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β-CONNECTEDNESS AND S-CONNECTEDNESS
OF TOPOLOGICAL SPACES

Zbigniew Duszyński

Abstract. Characterizations of β-connectedness and S-connectedness of topological spaces
are investigated. Further results concerning preservation of these connectedness-like properties
under surjections are obtained. The paper completes our previous study [Z. Duszyński, On some
concepts of weak connectedness of topological spaces, Acta Math. Hungar. 110 (2006), 81–90].

1. Preliminaries

Throughout the present paper, (X, τ) denotes a topological space. Let S
be a subset of (X, τ). By int (S) (or intτ (S)) and cl (S) (or clτ (S)) we denote
the interior of S and the closure of S, respectively. An S is said to be α-open
[18] (resp. semi-open [15], preopen [17], b-open [3] (equiv. γ-open [4] or sp-open
[7]), β-open [1] (equiv. semi-preopen [2])) in (X, τ), if S ⊂ int (cl (int (S))) (resp.
S ⊂ cl (int (S)), S ⊂ int (cl (S)), S ⊂ int (cl (S)) ∪ cl (int (S)), S ⊂ cl (int (cl (S)))).
An S is said to be semi-closed [5] (resp. b-closed [3], β-closed [1] (equiv. semi-
preclosed [2])) in (X, τ), if S ⊃ int (cl (S)) (resp. S ⊃ int (cl (S)) ∩ cl (int (S)),
S ⊃ int (cl (int (S)))). The family of all α-open (resp. semi-open, semi-closed, pre-
open, b-open, b-closed, β-open, β-closed) subsets of (X, τ) is denoted by τα (resp.
SO (X, τ), SC (X, τ), PO (X, τ), BO (X, τ), BC (X, τ), SPO (X, τ), SPC (X, τ)).
The sets in SO (X, τ) ∩ SC (X, τ) = SR (X, τ) are called semi-regular (in (X, τ))
[6]. The family τα forms a topology on (X, τ) such that τ ⊂ τα [18]. The
following inclusions hold in any space (X, τ): τα = SO (X, τ) ∩ PO(X, τ) [21],
SO (X, τ) ∪ PO (X, τ) ⊂ BO (X, τ) ⊂ SPO (X, τ) [3]. The intersection of any fam-
ily {Si}i∈I ⊂ SC (X, τ) (resp. {Si}i∈I ⊂ SPC (X, τ)) is a member of SC (X, τ)
(resp. SPC (X, τ)). The union of any family {Si}i∈I ⊂ SPO (X, τ) is a mem-
ber of SPO (X, τ). The operators of semi-closure [5] (briefly: scl (.)), preclosure
(pcl (.)), b-closure (bcl (.)), semi-preclosure, semi-preinterior (spcl (.), spint (.) re-
sp.) are defined in a manner similar to that of definitions of ordinary closure
and interior (compare [16]). The following properties will be useful in the sequel:
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1◦ spcl (spint (S)) = spint (spcl (S)) for every S [2, Theorem 3.18]; 2◦ if either S1 ∈
SO (X, τ) or S2 ∈ SO (X, τ), then int (cl (S1 ∩ S2)) = int (cl (S1))∩ int (cl (S2)) [21,
Lemma 3.5] (see also [10, Lemma 3]); 3◦ cl (S) ∈ SO (X, τ) for any S ∈ SO (X, τ);
4◦ every non-empty semi-open set S has non-empty interior [5, Remark 1.2]. A
space (X, τ) is said to be semi-connected [24] (or S-connected) (resp. preconnected
[25] (or P-connected)) if X cannot be split into two nonempty members of SO (X, τ)
(resp. PO (X, τ)).

2. β-connectedness

Definition 1. A topological space (X, τ) is said to be β-connected [26] (resp.
γ-connected [12]), if X cannot be expressed as a union of two non-empty and disjoint
semi-open (resp. b-open) subsets of (X, τ).

