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Rege-STRONGLY SOLID VARIETIES
OF COMMUTATIVE SEMIGROUPS

Sarawut Phuapong and Sorasak Leeratanavalee

Abstract. Generalized hypersubstitutions are mappings from the set of all fundamental
operations into the set of all terms of the same language, which do not necessarily preserve the
arities. Strong hyperidentities are identities which are closed under generalized hypersubstitutions
and a strongly solid variety is a variety for which each of its identities is a strong hyperidentity.
In this paper we determine the greatest Regg-strongly solid variety of commutative semigroups.

1. Introduction

Let X := {x1,x2,...} be a countably infinite set of symbols called variables.
We refer to these variables as letters, to X as an alphabet, and refer to the set
X, =: {x1,22,...,2,} as an n-element alphabet. Let (f;);c; be an indexed set
which is disjoint from X. Each f; is called an n;-ary operation symbol, where
n; > 1 is a natural number. Let 7 be a function which assigns to every f; the
number n; as its arity. The function 7, on the values of 7 written as (n;);cs is
called a type.

An n-ary term of type 7 is defined inductively as follows :

(i) The variables 1, ..., z, are n-ary terms.
(ii) If ty,...,t,, are n-ary terms then f;(t1,...,t,,) is an n-ary term.
We denote by W..(X,,) the smallest set which contains z1, ..., z, and is closed

under finite number of applications of (ii). Then the set W, (X) :=J,_, W-(X,)
is the set of all terms of type 7. An equation of type 7 is a pair (s,t) where s and

t are from W.(X); such pairs are commonly written as s ~ t. An equation s & ¢

is an identity of an algebra A, denoted by A = s ~ t if s4 = t4 where s4 and

t4 are the corresponding term functions on A. A generalized hypersubstitution
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of type 7 is a mapping o : {f; | ¢ € I} — W,(X) which does not necessarily
preserve arities. We denote the set of all generalized hypersubstitutions of type 7
by Hypa(7). We define first the concept of a generalized superposition of terms
8™ W (X)™ Tt — W, (X) by the following steps:

for any term ¢t € W, (X),

(i) ift = z;,1 < j <m, then Sm(l‘j,tl, . ,tm) =y,

(ii) if t =zj,m < j €N, then S"(xj,t1,... ,tm) =z,
(111) if t = fi(Sla N ,S.,”)7 then

Sm(t,tl, e 7tm) = fi(Sm(Sl,th e ,tm), ceey Sm(Sni,tl, e ,tm))

Then the generalized hypersubstitution ¢ can be extended to a mapping & :
W, (X) — W.(X) by the following steps:

(i) 6[z] =z € X,

(i) o[fi(t1,... ,tn,)] ;== S™(o(fi),0[t1],--. ,G[tn,]), for any n;-ary operation sym-

bol f; where &[t;], 1 < j < n; are already defined.

We define a binary operation og on Hypg(T) by 01 og 02 := &1 0 02 where
o denotes the usual composition of mappings and o1,02 € Hypa(7). Let ;4 be
the hypersubstitution mapping which maps each n;-ary operation symbol f; to the
term f;(21,...,%n,). It turns out that (Hypg(7);oq,0:4) is a monoid and the
monoid (Hyp(7);on,0:q) of all arity preserving hypersubstitutions of type 7 forms
a submonoid of (Hypa(7);0¢, 0id).

If M is a submonoid of Hypg(7) and V is a variety, then an identity s ~ ¢
of V is called an M-strong hyperidentity of V if &[s] = &[t] is an identity of V for
every 0 € M. A variety V is called M-strongly solid if every identity satisfies an
M-strong hyperidentity. In case of M = Hypg (1) we will call strong hyperidentity

and strongly solid respectively.

2. V-proper generalized hypersubstitutions and normal forms

Let V be a variety of algebras of type 7 then to test whether an identity s ~ ¢
of V' is a strong hyperidentity of V', our definition requires that we check, for each
generalized hypersubstitution o € Hypg(7) that 6[s] ~ [t] is an identity of V. In
practice we restrict our testing to certain special generalized hypersubstitutions o,
those which correspond to V-normal form generalized hypersubstitutions.

DEFINITION 2.1. [4] Let V be a variety of algebras of type 7. Two generalized
hypersubstitutions o1 and o9 of type T are called V-generalized equivalent if o1 (f;) ~
oa(f;) are identities in V for all ¢ € I. In this case we write o1 ~vy ¢ 0.

