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EXISTENCE OF MILD SOLUTIONS OF A SEMILINEAR
NONCONVEX DIFFERENTIAL INCLUSION WITH

NONLOCAL CONDITIONS

Myelkebir Aitalioubrahim

Abstract. We show two existence results of a mild solution for a semilinear nonconvex
differential inclusion, with nonlocal condition, governed by a family of linear operators, not nec-
essarily bounded or closed.

1. Introduction

The aim of this paper is to establish two existence results of mild solutions of
the following semilinear differential inclusion:

{
ẋ(t) ∈ A(t)x(t) + F (t, x(t)) : a.e. on [0, T ];

x(0) = g(x(·)). (1.1)

where F : [0, T ]×E → 2E is a nonconvex or noncompact multi-valued map, {A(t) :
t ∈ [0, T ]} is a family of densely defined linear operators not necessarily bounded
or closed, g : C([0, T ], E) → E is a function and E is a Banach space.

For review of results on semilinear differential equations with nonlocal condi-
tions, we refer the reader to the papers by Byszewski [3, 4, 5], by Liany, Liu and
Xiao [12], by Xue [15], by Fan, Dong and Li [9], and the references cited therein.
Existence results for semilinear differential inclusions received much attention in
the recent years. Cardinali and Rubbioni [6] have studied semilinear differential in-
clusions with initial conditions, where the set-valued map is a compact and convex
values. This last cited work contains the analogous results provided by Kamenskii,
Obukhowskii and Zecca [11] for inclusions with constant operator. Al-Omair and
G. Ibrahim [1] employ the methods of Kamenskii, Obukhowskii and Zecca, as well
as Cardinali and Rubbioni to prove the existence of mild solution for (1.1) without
compactness assumption on the evolution operator T (·, ·) which is generated by the
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family {A(t) : t ∈ [0, T ]}. The authors assumed that the set-valued map F is a
closed and convex values and satisfies a compactness condition involving the Haus-
dorff measure of noncompactness. The function g is continuous and completely
continuous.

In this paper, we prove two existence results of mild solution for (1.1) governed
by a family of linear operators, not necessarily bounded or closed. The set-valued
map F is not convex and not compact in the first case and not convex in the second
case. The function g is not completely continuous, it is Lipschitz continuous in the
first case and continuous in the second case. No compactness condition involving
the Hausdorff measure of noncompactness is assumed on F .

2. Preliminaries and notations

Let E be a real Banach space with the norm ‖ · ‖, I = [0, T ] and T > 0.
We denote by C([0, T ], E) the Banach space of continuous functions from [0, T ]
to E with the norm ‖x(·)‖∞ := sup

{‖x(t)‖; t ∈ [0, T ]
}

and by L(E) the space
of bounded linear operators on E. Let {A(t) : t ∈ I} be a family of densely
defined linear operators (not necessarily bounded or closed) on E and T : ∆ =
{(t, s) : 0 ≤ s ≤ t ≤ T} → L(E) be the evolution operator generated by the
family {A(t) : t ∈ I}. We say that a subset A of [0, T ]×E is L⊗B-measurable if A
belongs to the σ-algebra generated by all sets of the form I×D, where I is Lebesgue
measurable in [0, T ] and D is measurable in E. For x ∈ E and for nonempty subsets
A,B of E, we denote d(x, A) = inf{d(x, y); y ∈ A}, e(A,B) := sup{d(x,B); x ∈ A}
and H(A, B) := max{e(A,B), e(B, A)}. A multifunction is said to be measurable
if its graph is measurable. For more details on measurable multifunction, we refer
the reader to the book of Castaing-Valadier [7].

