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EXISTENCE OF MILD SOLUTIONS OF A SEMILINEAR
NONCONVEX DIFFERENTIAL INCLUSION WITH
NONLOCAL CONDITIONS

Myelkebir Aitalioubrahim

Abstract. We show two existence results of a mild solution for a semilinear nonconvex
differential inclusion, with nonlocal condition, governed by a family of linear operators, not nec-
essarily bounded or closed.

1. Introduction

The aim of this paper is to establish two existence results of mild solutions of
the following semilinear differential inclusion:
z(t) € A(t)x(t) + F(t,x(t)): a.e. on [0,T7;
{xw) — g(a())-
where F': [0,T] x E — 2F is a nonconvex or noncompact multi-valued map, {A(t) :

t € [0,7T]} is a family of densely defined linear operators not necessarily bounded
or closed, g : C([0,T],E) — E is a function and E is a Banach space.

(1.1)

For review of results on semilinear differential equations with nonlocal condi-
tions, we refer the reader to the papers by Byszewski [3, 4, 5], by Liany, Liu and
Xiao [12], by Xue [15], by Fan, Dong and Li [9], and the references cited therein.
Existence results for semilinear differential inclusions received much attention in
the recent years. Cardinali and Rubbioni [6] have studied semilinear differential in-
clusions with initial conditions, where the set-valued map is a compact and convex
values. This last cited work contains the analogous results provided by Kamenskii,
Obukhowskii and Zecca [11] for inclusions with constant operator. Al-Omair and
G. Ibrahim [1] employ the methods of Kamenskii, Obukhowskii and Zecca, as well
as Cardinali and Rubbioni to prove the existence of mild solution for (1.1) without
compactness assumption on the evolution operator T'(-, -) which is generated by the
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family {A(t) : t € [0,T]}. The authors assumed that the set-valued map F' is a
closed and convex values and satisfies a compactness condition involving the Haus-
dorff measure of noncompactness. The function g is continuous and completely
continuous.

In this paper, we prove two existence results of mild solution for (1.1) governed
by a family of linear operators, not necessarily bounded or closed. The set-valued
map F is not convex and not compact in the first case and not convex in the second
case. The function g is not completely continuous, it is Lipschitz continuous in the
first case and continuous in the second case. No compactness condition involving
the Hausdorff measure of noncompactness is assumed on F.

2. Preliminaries and notations

Let E be a real Banach space with the norm || - ||, I = [0,7] and T > 0.
We denote by C([0,T], E) the Banach space of continuous functions from [0, 7]
to E with the norm [|z(-)||es := sup {[|z(¢)[|;t € [0,T]} and by L(E) the space
of bounded linear operators on E. Let {A(t) : ¢ € I} be a family of densely
defined linear operators (not necessarily bounded or closed) on E and T: A =
{(t,s) : 0 < s <t < T} — L(E) be the evolution operator generated by the
family {A(t) : t € I}. We say that a subset A of [0,T] x E is £® B-measurable if A
belongs to the o-algebra generated by all sets of the form I x D, where I is Lebesgue
measurable in [0, 7] and D is measurable in E. For 2 € E and for nonempty subsets
A, B of E, we denote d(z, A) = inf{d(x,y);y € A}, e(A, B) :=sup{d(x, B);x € A}
and H(A, B) := max{e(A, B),e(B, A)}. A multifunction is said to be measurable
if its graph is measurable. For more details on measurable multifunction, we refer
the reader to the book of Castaing-Valadier [7].

Now, let for every t € I, A(t): E — E be a linear operator such that

(i) Forall t € I, D(A(t)) = D(A) and D(A) = E.

(ii) For each s € I and each x € E there is a unique solution v: [s,T] — E for the
evolution equation

v (t) = Ait():)(z,x telsT] (2.1)

In this case an operator T'(-,-) can be defined as
T: A={(t,s):0<s<t<T} — L(E), T(ts)(x)=n1(t),

where v is the unique solution of (2.1). The operator T'(-,-) is called the evo-
lution operator generated by the family {A(t) : ¢ € I}. It is known that (see
[13]) each operator T'(t,s) is strongly differentiable and such that T'(s,s) = Ig,
T(t,r)T(r,s) =T(t,s) forall 0 < s <r <t<b,

oT(t,s) oT(t,s)

e A)T(t,s) and 95 —T'(t, s)A(s).