THEOREM 2.2. [4] Let V' be a variety of algebras of type 7, and let 01,09 €
Hypg (7). Then the following statements are equivalent:
(Z) g1 ~Yyvag 02.
(i1) For allt € W, (X), the equations 61[t] = 2[t] are identities in V.
(iii) For all A € V., 01]A] = 0o[A] where o[A] = (A; (o (fi)Y)ier), for k= 1,2.
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PROPOSITION 2.3. [4] Let V' be a variety of algebras of type 7. Then the
following statements hold:
(i) For all 01,09 € Hypa(T), if 01 ~yg o2 then o1 is a V-proper generalized
hypersubstitution iff oo is a V- proper generalized hypersubstitution.
(i3) For all s,t € W, (X) and for all 01,09 € Hypg(7), if 01 ~vg o2 then 61[s] =~
G1[t] is an identity in V iff G2[s| = 63]t] is an identity in V.

The relation ~y ¢ is an equivalence relation on Hypg(7), but it is not neces-
sarily a congruence relation. Since ~y ¢ is not always a congruence, the structure
obtained by factoring Hypg(7) by this relation is not necessarily going to be a
monoid. Recall that the quotient set gives a monoid if and only if the equivalence
relation used to factor it is a congruence. We factorize Hypg (1) by ~y ¢ and con-
sider the submonoid Pg (V) of Hypa () is the union of equivalence classes of the
relation ~y . This may also be done for a submonoid M of Hypg(7) and the
relation ~VG,

LEMMA 2.4. [4] Let M be a submonoid of Hypg(T) and let V' be a variety
of type 7. Then the monoid Pg N M is the union of all equivalence classes of the
restricted relation ~VG,,

DEFINITION 2.5. [4] Let M be a monoid of generalized hypersubstitutions
of type 7, and let V be a variety of type 7. Let ¢ be a choice function which
chooses from M one generalized hypersubstitution from each equivalence class of the
relation ~y ¢, -, and let N, é)w (V) be the set of generalized hypersubstitutions which
are chosen. Thus N, (éw (V) is a set of distinguished generalized hypersubstitutions
from M, which we might call V-normal form generalized hypersubstitutions. We
will say that the variety V is N, j)w (V')-strongly solid if for every identity s ~ t € IdV

and for every generalized hypersubstitution o € N)'(V), 6(s] = 6[t] € IdV.

THEOREM 2.6. [4] Let M be a monoid of generalized hypersubstitutions of type
T and let V' be a variety of type 7. For any choice function ¢,V is M -strongly solid
if and only if V is Néw (V)-strongly solid.

3. Regg-strongly solid varieties of commutative semigroups

In this section we determine the greatest Regg-strongly solid varieties of com-
mutative semigroups. We recall first the definition of a regular generalized hyper-
substitution.

DEFINITION 3.1. A generalized hypersubstitution o € Hypg(7) is called
a reqular generalized hypersubstitution if for every ¢ € I, each of the variables
X1,Ta,..., %y, oceur in &[f;(z1,...,2y,,)]. (The other variables may also occur in

ofi(z1,. .., 2n,)] t00.) 1

Let Regg(T) be the set of all regular generalized hypersubstitutions of type 7.
Regg(7) is also forms a submonoid of (Hypg(7);oq, 0id) [2]-
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For a class K of algebras of type 7 and for a set 3 of identities of this type we
fix the following notations:

IdK - the set of all identities of K,

HIdK - the set of all hyperidenties of K,

Hpeg, IdK - the set of all regular-strong hyperidenties of K,
Mod% = {A € Alg(7)|A satisfies¥} - the variety defined by 3,

HModY. = {A € Alg(7)|A hypersatisfies¥} - the hyperequational class defined
by %,

Hpego ModYE = {A € Alg(7)|A regular-strong hypersatisfies¥} - the regular-
strong hyperequational class defined by .

DEFINITION 3.2. Let A be an algebra of type 7 and let M be a submonoid of
the monoid Regg(7). Then, we define

xXar i P(Alg(7)) — P(Alg(7)), xir: P(W(X)?) — P(W,(X)?)
by

For K C Alg(r) and ¥ C W,(X)? we define x4 (K) = U cx x37(4) and
X0 [E] = Usnies Xirls ~ 1.

Since we are henceforth considering only type (2) varieties of commutative
semigroups, we can denote the binary operation of our variety simply by juxtapo-
sition, and omit brackets where convenient due to associativity.