We will need the following lemma

Lemma 1. Let S be an arbitrary subset of (X, τ). Then:
1◦ cl (int (S)) ∩ int (cl (S)) ∈ SR (X, τ),
2◦ cl (int (S)) ∪ int (cl (S)) ∈ SR (X, τ).

Proof. 1◦ Clearly, the sets cl (int (S)), int (cl (S)) ∈ SC (X, τ). Hence
cl (int (S))∩ int (cl (S)) ∈ SC (X, τ) [5, Remark 1.4]. It is enough to show that this
set is a member of SO (X, τ). Indeed, we calculate as follows:

cl
(
int

(
cl (int (S)) ∩ int (cl (S))

))
= cl

(
int (cl (int (S))) ∩ int (cl (S))

) ⊃
⊃ cl (int (S)) ∩ int (cl (S)).

2◦ Follows immediately by 1◦.

Theorem 1. If a space (X, τ) is S-connected and P-connected, then it is
γ-connected.

Proof. Assume (X, τ) is not γ-connected. Then X = S1 ∪S2, where S1 6= ∅ 6=
S2, S1 ∩ S2 = ∅, and S1, S2 ∈ BO(X, τ). We consider two cases.

1◦ Let int (S1) = ∅ = int (S2). By the definition of b-openness we directly get
S1 ⊂ int (cl (S1)) and S2 ⊂ int (cl (S2)). So, S1, S2 ∈ PO(X, τ) and (X, τ) is not
P-connected.

2◦ Let int (S1) 6= ∅. It is enough to show that

∅ 6= cl (int (S1)) ∩ int (cl (S1)) 6= X (1)

(compare Lemma 1). By the inclusions int (S1) ⊂ int (cl (S1)) and int (S1) ⊂
cl (int (S1)) we have int (S1) ⊂ cl (int (S1)) ∩ int (cl (S1)) and so cl (int (S1)) ∩
int (cl (S1)) 6= ∅. On the other hand, if, suppose, cl (int (S1)) ∩ int (cl (S1)) = X,
then since S1 ∈ BC (X, τ) one gets X ⊂ S1. This shows that (1) holds, that is,
(X, τ) is not S-connected.
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Corollary 1. A space (X, τ) is γ-connected if and only if it is S-connected
and P-connected.

Lemma 2. Let (X, τ) be a space. If there exists disjoint sets S1, S2 ⊂ X such
that S1 ∪ S2 = X and cl (S1) = X = cl (S2), then (X, τ) is not P-connected.

Proof. Clear.

Theorem 2. If a space (X, τ) is γ-connected then it is β-connected.

Proof. Suppose (X, τ) is not β-connected. Then for some disjoint sets S1, S2 ∈
SPO (X, τ) with S1 6= ∅ 6= S2 we have S1 ∪ S2 = X.

1◦ Let cl (S1) = X = cl (S2). From Lemma 2 and the inclusion PO (X, τ) ⊂
BO(X, τ) we infer that (X, τ) is not γ-connected.

2◦ Let cl (S1) 6= X. It is not difficult to check that in this case we have
cl (int (cl (S1))) 6= X. We get the following split of X: X = cl (int (cl (S1))) ∪
int (cl (int (S2))), where cl (int (cl (S1))) 6= ∅ because S1 ∈ SPO (X, τ). But the
sets cl (int (cl (S1))), int (cl (int (S2))) ∈ SO (X, τ) and by the inclusion SO (X, τ) ⊂
BO(X, τ), (X, τ) is not γ-connected.

Corollary 2. A space (X, τ) is γ-connected if and only if it is β-connected.

Remark 1. If (X, τ) is S-connected and P-connected, then (X, τ) is con-
nected (S-connectedness and P-connectedness are independent notions – see [14,
Examples 2.1&2.2]. The problem arises, does the reverse implication hold?

