functions f(z) to be in the classes P(α) and T (α) obtained by Hayami
and Owa in [3].
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