LEMMA 3.3. Let V C Mod{(z122)x3 = x1(7223), ¥172 & XoT1, T3T ~ X173}
Then

(i) 23wy ~ 2lxy € IdV (and thus z} ~ x5 € IdV ),

(i) 22z9w3 ~ x1232% € IdV (and thus x3wo13 ~ x3x0w3 € IdV),
(iii) xtrizs ~ xirdzs € IdV,

2)aizs ~ airdxs € IdV,

)
)
)
(v) xjr3z303 ~ ¥3w3xzx] € IdV,
)
)
)
)

2Swoxd ~ xixdzd € IdV,

(vii) x3aSrs ~ 23233 € IdV,
(viii) xixdriry ~ 23xd3xriwy € IdV,

rizlPas ~ 2223xd € IdV.
Proof. (i) Using 229 ~ x123 € IdV we get

rixe ~ (22)%ry ~ 2922 ~ 117125 ~ rixing & iy,
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i.e. 23wy ~ xtxy € IdV. Finally, 2329 ~ x}wy € IdV provides z] ~ 2§ € IdV.
(ii) We substitute zo by xs23 in x%mg R xlxg. Using the commutative law we

get x3wows ~ ma3e} where 12323 ~ xirows because ziwg ~ 1173.

w

(iii) Using 222y ~ z1235 € IdV, the associative law and the commutative law

we get 211313 ~ x3(v3w3)ws ~ v (1122)% w3 ~ 23 (1172)23 ~ ¥iw00? ~ wirdes ~

21 (2303) s ~ 11 (2122)% 23 &~ w1 (7122) 23 ~ 232003 ~ 2iw3Ts.

(iv) Using 23wy ~ 2123 € IdV, the associative law and the commutative law
we get xiw3rs ~ o3 (xins)(vins)(23ws) s ~ 23 (1v123) (v123) (v123) 73 ~ 2§aSws ~
(2323)%23 = 232323 ~ (2179)2 212273 ~ (2179)232003 ~ 232323 ~ 2379 (7923)
r3re(r323) ~ riwdas.

Q 2

(v) Using z3zy ~ x123 € IdV, the associative law and the commutative

law we get xiziwsa? ~ 2ir3732% ~ 2iwazwax] ~ wamoxiri A T3ToT12Y

2 2\ d o (2 2 4 g 02020 06 o 02(03\2,2, o 4.3..2
(z173) (o) z37] =~ (zimy)(T324)T37] = Tiwsw32s ~ 23 (23) 2303 ~ wivirsTs
rirdzaxs.

Q

Q

(vi) Using 23wy ~ z123 € IdV, the associative law and the commutative law

we get x3x313 ~ riwoxdzrd ~ 222iri ~ (1179)%7% = miwerl ~ miaivoriazd ~
220 o Ah 20206 o 202(03\2 o 20408 o 2,028 2 4, 3 ., 6, 3
riwsrizsay & wirial ~ v3ri(a3)? & adriay & pirivial & vivirvery &~ afxexy.

(vii) Using 2229 ~ x123 € IdV, the associative law and the commutative

law we get 231373 ~ (2172)%73 ~ 112278 ~ 2ox1(23)? =~ 222?23 ~ 23w07323
220dmowy & 2iwoxd & xiwdne ~ 2froxs &~ virvening &~ xim a3y 23 ~ aSxdad

312 2 o 3527 22 3372 A 23,6
(27)°@owoxs = TiT5Tox5 A TITITE A TTTSTS.

Q&

(viii) Using x3x9 & 2123 € IdV, the associative law and the commutative law
23,3

o 2 2 o pd 2,244 o 2.2 ~
we get xirsrixy ~ 7 (Taxs)* (Xex3)xy & TIT5TET, R TTTST3T, A TTT5T5T3T, A
riadzering ~ aiadadny ~ aiaSrswy ~ viviadasry ~ vtrirerin, ~ aiadadn, ~

4,10 ~ 82 o A 8 2 A0 2 47,22 o4 8.4
rieilrsry ~ xialadesry ~ afalxeriay ~ afadadn, ~ vlalriade, ~ vlalaie, ~

40T 020200 o 40,903
TILHT2TZLETY N TTTHLRTS.