Definition 2. A space (X, τ) is said to be B-SP-connected (resp. P-SP-
connected) if X cannot be written as a union of two non-empty disjoint sets
S1, S2 ⊂ X such that S1 ∈ BO(X, τ), S2 ∈ SPO (X, τ) (resp. S1 ∈ PO (X, τ),
S2 ∈ SPO (X, τ)).

Theorem 3. For every topological space (X, τ) the following statements are
equivalent:
1◦ (X, τ) is β-connected,
2◦ (X, τ) is B-SP-connected,
3◦ (X, τ) is P-SP-connected,
4◦ (X, τ) is S-connected and P-connected.

Proof. The implications 1◦ ⇒ 2◦ and 2◦ ⇒ 3◦ are obvious. For 3◦ ⇒ 4◦ see [9,
Theorem 9]. 4◦ ⇒ 1◦ follows by Corollaries 1 and 2.

A proof for the following lemma is clear (see [14, Theorem 3.1(6)]).

Lemma 3. A space (X, τ) is β-connected if and only if there is no set S ∈
SPR (X, τ) = SPO (X, τ) ∩ SPC (X, τ) such that ∅ 6= S 6= X.

Lemma 4. [14, Theorem 3.1] In every (X, τ) the following properties are
equivalent:
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1◦ (X, τ) is β-connected,

2◦ pcl (S) = X for each non-empty S ∈ PO(X, τ),

3◦ pcl (S) = X for each non-empty S ∈ SPO (X, τ),

4◦ spcl (S) = X for each non-empty S ∈ PO(X, τ),

5◦ spcl (S) = X for each non-empty S ∈ SPO (X, τ).

Theorem 4. In every topological space (X, τ) the following statements are
equivalent:

1◦ (X, τ) is β-connected,

2◦ bcl (S) = X for each non-empty S ∈ PO(X, τ),

3◦ bcl (S) = X for each non-empty S ∈ SPO (X, τ),

4◦ pcl (S) = X for each non-empty S ∈ BO(X, τ),

5◦ bcl (S) = X for each non-empty S ∈ BO(X, τ) (see [12, Theorem 3]),

6◦ spcl (S) = X for each non-empty S ∈ BO(X, τ).

Proof. 1◦ ⇒ 3◦. Let arbitrary S ∈ SPO (X, τ) be non-empty. By Lemma 4 we
have X = spcl (S) ⊂ bcl (S) ⊂ pcl (S) = X. Thus bcl (S) = X.

3◦ ⇒ 2◦ is obvious.

2◦ ⇒ 1◦. Let for ∅ 6= S ∈ PO(X, τ), bcl (S) = X. So, pcl (S) = X (since
bcl (S) ⊂ pcl (S)) and consequently by Lemma 4, (X, τ) is β-connected.

1◦ ⇒ 6◦. Let for some S, ∅ 6= S ∈ BO(X, τ), spcl (S) 6= X. Since S ∈
SPO (X, τ) we have S = spint (S). Hence ∅ 6= spcl (spint (S)) 6= X. By [2,
Theorem 3.18], spcl (spint (S)) = spint (spcl (S)) = S1 ∈ SPR (X, τ). Thus it
follows from Lemma 3 that (X, τ) is not β-connected.

6◦ ⇒ 5◦ ⇒ 4◦. X = spcl (S) ⊂ bcl (S) ⊂ pcl (S).

4◦ ⇒ 1◦. Let (X, τ) be not β-connected. Then by Lemma 4 there exists a
non-empty set S ∈ PO(X, τ) ⊂ BO(X, τ) with pcl (S) 6= X.

3. S-connectedness

Definition 3. A topological space (X, τ) is said to be α-B-connected (resp.
α-SP-connected, α-S-connected [9], if X cannot be expressed as a union of two
non-empty disjoint sets S1, S2 ⊂ X such that S1 ∈ τα and S2 ∈ BO (X, τ) (resp.
S2 ∈ SPO (X, τ), S2 ∈ SO (X, τ)).