Along this work, we assume that there exists M > 0 such that
|T(t,s)|lzey < M, V(t,s)e€A.
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DEFINITION 2.1. By a mild solution of problem (1.1), we mean a continuous
function z(+): I — E such that

t
o(t) = T(00)g(a) + [ T(t.s)f(s)ds, tel
0
where f is an integrable function such that f(t) € F(t, x(t)), for almost every t € I.

3. The Lipschitz case

In this section, our main purpose is to obtain the existence of a mild solution
to (1.1), in the case when F(-,-) is a closed multifunction, measurable in ¢ and
Lipschitz continuous in z. We use the fixed point theorem introduced by Covitz
and Nadler for contraction multi-valued maps.

DEFINITIONS 3.1. Let G: E — 2% be a multifunction with closed values.
(1) G is k-Lipschitz if
H(G(z),G(y)) < kd(z,y), foreach z,ye€E.

(2) G is a contraction if it is k-Lipschitz with k < 1.
(3) G has a fixed point if there exists € E such that = € G(x).

Let us recall the following results that will be used in the sequel.

LEMMA 3.2. [8] If G: E — 2F is a contraction with nonempty closed values,
then it has a fized point.

LEMMA 3.3. [16] Assume that F: [a,b] x E — 2¥ is a multifunction with
nonempty closed values satisfying:

e For every x € E, F(-,x) is measurable on [a,b];
o For everyt € [a,b], F(t,-) is (Hausdorff) continuous on E.

Then, for any measurable function x(-): [a,b] — E, the multifunction F (-, z(-))
is measurable on [a,b).

DEFINITION 3.4. A measurable multi-valued function F': [a,b] — 2F is said
to be integrably bounded if there exists a function h € L'([a,b], E) such that for
all v € F(t), ||v|| < h(t) for almost every t € [a, b].

We shall prove the following theorem.

THEOREM 3.5. Let g: C([0,T],E) — E be a A-Lipschitz function and
F:[0,T] x E — 2% be a set-valued map with nonempty closed values satisfying

(i) For each x € E, t — F(t,x) is measurable and integrably bounded;
(ii) There exists a function m(-) € LY([0,T],R*) such that for all t € [0,T] and
for all 1,25 € E,

H(F(t, 1), F(t,22)) < m(t)|z1 — 22|
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Then, if M(A+ L(T)) < 1, the problem (1.1) has at least one mild solution on
[0,T], where L(T) = fOT m(s)ds.
Proof. For y(-) € C([0,T], E), set
Spy() = {f e LY([0,T],E) : f(t) € F(t,y(1)) for ae. t € [o,T]}.

By Lemma 3.3, for y(-) € C([0,T],E), F(-,y(:)) is closed and measurable, then it
has a measurable selection which, by hypothesis (i), belongs to L'([0, T], E). Thus
SFy() is nonempty. Let us transform the problem into a fixed point problem.

Consider the multivalued map, G: C([0,T], E) — 2€(%TLE) defined as follows, for
y(-) € LY([0,T), E), G(y()) is the set of all z(-) € C([0,T], E), such that
t
) = T(609() + [ T9)f(5)ds
0

where f € Sp ). We shall show that G satisfies the assumptions of Lemma 3.2.
The proof will be given in two steps:

STEP 1. G has non-empty closed-values. Indeed, let (y,(-))p>0 € G(y(+))
converges to g(-) in C([0,T], E). Then g(-) € C(]0,T], E) and for each ¢ € [0, T],

t
wl®) € T 09 + [ T(t.)F(s.y()ds.
0
where .
/ T(t,s)F(s,y(s))ds
0
is the Aumann integral of T'(¢,-)F(-,y(+)), which is defined as

/OtT(t, s)F(s,y(s)) ds = {/OtT(t, s)f(s)ds, f € Sp,y(.)}.
Since the set t
/0 T(t,s)F(s,y(s))ds

is closed for all ¢ € [0, 77, we have

y(t) € T(t,0)9(y(-)) +/O T(t,s)F(s,y(s)) ds.

Then §(-) € G(y(-)). So G(y(-)) is closed for each y(-) € C([0,T], E).