(ix) Using 2279 ~ z123 € IdV, the associative law and the commutative

law we get zir3zs ~ 23(23)%23 ~ zizdal ~ xiaSrs ~ 21(23)%z3 ~ 2fr3zs ~
(21)*(2323) =~ 2} (2323)° & wi2fal ~ 2izy’vs. w

Let Vgc be the variety of commutative semigroups defined by the identity
2319 ~ 1173, ie. VRe = Mod{(z122)x3 ~ 11(7223), 1122 ~ T271, 1302 ~ 1173},

THEOREM 3.4. Vg is the greatest Regg- solid variety of commutative semi-
groups.

Proof. We have
Hpege Mod{(z122)x3 = z1(2223), 2122 & 221}

= Modxg {(z122) 25 =~ x1(2223), T122 & T2T1 }.
o

The application of Oy, 1O the commutative law provides 23wy ~ 2123, i.e. 2379 ~
2 E ~ ~ :
125 € XRSQG[(xlxg)LL'g ~ 11 (x273), x122 = xox1]|. This shows

Modxgcqc {($1.’172)J}3 ~ xl(I2$3>7.’E11‘2 ~ .’1?2131} Q VRC~
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To prove the converse inclusion we have to check the associative law, the commu-
tative law and x?z9 ~ z123 using all regular generalized hypersubstitutions.

From now on, the generalized hypersubstitution ¢ which maps f to the term
t is denoted by oy.

By using Theorem 2.6 together with the identities of Vie, we can restrict
our checking to the following regular generalized hypersubstitutions o; where
t € {zz;| i,j € N} U {zzjzi| 4,5,k € N} U {zzjzpz| 4,5,k € N} U
{Zi, @iy .. 5| kyin, ... ik € NyE >4, and all of 4y, ..., i are distinct}.

If we apply 04,4;; ¢, j € N on both sides of the associative law, the commutative
law and 22wy ~ x123 we have the following table.

i,jeN Oz [(z122)23] = Oz [r1(m273)] =

52(:ci:cj, Sz(xixj,:ch x2),3) 52(1‘1-:(:]-, 1, 52(1‘1-:(:]-, T2,3))

i=1,7=2 T1T2x3 T1T2X3

i, €N (64,0, [w1m2] = S (zimj, 71, 22) | 62y, [wama] = S% (w5, T2, T1)

i=1,7=2 Tr1T2 xroT1

i,jeN Gzia;[(T121)T2] = Oz [T1(2272)] =

52($i$]‘7 5'2(xi:vj,ar1, z1),2) SQ($Z'$]', T1, SQ($Z'$]'7 T2,2))

i=1,7=2 T1T1T2 T1T2T2

Using the associative law, the commutative law and the identity z?xs ~ z123 we
have both sides are equal.

If we apply 04,2,2,; %,J,k € N on both sides of the associative law, the com-
mutative law and x3xs ~ z122 we have the following table.

i,j,keN Omizjzy, [(x1x2)x3] = 5zizjzk[501($2$3)] =
S2(a:ia:ja:k, SQ(mia}jmk,zl,xg),mg) SQ(IiZ’jmk,:vl,SQ(xixj:L’k,acz,acg))
i=j=1k=2 T1T1T2X1T1T2L3 T1T1T2T2T3
1=1,=2,k>2 T1T2X|TIT T1T2L3TLT L
i,j,keN Oziajmy, [x122] = SZ(Iia:jxk,xl,xz) Ozizjzy, [x2z1] = S2(xixjxk,x2,x1)
i=j=1k=2 T1T1T2 ToT2T1
i=1,=2,k>2 T1T2T ToT1T)
ZFILAS N &Iizjzk [(z171)22] = &Timjzk[xl(IQ'xQ)] =
SQ(a:ia;j:ck, 52(J:ixjxk,x1,z1),a:2) 52(wixja:k,x1,52(ziwjxk,,x2,a:2))
i=j=1k=2 T1T1XT1T1T1T1T2 T1T1T2T2T2
1=1,=2,k>2 T1T1TRT2T T1T2T2TL Tk
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Using the associative law, the commutative law and the identity z2xo ~ z123 we
have both sides are equal.