Theorem 5. For every topological space (X, τ) the following are equivalent:

1◦ (X, τ) is S-connected,

2◦ (X, τ) is α-S-connected,

3◦ (X, τ) is α-SP-connected,

4◦ (X, τ) is α-B-connected.
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Proof. 1◦ ⇔ 2◦. [9, Corollary 1]. 1◦ ⇒ 3◦. Let X = S1 ∪ S2, where
S1 ∩ S2 = ∅, S1 6= ∅ 6= S2, S1 ∈ τα and S2 ∈ SPO (X, τ). Obvious-
ly we have X = int (cl (int (S1))) ∪ cl (int (cl (S2))). It is enough to show that
int (cl (int (S1))) ∩ cl (int (cl (S2))) = ∅. Using [21, Lemma 3.5] we calculate as
follows: int (cl (int (S1))) ∩ cl (int (cl (S2))) ⊂ cl

(
int (cl (S2)) ∩ int (cl (int (S1)))

) ⊂
cl (int (cl (S1 ∩ S2))) = ∅. 3◦ ⇒ 4◦ and 4◦ ⇒ 2◦ are obvious.

Definition 4. A space (X, τ) is said to be S-P-connected (resp. S-B-connected;
S-SP-connected [9]), if X cannot be expressed as a union of two non-empty disjoint
sets S1, S2 ⊂ X such that S1 ∈ SO (X, τ) and S2 ∈ PO (X, τ) (resp. S2 ∈ BO(X, τ),
S2 ∈ SPO (X, τ)).

Theorem 6. For every topological space (X, τ) the following are equivalent:
1◦ (X, τ) is S-P-connected,
2◦ (X, τ) is S-B-connected,
3◦ (X, τ) is S-SP-connected,
4◦ (X, τ) is S-connected.

Proof. 1◦ ⇔ 2◦. [9, Corollary 3]. Implications 1◦ ⇒ 3◦ and 3◦ ⇒ 4◦ are
clear. 4◦ ⇒ 1◦. Suppose (X, τ) is not S-connected; i.e., equivalently, (X, τ) is not
α-S-connected [9, Corollary 1]. Let X = S1 ∪S2, where S1 ∩S2 = ∅, S1 6= ∅ 6= S2,
S1 ⊂ int (cl (int (S1))) and S2 ⊂ cl (int (S2)). Obviously X = int (cl (int (S1))) ∪
cl (int (S2)). On the other hand, by [21, Lemma 3.5] one has what follows:

int (cl (int (S1))) ∩ cl (int (S2)) ⊂
⊂ cl

(
int (cl (int (S1))) ∩ int (cl (S2))

) ⊂ cl (int (cl (S1 ∩ S2))) = ∅.

Therefore (X, τ) is not S-P-connected, because ∅ 6= cl (int (S2)) ∈ SO (X, τ) and
∅ 6= int (cl (int (S1))) ∈ τ ⊂ PO(X, τ).

Definition 5. A space (X, τ) is said to be τ -S-connected (resp. τ -B-connected;
τ -SP-connected), if X cannot be written as a union of two non-empty disjoint
sets S1, S2 ⊂ X such that S1 ∈ τ and S2 ∈ SO (X, τ) (resp. S2 ∈ BO(X, τ),
S2 ∈ SPO (X, τ)).

Theorem 7. For every topological space (X, τ) the following are equivalent:
1◦ (X, τ) is S-connected,
2◦ (X, τ) is τ -SP-connected,
3◦ (X, τ) is τ -B-connected,
4◦ (X, τ) is τ -S-connected.

Proof. 2◦ ⇒ 3◦ and 3◦ ⇒ 4◦ are obvious. 1◦ ⇒ 2◦. Suppose (X, τ) is not
τ -S-connected. Then it is not S-SP-connected; i.e., not S-connected. 4◦ ⇒ 1◦.
Suppose (X, τ) is not S-connected. By [9, Corollary 1] (X, τ) is not α-S-connected.
The rest is the same as in the proof of Theorem 6, case 4◦ ⇒ 1◦.
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Definition 6. A space (X, τ) is called B(int)-connected if X cannot be split
into two non-empty disjoint b-open sets S1, S2 ⊂ X with int (S1) 6= ∅ 6= int (S2).