STEP 2. G is a contraction. Indeed, let y1(+),y2(:) € C([0,T],E) and z(-) €
G(y1(+)). Then

a@=TwWMMM+AT@$M$®

where fi € Sgy,(). Let ¢ > 0. Consider the multivalued map U.: [0,T] — 2F,
defined by

Ue(t) = {z € B« |lfs(t) — ] < m(t)lly2(t) — (8] + €}
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For each t € [0,T], U(t) is nonempty. Indeed, let ¢ € [0,7]. We have
H(F(t,y:(t), Ft,52(t)) < m(®)]lya(t) — y2(1)].
Hence, there exists © € F(t,y2(¢)), such that
1/1(8) — ]| <m(B)][y2(t) — g2 ()] +&.
By Proposition I11.4 in [7], the multifunction
Vit = U(t)NE(t,ya(t)) (3.1)

is measurable. Then there exists a measurable selection for V denoted fs such that,
for all t € [0,T], fo(t) € F(t,y2(t)) and

171(2) = fo@O)] < m(®)lly2(t) = y2 (D] + &

Now, set for all t € [0, T,

25(t) = T(0)g(ys() + / T(t, ) fals) ds.
0
Then
I (t) — 22O < T O eeey g () — gu())]
+ / 1Tt 8 oyl fa () — fo(s)]] ds
< M () = 92 oo + Mr() — 120 llso / m(s) ds + MTe
< MO+ L) () — () oo + MT=.
So, we conclude that
121() = 2200 < MO+ LT 91 () — () oo + MTe.

By the analogous relation, obtained by interchanging the roles of y;(-) and y»(+), it
follows that

H(G(y1()), G(y2()) < M+ L(D))ly1 () = y2(-)loo + MTe.
By letting € — 0, we get
H(G(1(1)), Gy2(-)) < M+ L(T))lly1 () = y2()loo-

Consequently, G is a contraction. Hence, by Lemma 3.2, G has a fixed point y(-)
which is a solution of (1.1). m
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4. The lower semicontinuous case

In the sequel, we prove the existence of solutions of the problem (1.1), in the
case where the set-valued maps is lower semicontinuous. We use Schaefer’s fixed
point theorem combined with a selection theorem of Bressan and Colombo (see [2]),
for lower semicontinuous and nonconvex multi-valued operators with decomposable
values. In this section, we assume that T'(¢, s) is compact for t — s > 0.

DEFINITION 4.1. A subset B of L'([0,T],E) is decomposable if for all
u(-),v(-) € B and I C [0,T] measurable, the function u(-)xr(-) +v(-)xp, () € B,
where x(-) denotes the characteristic function.

DEFINITIONS 4.2. Let X be a nonempty closed subset of £ and G: X — 2F
be a multi-valued operator with nonempty closed values. We say that:

e G is lower semi-continuous if the set {x € X : G(z) N C # 0} is open for any
open set C' in FE.

e G is completely continuous if G(B) is relatively compact for every B bounded
set of X.

DEFINITION 4.3. Let F': [0, 7] x E — 2F be a multi-valued map with nonempty
compact values. Assign to F' the multi-valued operator

F:¢(0,T), E) — 2L (0.T1.B)
defined by

Flz() = {y(-) € L'([0,T), E) : y(t) € F(t,z(t)) for ae. t € [o,T]}.

The operator F is called the Niemytzki operator associated with F. We say F
is the lower semi-continuous type if its associated Niemytzki operator F is lower
semi-continuous and has nonempty closed and decomposable values.

Let us recall the following result that will be used in the sequel.

LEMMA 4.4. [2] Let E be a separable metric space and let G: E — 9L (10.7].E)
be a multi-valued operator which is lower semi-continuous and has nonempty closed
and decomposable values. Then G has a continuous selection, i.e. there exists a
continuous function f: E — L([0,T), E) such that f(y) € G(y) for everyy € E.

We shall prove the following result.

THEOREM 4.5. Let g: C([0,T],E) — E be a continuous function and
F:[0,T] x E — 2F be a set-valued map with nonempty compact values satisfy-
mng
(i) (t,x) — F(t,x) is L @ B-measurable;

(ii) z — F(t,x) is lower semi-continuous for almost all t € [0,T];
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(iii) there exists a function m(-) € L1([0,T],R*) such that for almost all t € [0, T]
and all z € £

1F(t,2)[| = sup {1yl -y € F(t.2)} < mo).

(iv) There exist positive constants ¢ and d such that
lg(@)ll < cllz( )l +d,  Va(-) € C([0,T], E).