Now, let for every t ∈ I, A(t) : E → E be a linear operator such that

(i) For all t ∈ I, D(A(t)) = D(A) and D(A) = E.
(ii) For each s ∈ I and each x ∈ E there is a unique solution v : [s, T ] → E for the

evolution equation
v′(t) = A(t)v(t), t ∈ [s, T ]

v(s) = x.
(2.1)

In this case an operator T (·, ·) can be defined as

T : ∆ = {(t, s) : 0 ≤ s ≤ t ≤ T} → L(E), T (t, s)(x) = v(t),

where v is the unique solution of (2.1). The operator T (·, ·) is called the evo-
lution operator generated by the family {A(t) : t ∈ I}. It is known that (see
[13]) each operator T (t, s) is strongly differentiable and such that T (s, s) = IE ,
T (t, r)T (r, s) = T (t, s) for all 0 ≤ s ≤ r ≤ t ≤ b,

∂T (t, s)
∂t

= A(t)T (t, s) and
∂T (t, s)

∂s
= −T (t, s)A(s).

Along this work, we assume that there exists M > 0 such that

‖T (t, s)‖L(E) ≤ M, ∀(t, s) ∈ ∆.
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Definition 2.1. By a mild solution of problem (1.1), we mean a continuous
function x(·) : I → E such that

x(t) = T (t, 0)g(x) +
∫ t

0

T (t, s)f(s) ds, t ∈ I

where f is an integrable function such that f(t) ∈ F (t, x(t)), for almost every t ∈ I.

3. The Lipschitz case

In this section, our main purpose is to obtain the existence of a mild solution
to (1.1), in the case when F (·, ·) is a closed multifunction, measurable in t and
Lipschitz continuous in x. We use the fixed point theorem introduced by Covitz
and Nadler for contraction multi-valued maps.

Definitions 3.1. Let G : E → 2E be a multifunction with closed values.
(1) G is k-Lipschitz if

H
(
G(x), G(y)

) ≤ kd(x, y), for each x, y ∈ E.

(2) G is a contraction if it is k-Lipschitz with k < 1.
(3) G has a fixed point if there exists x ∈ E such that x ∈ G(x).

Let us recall the following results that will be used in the sequel.

Lemma 3.2. [8] If G : E → 2E is a contraction with nonempty closed values,
then it has a fixed point.

Lemma 3.3. [16] Assume that F : [a, b] × E → 2E is a multifunction with
nonempty closed values satisfying:
• For every x ∈ E, F (·, x) is measurable on [a, b];
• For every t ∈ [a, b], F (t, ·) is (Hausdorff) continuous on E.

Then, for any measurable function x(·) : [a, b] → E, the multifunction F (·, x(·))
is measurable on [a, b].

Definition 3.4. A measurable multi-valued function F : [a, b] → 2E is said
to be integrably bounded if there exists a function h ∈ L1([a, b], E) such that for
all v ∈ F (t), ‖v‖ ≤ h(t) for almost every t ∈ [a, b].

We shall prove the following theorem.

Theorem 3.5. Let g : C([0, T ], E) → E be a λ-Lipschitz function and
F : [0, T ]× E → 2E be a set-valued map with nonempty closed values satisfying
(i) For each x ∈ E, t 7→ F (t, x) is measurable and integrably bounded;
(ii) There exists a function m(·) ∈ L1([0, T ],R+) such that for all t ∈ [0, T ] and

for all x1, x2 ∈ E,

H
(
F (t, x1), F (t, x2)

) ≤ m(t)‖x1 − x2‖.
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Then, if M(λ + L(T )) < 1, the problem (1.1) has at least one mild solution on
[0, T ], where L(T ) =

∫ T

0
m(s) ds.

Proof. For y(·) ∈ C([0, T ], E), set

SF,y(·) :=
{

f ∈ L1([0, T ], E) : f(t) ∈ F (t, y(t)) for a.e. t ∈ [0, T ]
}

.