Theorem 8. A space (X, τ) is S-connected if and only if it is B(int)-connected.

Proof. Let (X, τ) be not S-connected; i.e., X = S1 ∪ S2, S1 ∩ S2 = ∅, S1 6=
∅ 6= S2 for certain S1, S2 ∈ SO (X, τ). But, each non-empty semi-open set has
non-empty interior [5, Remark 1.2]. Thus (X, τ) is not B(int)-connected, since
SO (X, τ) ⊂ BO(X, τ). For the converse, if (X, τ) is not B(int)-connected, then
it is not SP(int)-connected (see [9, Definition 3] or in the sequel). The latter is
equivalent that (X, τ) is not S-connected (by [9, Corollary 2]).

Remark 2. In the proof of the case 2◦ of Theorem 1 we have applied relations
(1) and Lemma 1.1◦. Generally, one can express the following characterization of
S-connectedness (analogously to Lemma 3): a space (X, τ) is S-connected if and
only if there is no set S ∈ SR (X, τ) = SO (X, τ)∩SC (X, τα) such that ∅ 6= S 6= X.

Lemma 5. Let (X, τ) be any space. Then:
1◦ clτα(S) = clτ (S) for every set S ∈ SO (X, τ) [13, Lemma 1(i)],
2◦ scl (S) = bcl (S) = spcl (S) for every set S ∈ SO (X, τ) [11],
3◦ cl (S) = pcl (S) for every set S ∈ SO (X, τ),
4◦ intτ

(
clτα(S)

)
= intτ

(
clτ (S)

)
for every S ⊂ X.

Proof. 3◦ By [2, Theorem 1.5(e)] we have pcl (S) = S ∪ cl (int (S)) for any
S ⊂ X. But S ∈ SO (X, τ) if and only if cl (S) = cl (int (S)) [19, Lemma 2]. So,
the result follows.

4◦ The inclusion intτ

(
clτα(S)

) ⊂ intτ

(
clτ (S)

)
holds for any S ⊂ X. For a

proof of the opposite inclusion we use [2, Theorem 1.5(c)]. We calculate as follows:
int (cl (S)) ⊂ int (S) ∪ int (cl (S)) ⊂ int

(
S ∪ cl (int (cl (S)))

)
= int

(
clτα(S)

)
.

Theorem 9. For every topological space (X, τ) the following are equivalent:
1◦ (X, τ) is S-connected;
2◦ cl (S) = X for every non-empty S ∈ τ ;
3◦ clτα(S) = X for every non-empty S ∈ τ ;
4◦ scl (S) = X for every non-empty S ∈ τ ;
5◦ pcl (S) = X for every non-empty S ∈ τ ;
6◦ bcl (S) = X for every non-empty S ∈ τ ;
7◦ spcl (S) = X for every non-empty S ∈ τ .

Proof. 1◦ ⇒ 2◦. Let ∅ 6= S ∈ τ be such a set that cl (S) 6= X. We have
∅ 6= cl (S) ∈ SR (X, τ) (cl (S) ∈ SO (X, τ)). So, by Remark 2, (X, τ) is not S-
connected.

2◦ ⇒ 3◦. Use Lemma 5.1◦.
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3◦ ⇒ 4◦. By hypothesis and Lemma 5.4◦ we obtain that int (cl (S)) = X for
each non-empty S ∈ τ . However, by [2, Theorem 1.5(a)], scl (A) = A ∪ int (cl (A))
for every A ⊂ X. So, for our S ∈ τ we get scl (S) = X.

4◦ ⇒ 1◦. Suppose (X, τ) is not S-connected. Then by Remark 2 there exists
a set S ∈ SR (X, τ) with ∅ 6= S 6= X. Since S ∈ SC (X, τ), S = scl (S) [5,
Theorem 1.4(2)]. Obviously, scl (int (S)) 6= X, where int (S) 6= ∅ [5, Remark 1.2].