(v) For each bounded D C C([0,T], E) and t € [0,T] the set

{T(t,mg(y(-)) + [ T ) € D}

is relatively compact, where f: C([0,T], E) — L'([0,T], E) such that f(y(-)) €
Then, if 1 — Mc > 0, the problem (1.1) has at least one mild solution on [0,T)].

Proof. Remark that, by hypotheses, F' is of lower semicontinuous type (see
[10]). Then, by Lemma 4.4, there exists a continuous function f: C([0,T],E) —
LY([0,T], E) such that f(y(-)) € F(y(-)) for all y(-) € C([0,T], E). Consider the

problem:
y(t) = A()y(t) + f(y()(t) ae;
{y<0> o)
Remark that, if y(-) € C([0,T], E) is a solution of the problem (4.1) , then y(-) is a
solution of the problem (1.1). Let us transform the problem (4.1) into a fixed point

problem. Consider the operator, G: C([0,T], E) — C([0,T], E) defined as follows,
for all y(-) € C(|0,T], E) and for all ¢t € [0,T:

(4.1)

G()(t) = T(,0)g(y() + / T(t, )£ (y())(s) ds.

We shall show that G has a fixed point. The proof will be given in several steps:

STEP 1. G is continuous. Indeed, let (y,(-))p>0 converges to y(-) in
C([0,T], E). Then for each t € [0,T]

|G yp())(1) = Gly() @]
<NT0ee lg(w(-) = 9w +/0 1Tt )| e 1 (o (-))(s) = Fy())(s)l] ds

T
< Mlg(yp()) — 9yl +M/0 1 (Yo () (s) = f(y()(s)ll ds.

By the continuity of g and f, it is easy to deduce that G is continuous.

STEP 2. G is bounded on bounded sets of C([0,T], E). Indeed, it is sufficient
to show that G(B,) is bounded for all » > 0, where B, = {y(-) € C([0,T],E) :
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ly()loo < 7}. Let h € G(B,). For all ¢t € [0, T] we have
nmwnsnTmomaEmay0ﬂH1£HT@»Muwmf@c»wwds
SMmmwm+@+MAm@@

T
< M(er +d) +M/ m(s)ds.
0
Then
T
\MMSMW+@+M/n$m&
0

Hence G(B,) C Bs, where J is the right-hand side in the above inequality.

STEP 3. G sends bounded sets of C([0,T], E) into equicontinuous sets. Indeed,
let h € G(B,). Then h = G(y(-)) where y(-) € B,. Let t,s € [0,T] such that ¢ < s.
We have

[[h(s) = R(®)]|
<|IT(s,0) = T(, 0)ll 2 lg(y )l +/t 1T (s ) e 1f (y () (7) [l dr

+AnTwﬂ—Tmﬂmwmﬂm»wmw

< (er+d)||T(s,0) = T(t,0)| 2k + M/tS m(r)dr

T
-I-/O |T(t,7) = T(s,7)|l cmym(T) dT.

The right-hand side of the above inequality tends to 0 as s converges to ¢, since
T(t,s) is a strongly continuous operator and the compactness of T'(t, s) for t > s
implies the continuity in the uniform operator topology (see [13]).

STEP 4. The following set is bounded
Q= {y() € C([0,T], E) : Ay(-) = G(y(+)), for some A > 1}.
Indeed, let y(-) € Q. Then

y(t) = AT (t,0)g(y() + Yl/o T(t,s)f(y(-))(s)ds.
So, we conclude that
T
ly(Mloo < AT M (elly()lloo +d) + YlM/ m(s) ds.
0
So, we get

T
1 =2A"TM)ly( oo < A‘lMd—i-)\_lM/ m(s) ds.
0
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Since 1 — A™'Mc > 1 — Me, we obtain

T
(1= Me)ly(-Yloo <A™ 'Md + )flM/O m(s)ds.

Hence

(e < 2Md | ATM T
Pl =77 0e T 1 Me 0

m(s)ds.

This shows that €2 is bounded.

In conclusion, by the Steps 1, 2, 3 and the hypothesis (v) combined with the

Arzela-Ascoli theorem, we can conclude that G is completely continuous. Then by
Schaefer’s theorem (see [14], p. 29), we deduce that G has a fixed point which is a
solution of (4.1). m
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