If we apply 042,22, @ J,k,1 € N on both sides of the associative law, the
commutative law and x3xs ~ z122 we have the following table.

i,j,keN &IinIkIz [(z122)23] = &IinTkIz [#1(z2m3)] =
Sz(xixjxkxl, S2(xixjxkxl,x1,

S?(z;z;787), T1,T2), T3) S?(ziz;787), T2, 23))
i=j=k=1,1=2 | 21212122211 T1T2T1T1T1T2T3 T1X1T1XL2T2L2X3

i=j=1k=21>2

T1T1T2L]T] T T2LT]T3L]

T1T1T2T2LIT|T]

1=1,=2,k,1>2 T1T2T|T|TITLT] T1T2X3T|T|TLT]
i,j.k € N Orjajey [z122] = Grjajey [z271] =
S2(ziwjwpay, w1, w2) | S (Tiwjwpay, w2, 1)
i=j=k=11=2 T1T1T1X2 ToToT2X]
i=j=1k=21>2 T1T1T2T] T2T2T1T]
1=1,7=2k1>2 T1T2TLT] T2T1TT]
i,J,k € N &Iizjzk[(xlxl)xﬂ = &Ziwjmk[xl(xQxQ)] =
S2(azi$ja:k, SQ(:cixja:k,xl,
Sz(zizjwk,whaxl),xg) Sz(xizvjzsz,xg))
i=j=k=11=2 | 212121111 T1T1T1T1T1T1L2 T1T1T1T2T2L2

i=j=1k=21>2

T1T1T1T]T1T1T1T]T2T]

T1T1T2T2T2X]T]

i=1,7=2k1[>2

T1T1TRT]T2TLT]

T1T2T2XT|T]TET]

Using the associative law, the commutative law and the identity 23z ~ z123 we
have both sides are equal.

If we apply o, where t = z;,x;, ...2;, and k,i1,...,% € N,k > 4 on both

sides of the associative law we have &;[(x1z2)z3] = S%(t,S?(t,z1,72),73) and
G¢lw (zows)] = S%(t, x1, S?(t, 22, 23)).
(i) If there exists a unique n € {1,...,k} such that i,, = 1 , there exists a

unique ! € {1,...,k} such that iy = 2 and 4,, > 2 for all m # n # | with n < [,
then

Gel(rae)ws] = @iy o iy (T4, o T T1T e Ty T2 Ty - Ty
xin+1 N $il_1$3$il+1 ce e Ly,
Giler(xows)] = iy oo Ty BTy T (T X, T2

Lipyq o+ Lig_ 1 L3L454q « -+ xik)xilﬂ c o Ty,

(ii) If there exists j,n € {1,...,k} such that i; = 1 = i,, , there exist a unique
le{l,...,k} such that ¢, = 2 and i,, > 2 for all j #n # 1 # m with j <n <,
then

Oel(xrwa)ws] = @qy ooowg, (T ooy 1T T, T, Ty T

J
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Liyq v-- l‘ik)xij+1 ce $i1L71($i1 ce $ij71$11‘ij+1 Ty, 1 X1
xin+1 . Z'ilill'g.’[i“rl e xik)xin-u e xil71$3$i1+1 BRI 7 PR
&t[xl(argxg)] =Tjy + - 'rij71x1xij+1 PN $in71$1$in+l Ty (xil .. xij71x2
Z'ij+1 s Ly, X2LG, g e - Ly 3Ly g e xik)xilﬂ o Ty,
(ii) If there exist h,j,n € {1,...,k} such that i), = i; =4, = 1, there exists
a unique [ € {1,...,k} such that 4y =2 and 4,, > 2 for all h # j # n # | # m with
h < j <n<l, then

5’4(3311‘2).%‘3] = xil e xihﬂ (l‘il . mih,lxlxiwrl . xijilmlxijﬂ e xin71x1
ZL'inJrl . xil_lxgxiHl N xik)xihH . ‘TCZ'j71 ((Eil v gy 21
xih+1 e Iijill‘l‘T%#l . $in71I1Iin+l e :Eil—lexilJrl . .Z‘ik)
xij+1 B 7 Y (.’I}il N xihilmlxihﬂ .. .$ij71$1Iij+1 N xi,L,lxlxi,L+1
. $i171$2$il+1 e xik)win+l Ce .’Eililxgl'i“rl e .’Eik,
Gt (ax3)] = @iy« Tiy TAXiy Ty TIT G e Ty Ty - Ty
(9% . xih_lxg.’L‘ih+1 e xijflxgxijﬂ e $i7L71$2
:Ein+l e xil71x3xil+1 e xik)sci“rl e CUik.
Using the associative law, the commutative law and the identity z%xe ~ z123 we
have both sides are equal.

If we apply o; where t = x;, 24, ... x;, and k,i1,...,% € N,k > 4 on both
sides of the commutative law we have 6y[z122] = S%(t,21,22) and 6¢[zoz1] =
S2(t,x2,x1).