4◦ ⇔ 6◦ ⇔ 7◦ follow directly by Lemma 5.2◦.
2◦ ⇔ 5◦. Apply Lemma 5.3◦.
Another characterizations of S-connectedness may be obtained if we take in-

to consideration the classes τα or SO (X, τ) instead of τ (in Theorem 9). The
proofs in these cases are completely analogous to the proof of Theorem 9. These
characterizations are the content of the next two theorems.

Theorem 10. For every topological space (X, τ) the following are equivalent:
1◦ (X, τ) is S-connected;
2◦ cl (S) = X for every non-empty S ∈ τα;
3◦ clτα(S) = X for every non-empty S ∈ τα;
4◦ scl (S) = X for every non-empty S ∈ τα;
5◦ pcl (S) = X for every non-empty S ∈ τα;
6◦ bcl (S) = X for every non-empty S ∈ τα;
7◦ spcl (S) = X for every non-empty S ∈ τα.

Theorem 11. For every (X, τ) the following are equivalent:
1◦ (X, τ) is S-connected;
2◦ cl (S) = X for every non-empty S ∈ SO (X, τ) [8, Theorem 12(e)];
3◦ clτα(S) = X for every non-empty S ∈ SO (X, τ) [8, Theorem 12(e’)];
4◦ scl (S) = X for every non-empty S ∈ SO (X, τ) [20, Theorem 3.1(b)];
5◦ pcl (S) = X for every non-empty S ∈ SO (X, τ) [22, Theorem 3.1(d)];
6◦ bcl (S) = X for every non-empty S ∈ SO (X, τ);
7◦ spcl (S) = X for every non-empty S ∈ SO (X, τ).

Theorem 12. The following statements are equivalent for every (X, τ):
1◦ (X, τ) is S-connected;
2◦ cl (S) = X for every non-empty S ∈ BO(X, τ);
3◦ clτα(S) = X for every non-empty S ∈ BO(X, τ);
4◦ scl (S) = X for every non-empty S ∈ BO(X, τ).

Proof. 1◦ ⇒ 2◦. Suppose a non-empty S ∈ BO(X, τ) is a set such that
cl (S) 6= X. Then the set S1 = int (cl (S)) ∪ cl (int (S)) is non-empty and moreover
S1 6= X. Indeed, in the opposite case we would have X = cl (S1) = cl (int (cl (S)))∪
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cl (int (S)) = cl (int (cl (S))) ⊂ cl (S) ⊂ X. Hence cl (S) = X, a contradiction.
Finally, by Lemma 1.2◦ and Remark 2 we infer that (X, τ) is not S-connected.

2◦ ⇒ 3◦. Let ∅ 6= S ∈ BO(X, τ) and cl (S) = X. Then cl (int (cl (S))) = X
and since clτα(S) = S ∪ cl (int (cl (S))) [2, Theorem 1.5(c)] the result follows.

3◦ ⇒ 4◦. Similar to the proof of 3◦ ⇒ 4◦ of Theorem 9.
4◦ ⇒ 1◦. Suppose (X, τ) is not S-connected. Then by Remark 2 there exists

a set S ∈ SR (X, τ) ⊂ BO(X, τ) with ∅ 6= S 6= X. But as S ∈ SC (X, τ), we have
S = scl (S) [5, Theorem 1.4(2)]. Thus, scl (S) 6= X and the proof is complete.

Lemma 6. [23, proof of Theorem 3.1]. In any space (X, τ), S ∈ SPO (X, τ) if
and only if cl (S) = cl (int (cl (S))).

Theorem 13. The following statements are equivalent for every (X, τ):
1◦ (X, τ) is S-connected;
2◦ cl (S) = X for every non-empty S ∈ SPO (X, τ);
3◦ clτα(S) = X for every non-empty S ∈ SPO (X, τ);
4◦ scl (S) = X for every non-empty S ∈ SPO (X, τ).