By Lemma 3.3, for y(·) ∈ C([0, T ], E), F (·, y(·)) is closed and measurable, then it
has a measurable selection which, by hypothesis (i), belongs to L1([0, T ], E). Thus
SF,y(·) is nonempty. Let us transform the problem into a fixed point problem.
Consider the multivalued map, G : C([0, T ], E) → 2C([0,T ],E) defined as follows, for
y(·) ∈ L1([0, T ], E), G(y(·)) is the set of all z(·) ∈ C([0, T ], E), such that

z(t) = T (t, 0)g(y(·)) +
∫ t

0

T (t, s)f(s) ds,

where f ∈ SF,y(·). We shall show that G satisfies the assumptions of Lemma 3.2.
The proof will be given in two steps:

Step 1. G has non-empty closed-values. Indeed, let (yp(·))p≥0 ∈ G(y(·))
converges to ȳ(·) in C([0, T ], E). Then ȳ(·) ∈ C([0, T ], E) and for each t ∈ [0, T ],

yp(t) ∈ T (t, 0)g(y(·)) +
∫ t

0

T (t, s)F (s, y(s)) ds.

where ∫ t

0

T (t, s)F (s, y(s)) ds

is the Aumann integral of T (t, ·)F (·, y(·)), which is defined as
∫ t

0

T (t, s)F (s, y(s)) ds =
{∫ t

0

T (t, s)f(s) ds, f ∈ SF,y(·)

}
.

Since the set ∫ t

0

T (t, s)F (s, y(s)) ds

is closed for all t ∈ [0, T ], we have

ȳ(t) ∈ T (t, 0)g(y(·)) +
∫ t

0

T (t, s)F (s, y(s)) ds.

Then ȳ(·) ∈ G(y(·)). So G(y(·)) is closed for each y(·) ∈ C([0, T ], E).
Step 2. G is a contraction. Indeed, let y1(·), y2(·) ∈ C([0, T ], E) and z1(·) ∈

G(y1(·)). Then

z1(t) = T (t, 0)g(y1(·)) +
∫ t

0

T (t, s)f1(s) ds,

where f1 ∈ SF,y1(·). Let ε > 0. Consider the multivalued map Uε : [0, T ] → 2E ,
defined by

Uε(t) =
{
x ∈ E : ‖f1(t)− x‖ ≤ m(t)‖y1(t)− y2(t)‖+ ε

}
.
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For each t ∈ [0, T ], Uε(t) is nonempty. Indeed, let t ∈ [0, T ]. We have

H
(
F (t, y1(t)), F (t, y2(t))

) ≤ m(t)‖y1(t)− y2(t)‖.

Hence, there exists x ∈ F (t, y2(t)), such that

‖f1(t)− x‖ ≤ m(t)‖y1(t)− y2(t)‖+ ε.

By Proposition III.4 in [7], the multifunction

V : t → Uε(t) ∩ F (t, y2(t)) (3.1)

is measurable. Then there exists a measurable selection for V denoted f2 such that,
for all t ∈ [0, T ], f2(t) ∈ F (t, y2(t)) and

‖f1(t)− f2(t)‖ ≤ m(t)‖y1(t)− y2(t)‖+ ε.

Now, set for all t ∈ [0, T ],

z2(t) = T (t, 0)g(y2(·)) +
∫ t

0

T (t, s)f2(s) ds.

Then

‖z1(t)− z2(t)‖ ≤ ‖T (t, 0)‖L(E)‖g(y1(·))− g(y2(·))‖

+
∫ t

0

‖T (t, s)‖L(E)‖f1(s)− f2(s)‖ ds

≤ Mλ‖y1(·)− y2(·)‖∞ + M‖y1(·)− y2(·)‖∞
∫ t

0

m(s) ds + MTε

≤ M(λ + L(T ))‖y1(·)− y2(·)‖∞ + MTε.

So, we conclude that

‖z1(·)− z2(·)‖∞ ≤ M(λ + L(T ))‖y1(·)− y2(·)‖∞ + MTε.

By the analogous relation, obtained by interchanging the roles of y1(·) and y2(·), it
follows that

H
(
G(y1(·)), G(y2(·))

) ≤ M(λ + L(T ))‖y1(·)− y2(·)‖∞ + MTε.

By letting ε → 0, we get

H
(
G(y1(·)), G(y2(·))

) ≤ M(λ + L(T ))‖y1(·)− y2(·)‖∞.