() If there exists a unique n € {1,...,k} such that 4, = 1, there exists a

unique ! € {1,...,k} such that ¢y = 2 and 4,, > 2 for all m # n # [ with n <,
then

6’,5[.%‘11‘2] = ,Til e xinflxlmii#»l P :L‘il_ll'gl'iH_Q P {L‘ik7

&t[IQIl] =Ty - - ziw,_1x2xii+1 ‘e I1171I1I1l+2 ce Ty

(ii) If there exist j,n € {1,...,k} such that i; = 1 =i, , there exists a unique
le{l,...,k} such that ¢, = 2 and i,, > 2 for all j #n # 1 # m with j < n <,
then

Oelr1@o] = @4y oo @y, AT T, AT e Ty T2 Ty, e Ty

&t[IQIl] = Iil e ‘Tij—lxzzij+1 e ‘Tin,—lx2xii+1 e zililxlxil” . 'Tik-

(iii) If there exist h,j,n € {1,...,k} such that ij, = i; =14, = 1 , there exists
a unique ! € {1,...,k} such that i; = 2 and 4,, > 2 for all h # j # n # | # m with
h < j<n<l, then

Gelerwa] = 4y o Ty 1Ty - Ty

$ii+1 e xil71$2$il+2 ce e Ty,

OtTox1] = Ty oo Ty WLy Ty 2Ty T, T

xii“ .. .$il_1$1$il+2 e Ty,
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Using the associative law, the commutative law and the identity z2xo ~ z123 we
have both sides are equal.

If we apply o, where t = x;,2;,...2;, and k,i1,...,%9 € N,k > 4 on both
sides of the identity 22x9 ~ x123 we have 6[(z121)x2] = S%(t, S?(t, 71, 21), v2) and
&t[ml(l‘gl‘g)] = SQ(t,xl,S2(t,x2,x2)).

(i) If there exists a unique n € {1,...,k} such that i, = 1 , there exists a
unique ! € {1,...,k} such that ¢y = 2 and 4,, > 2 for all m # n # [ with n <,
then

O't[("Ell'l).’EQ] =Tjy o T4 (.’Eil N .’Ein71$1xin+1 . xil_lmlxiHl . xlk)
Iin+1 e 1‘7;171562131'l+1 e Iiw
Giler(xawa)] = @iy - T 1Ty Ty (T T T2 e Ty
.’EQ(EZ'H_I . Zl'ik)l'il+1 ce e Ly
(ii) If there exist j,n € {1,...,k} such that i; =1 = i,, , there exists a unique
le{l,...,k} such that 4y = 2 and 4,, > 2 for all j #n #1 # m with j <n <,
then
O't[(l’lflfl)’l}Q] =Tjy o .’Eij_l (’Iil e xij_l:rlxin . xiﬂ,_lxlxiw,+1 e Ty
J}ll‘il+1 ce Z‘ik)l‘ijJrl Ty (J?il ce l‘ij71$1$ij+l Ty, X1
Tipyy oo Tiy BTy oo Ty )Ty oo Tiy T2Tgy g - Ty
Otlw1(wame)] = @4y oo g, W1y T, BT Ty (T T T
l‘ij+1 . min—l‘IQxin+1 N $i171$2$il+1 N .’Eik)xilJrl o Ty,
(iii) If there exist h,j,n € {1,...,k} such that i = i; =14, = 1 , there exists

a unique [ € {1,...,k} such that i; = 2 and 4,, > 2 for all h # j # n # | # m with
h < j<n<l, then

Oel(rrwr)wa] = @iy oo iy (ay o Ty BT Ty DT - T, T
xin+1 . $i1711’1$il+1 e xik)x¢h+l . l’ij_l (:172'1 oLy 4 21
xih“ . Z‘ijilxll‘ijjrl N -/Ei"71xl-rin+1 PN xilflxlxilﬂ .o l‘ik)
Tijyy oo Tip  (Tiy oo Ty BTy o Ty TITg, e Ty T
Iin+1 e Iil71I1I1l+1 e Iik)zin+1 e xilflxgzilﬂ e l‘ik,
Oe[w1(wamo)] = @4y o T4y TATg T XD Ty BT - Ty
(.’Eil e xih—1x2$ih+1 e (Ei]._lxzxij_'_l e .’Ein_ll'gxin_H e xil_ll'g
ZIIZ‘lJrl .. .ink)xil+1 e .I‘ik.

Using the associative law, the commutative law and the identity z?xo ~ 2123 we
have both sides are equal. m
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