Proof. 1◦ ⇒ 2◦. Suppose a non-empty S ∈ SPO (X, τ) is a set such that
cl (S) 6= X. By Lemma 6 the set S1 = cl (S) = cl (int (cl (S))) ∈ SR (X, τ). More-
over, ∅ 6= S1 6= X. Thus by Remark 2 the space (X, τ) is not S-connected. Proofs
for the chain 2◦ ⇒ 3◦ ⇒ 4◦ ⇒ 1◦ are similar to the corresponding ones in the proof
of Theorem 12.

4. Summarizing conclusions

In order to complete our knowledge on various types of connectedness, includ-
ing the ‘mixed’ ones, there are yet some cases we have to look at.

Definition 7. A space (X, τ) is said to be τ -τα-connected (resp. α-connected
[28]) if X cannot be split into two non-empty disjoint sets S1 ∈ τ and S2 ∈ τα

(resp. S1, S2 ∈ τα).

α-connectedness and connectedness turn out to be equivalent notions [28, The-
orem 2]

Theorem 14. The following statements are equivalent for every (X, τ):
1◦ (X, τ) is connected;
2◦ (X, τ) is τ -τα-connected.

Proof. 1◦ ⇒ 2◦. If (X, τ) is not τ -τα-connected, then it is not α-connected.
Thus by [28, Theorem 2], (X, τ) is disconnected. 2◦ ⇒ 1◦. Suppose (X, τ) is
disconnected. Then it is not τ -τα-connected.

Definition 8. A space (X, τ) is said to be τ -P-connected (resp. α-P-connected
[9]) if it cannot be split into two non-empty disjoint sets S1 ∈ τ (resp. S1 ∈ τα)
and S2 ∈ PO(X, τ).
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It is known that α-P-connectedness and connectedness are equivalent [9, Corol-
lary 4].

Theorem 15. The following statements are equivalent for every (X, τ):
1◦ (X, τ) is connected;
2◦ (X, τ) is τ -P-connected.

Proof. 1◦ ⇒ 2◦. Suppose (X, τ) is not τ -P-connected. Hence it is not α-P-
connected and thus disconnected. 2◦ ⇒ 1◦ is obvious.

Definition 9. A space (X, τ) is said to be P-B-connected if it cannot be split
into two non-empty disjoint sets S1 ∈ PO(X, τ) and S2 ∈ BO(X, τ).

Problem 1. It is unknown what type of non-mixed connectedness is P-B-
connectedness. That is, is it connectedness (briefly: C), S-connectedness (S), P-
connectedness (P), or β-connectedness (β)?

Recall the following definitions.

Definition 10. A space (X, τ) is called SP(int)-connected (resp. P(int)-
connected) if it cannot be split into two non-empty disjoint sets S1, S2 ∈ SPO (X, τ)
(resp. S1, S2 ∈ PO(X, τ)) with int (S1) 6= ∅ 6= int (S2).

The following results are known:
(a) [9, Corollary 2] (X, τ) is SP(int)-connected if and only if it is S-connected;
(b) [9, Theorem 7] (X, τ) is P(int)-connected if and only if it is S-connected;

The results concerning various types of connectedness of topological spaces
obtained in this article and in [9], we recollect in Table 1. Here, for instance, ‘S’ in
the column with ‘S’ atop and in the row with ‘B’ ahead means S-B-connectedness
is equivalent S-connectedness.

Table 1

Before we recollect (in Table 2) results concerning characterizations of forms
of connectedness by using suitably generalized closure operators of suitably gener-
alized open sets, we should complete them with the following ones:
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Theorem 16. The following statements are equivalent for every (X, τ):
1◦ (X, τ) is β-connected;
2◦ bcl (S) = X for every non-empty S ∈ PO(X, τ);
3◦ bcl (S) = X for every non-empty S ∈ SPO (X, τ).