Consequently, G is a contraction. Hence, by Lemma 3.2, G has a fixed point y(·)
which is a solution of (1.1).
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4. The lower semicontinuous case

In the sequel, we prove the existence of solutions of the problem (1.1), in the
case where the set-valued maps is lower semicontinuous. We use Schaefer’s fixed
point theorem combined with a selection theorem of Bressan and Colombo (see [2]),
for lower semicontinuous and nonconvex multi-valued operators with decomposable
values. In this section, we assume that T (t, s) is compact for t− s > 0.

Definition 4.1. A subset B of L1([0, T ], E) is decomposable if for all
u(·), v(·) ∈ B and I ⊂ [0, T ] measurable, the function u(·)χI(·)+v(·)χ[0,T ]\I(·) ∈ B,
where χ(·) denotes the characteristic function.

Definitions 4.2. Let X be a nonempty closed subset of E and G : X → 2E

be a multi-valued operator with nonempty closed values. We say that:

• G is lower semi-continuous if the set {x ∈ X : G(x) ∩ C 6= ∅} is open for any
open set C in E.

• G is completely continuous if G(B) is relatively compact for every B bounded
set of X.

Definition 4.3. Let F : [0, T ]×E → 2E be a multi-valued map with nonempty
compact values. Assign to F the multi-valued operator

F : C([0, T ], E) → 2L1([0,T ],E),

defined by

F(x(·)) =
{

y(·) ∈ L1([0, T ], E) : y(t) ∈ F (t, x(t)) for a.e. t ∈ [0, T ]
}

.

The operator F is called the Niemytzki operator associated with F . We say F
is the lower semi-continuous type if its associated Niemytzki operator F is lower
semi-continuous and has nonempty closed and decomposable values.

Let us recall the following result that will be used in the sequel.

Lemma 4.4. [2] Let E be a separable metric space and let G : E → 2L1([0,T ],E)

be a multi-valued operator which is lower semi-continuous and has nonempty closed
and decomposable values. Then G has a continuous selection, i.e. there exists a
continuous function f : E → L1([0, T ], E) such that f(y) ∈ G(y) for every y ∈ E.

We shall prove the following result.

Theorem 4.5. Let g : C([0, T ], E) → E be a continuous function and
F : [0, T ] × E → 2E be a set-valued map with nonempty compact values satisfy-
ing

(i) (t, x) 7→ F (t, x) is L ⊗ B-measurable;
(ii) x 7→ F (t, x) is lower semi-continuous for almost all t ∈ [0, T ];
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(iii) there exists a function m(·) ∈ L1([0, T ],R+) such that for almost all t ∈ [0, T ]
and all x ∈ E

∥∥F (t, x)
∥∥ := sup

{
‖y‖ : y ∈ F (t, x)

}
≤ m(t).

(iv) There exist positive constants c and d such that

‖g(x)‖ ≤ c‖x(·)‖∞ + d, ∀x(·) ∈ C([0, T ], E).

(v) For each bounded D ⊂ C([0, T ], E) and t ∈ [0, T ] the set
{

T (t, 0)g(y(·)) +
∫ t

0

T (t, s)f(y(·))(s) ds, y(·) ∈ D

}

is relatively compact, where f : C([0, T ], E) → L1([0, T ], E) such that f(y(·)) ∈
F(y(·)) for all y(·) ∈ C([0, T ], E).

Then, if 1−Mc > 0, the problem (1.1) has at least one mild solution on [0, T ].

Proof. Remark that, by hypotheses, F is of lower semicontinuous type (see
[10]). Then, by Lemma 4.4, there exists a continuous function f : C([0, T ], E) →
L1([0, T ], E) such that f(y(·)) ∈ F(y(·)) for all y(·) ∈ C([0, T ], E). Consider the
problem: {

ẏ(t) = A(t)y(t) + f(y(·))(t) a.e.;

y(0) = g(y(·)). (4.1)

Remark that, if y(·) ∈ C([0, T ], E) is a solution of the problem (4.1) , then y(·) is a
solution of the problem (1.1). Let us transform the problem (4.1) into a fixed point
problem. Consider the operator, G : C([0, T ], E) → C([0, T ], E) defined as follows,
for all y(·) ∈ C([0, T ], E) and for all t ∈ [0, T ]:

G(y(·))(t) = T (t, 0)g(y(·)) +
∫ t

0

T (t, s)f(y(·))(s) ds.