Proof. 1◦ ⇒ 2◦. Let (X, τ) be β-connected and S ∈ PO(X, τ). Applying
Lemma 4 we obtain

X = spcl (S) ⊂ bcl (S) ⊂ pcl (S) = X.

2◦ ⇒ 1◦. Suppose 2◦ holds and let a non-empty S ∈ PO(X, τ) be arbitrary.
Then X = bcl (S) ⊂ pcl (S). Thus pcl (S) = X and by Lemma 4.2◦, (X, τ) is
β-connected. 1◦ ⇔ 3◦ is analogous to the proof of 1◦ ⇔ 2◦.

Recall a known result.

Lemma 7. [8, Theorem 12] The following statements are equivalent for every
(X, τ):
1◦ (X, τ) is S-connected;
2◦ cl (S) = X for every non-empty S ∈ PO(X, τ);
3◦ clτα(S) = X for every non-empty S ∈ PO(X, τ);
4◦ scl (S) = X for every non-empty S ∈ PO(X, τ).

We are ready now to display Table 2, where for instance, ‘β’ in the column
with ‘pcl’ atop and in the row with ‘BO (X, τ)’ ahead means (X, τ) is β-connected
if and only if pcl (S) = X for every non-empty S ∈ BO(X, τ).

Table 2

5. Surjections

In [27] the notion of M -continuity have been introduced and studied. Recall
that a subfamily mX of the power set P (X) of a non-empty set X is said to
be a minimal structure on X if ∅, X ∈ mX . The families SO (X, τ), PO (X, τ),
BO (X, τ), and SPO (X, τ) are minimal structures with the property of closedness



β-connectedness and S-connectedness 125

under the unions of any family of subsets belong to SO (X, τ), PO (X, τ), BO (X, τ),
and SPO (X, τ), respectively. The mX-closure operator [16] (with respect to mX)
is defined in a usual manner, that is

mX - cl (S) =
⋂ {

F : S ⊂ F and X \ F ∈ mX

}
.

So, scl, pcl, bcl, and spcl are mX -closure operators for cases SO (X, τ), PO (X, τ),
BO (X, τ), and SPO (X, τ), respectively.

Definition 11. [27, Definition 3.3] A function f : (X, mX) → (Y, mY ), where
mX and mY are minimal structures on X and Y , respectively, is said to be M -
continuous if for each x ∈ X and each V ∈ mY containing f(x), there is U ∈ mX

containing x with f(U) ⊂ V .

By [27, Theorem 3.1] and [27, Corollary 3.1] the following holds.

Lemma 8. Let X be a non-empty set with a minimal structure mX closed under
any union of members of mX , and let mY be a minimal structure on a non-empty
set Y . Then for a function f : (X, mX) → (Y, mY ) we have what follows.

(I) the next three statements are equivalent:
1◦ f is M -continuous;
2◦ f

(
mX- cl (S)

) ⊂ mY - cl (f(S)) for every subset S of X;

3◦ f−1(V ) ∈ mX for every V ∈ mY .
(II) (by the above (I)) If f is M -continuous, then f

(
mX- cl

(
f−1(V )

)) ⊂
mY - cl (V ) for every V ∈ mY .

Several results from Table 2 and Lemma 8(II) allow to collect in Table 3 be-
low, all possible cases in which S-connectedness and β-connectedness by respective
generalized types of continuity of surjections f : (X, τ) → (Y, σ). In the table, all
generalized continuities are represented by properties of preimages f−1(V ) for each
set V from families σ, σα, SO (Y, σ), PO (Y, σ), BO (Y, σ), SPO (Y, σ), respectively.
For instance, ‘S → β’ in the row with ‘SO (X, τ)’ ahead and in the column with
‘BO (X, τ)’ atop stands for: given a surjection f : (X, τ) → (Y, σ), if (X, τ) is
S-connected then (Y, σ) is β-connected.

Table 3
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