We shall show that G has a fixed point. The proof will be given in several steps:
Step 1. G is continuous. Indeed, let (yp(·))p≥0 converges to y(·) in

C([0, T ], E). Then for each t ∈ [0, T ]
∥∥G(yp(·))(t)−G(y(·))(t)

∥∥

≤ ‖T (t, 0)‖L(E)‖g(yp(·))− g(y(·))‖+
∫ t

0

‖T (t, s)‖L(E)‖f(yp(·))(s)− f(y(·))(s)‖ ds

≤ M‖g(yp(·))− g(y(·))‖+ M

∫ T

0

‖f(yp(·))(s)− f(y(·))(s)‖ ds.

By the continuity of g and f , it is easy to deduce that G is continuous.
Step 2. G is bounded on bounded sets of C([0, T ], E). Indeed, it is sufficient

to show that G(Br) is bounded for all r ≥ 0, where Br = {y(·) ∈ C([0, T ], E) :
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‖y(·)‖∞ ≤ r}. Let h ∈ G(Br). For all t ∈ [0, T ] we have

‖h(t)‖ ≤ ‖T (t, 0)‖L(E)‖g(y(·))‖+
∫ t

0

‖T (t, s)‖L(E)‖f(y(·))(s)‖ ds

≤ M(c‖y(·)‖∞ + d) + M

∫ t

0

m(s) ds

≤ M(cr + d) + M

∫ T

0

m(s) ds.

Then

‖h‖∞ ≤ M(cr + d) + M

∫ T

0

m(s) ds.

Hence G(Br) ⊂ Bδ, where δ is the right-hand side in the above inequality.
Step 3. G sends bounded sets of C([0, T ], E) into equicontinuous sets. Indeed,

let h ∈ G(Br). Then h = G(y(·)) where y(·) ∈ Br. Let t, s ∈ [0, T ] such that t < s.
We have

‖h(s)− h(t)‖

≤ ‖T (s, 0)− T (t, 0)‖L(E)‖g(y(·))‖+
∫ s

t

‖T (s, τ)‖L(E)‖f(y(·))(τ)‖ dτ

+
∫ t

0

‖T (t, τ)− T (s, τ)‖L(E)‖f(y(·))(τ)‖ dτ

≤ (cr + d)‖T (s, 0)− T (t, 0)‖L(E) + M

∫ s

t

m(τ) dτ

+
∫ T

0

‖T (t, τ)− T (s, τ)‖L(E)m(τ) dτ.

The right-hand side of the above inequality tends to 0 as s converges to t, since
T (t, s) is a strongly continuous operator and the compactness of T (t, s) for t > s
implies the continuity in the uniform operator topology (see [13]).

Step 4. The following set is bounded

Ω =
{

y(·) ∈ C([0, T ], E) : λy(·) = G(y(·)), for some λ > 1
}

.

Indeed, let y(·) ∈ Ω. Then

y(t) = λ−1T (t, 0)g(y(·)) + λ−1

∫ t

0

T (t, s)f(y(·))(s) ds.

So, we conclude that

‖y(·)‖∞ ≤ λ−1M(c‖y(·)‖∞ + d) + λ−1M

∫ T

0

m(s) ds.

So, we get

(1− λ−1Mc)‖y(·)‖∞ ≤ λ−1Md + λ−1M

∫ T

0

m(s) ds.
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Since 1− λ−1Mc > 1−Mc, we obtain

(1−Mc)‖y(·)‖∞ ≤ λ−1Md + λ−1M

∫ T

0

m(s) ds.

Hence

‖y(·)‖∞ ≤ λ−1Md

1−Mc
+

λ−1M

1−Mc

∫ T

0

m(s) ds.

This shows that Ω is bounded.
In conclusion, by the Steps 1, 2, 3 and the hypothesis (v) combined with the

Arzela-Ascoli theorem, we can conclude that G is completely continuous. Then by
Schaefer’s theorem (see [14], p. 29), we deduce that G has a fixed point which is a
solution of (4.1).
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