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A COMMON FIXED POINT THEOREM FOR WEAKLY
COMPATIBLE MAPPINGS IN NON-ARCHIMEDEAN
MENGER PM-SPACES

Amit Singh, R.C. Dimri and Sandeep Bhatt

Abstract. In the present paper we prove a unique common fixed point theorem for four
weakly compatible self maps in non-Archimedean Menger PM-spaces without using the notion
of continuity. Our result generalizes and extends the results of Khan and Sumitra [M.A. Khan,
Sumitra, A common fixed point theorem in non-Archimedean Menger PM-space, Novi Sad J.
Math. 39 (1) (2009), 81-87] and others.

1. Introduction

Non-Archimedean probabilistic metric spaces and some topological preliminar-
ies on them were first studied by Istritescu and Crivit [9] (see also [8]). Some fixed
point theorems for mappings on non-Archimedean Menger spaces have been proved
by Istratescu [6, 7] as a result of the generalizations of some of the results of Sehgal
and Bharucha-Reid [16] and Sherwood [17]. Achari [1] studied the fixed points
of quasi-contraction type mappings in non-Archimedean PM-spaces and general-
ized the results of Istratescu [7]. Recently Khan and Sumitra [13] proved a common
fixed point theorem for three pointwise R-weakly commuting mappings in complete
non-Archimedean Menger PM-spaces. In the present paper we prove a unique com-
mon fixed point theorem for four weakly compatible self maps in non-Archimedean
Menger PM-spaces without using the notion of continuity. Our result generalizes
and extends the results of Khan and Sumitra [13] and others.

2. Preliminaries

DEFINITION 2.1. [7, 9] Let X be any non-empty set and D be the set of
all left continuous distribution functions. An ordered pair (X, F') is said to be
non-Archimedean probabilistic metric space (N.A. PM-space) if F' is a mapping
from X x X into D satisfying the following conditions, where the value of F' at
(z,y) € X x X is represented by F, , or F(z,y) for all ,y € X such that
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(i) F(z,y;t) =1 for all t > 0 if only if z = y;
(ii) F(x,y;t) = F(y,x;t);
(i) F(z, y;0) = 0;
(iv) If F(z,y;t1) = F(y,z;t2) = 1 then F(z, z;max{t1,t2}) =1 for all z,y,z € X.

DEFINITION 2.2. [14] A t-norm is a function A : [0,1] x [0,1] — [0, 1] which
is associative, commutative, non-decreasing in each coordinate and A(a, 1) = a for

all @ € [0,1].

DEFINITION 2.3. [8, 10] A non-Archimedean Menger PM-space is an ordered
triplet (X, F, A), where A is a t-norm and (X, F') is an N.A. PM-space satisfying
the following condition:

F(z, z;max{ty, ta}) > A(F (2, y; 1), F(y, z; L)) for all z,y,2 € X, t1,t2 > 0.

For details of topological preliminaries on non-Archimedean Menger PM-
spaces, we refer to Cho, Ha and Chang [3].

DEFINITION 2.4. [2, 3] An N.A. Menger PM-space (X, F, A) is said to be of
type (C')4 if there exists a g € Q such that g(F(z, z;t)) < g(F(z,y;t))+9(F(y, z; 1))
for all x,y,z € X,t > 0, where Q = {g | g : [0,1] — [0,00) is continuous, strictly
decreasing with g(1) = 0 and g(0) < oo}.

DEFINITION 2.5. [2, 3] An N.A. Menger PM-space (X, F,A) is said to be
of type (D), if there exists a g € Q such that g(A(t1,t2)) < g(t1) + g(t2) for all
t1,12 € [0, 1]

REMARK 2.1. [2, 3] (i) If N.A. Menger PM-space is of type (D), then (X, F, A)
is of type (C)q.

(ii) If (X, F, A) is N.A. Menger PM-space and A > A(r, s) = max(r+s—1,1),
then (X, F, A) is of type (D), for g € Q and g(t) =1 —¢.

Throughout this paper (X, F, A) is a complete N.A. Menger PM-space with a
continuous strictly increasing t-norm A.

Let ¢ : [0,00) — [0,00) be a function satisfying the condition
¢ is upper semi-continuous from the right and ¢(t) < ¢ for ¢ > 0. (®)

DEFINITION 2.6. [2, 3] A sequence {z,} in the N.A. Menger PM-space
(X, F,A) converges to x if and only if for each € > 0, A > 0 there exists M (e, A)
such that g(F(zy,z;€)) < g(1 — A) for all n > M.

DEFINITION 2.7. [3] A sequence {z,} in the N.A. Menger PM-space is a
Cauchy sequence if and only if for each € > 0, A > 0 there exists M (e, \) such that
G(F(n, Tntp;€)) < g(l—A) for all n > M and p > 1.

EXAMPLE 2.1. [3] Let X be any set with at least two elements. If we define
F(z,z;t) =1forallz € X, ¢t > 0 and F(z,y;t) = {0if ¢t <1 and 1if ¢t > 1},
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where 2,y € X, © # y, then (X, F, A) is the N.A. Menger PM-space with A(a,b) =
min(a,b) or (a.b).

ExaMPLE 2.2. [3] Let X = R be the set of real numbers equipped with metric
defined as d(z,y) = |z —y|. Set F(z,y;t) = m. Then (X, F,A) is an N.A.
Menger PM-space with A as continuous t-norm satisfying A(r,s) = min(r, s) or

(r.s).

LEMMA 2.1. [3] If a function ¢ : [0,00) — [0,00) satisfies the condition (P),

then we get

(7) for allt >0, lim, o ¢"(t) =0, where ¢"(t) is the n-th iteration of (),

(i1) if {tn} is a non-decreasing sequence of real numbers and t,1 < d(t,), n =
1,2,..., then im, o t, = 0. In particular, if t < @(t), for each t > 0, then
t=0.

LEMMA 2.2. [3] Let {yn} be a sequence in X such that limy, o F(Yn, Ynt1;t) =
1 for each t > 0. If {yn} is not a Cauchy sequence in X, then there exist g > 0,
to > 0, and two sequences {m;} and {n;} of positive integers such that

(i) m; >n; +1 and n; — o0 as i — oo.
(13) F(Ymys Ynisto) <1 —e€g and F(Ym,—1,Yn,;t0) > 1—€0, i =1,2,...

DEFINITION 2.8. [10] Let A, S : X — X be mappings. A and S are said to
be compatible if lim,,_. g(F(ASz,, SAz,;t)) = 0 for all ¢ > 0, when {x,} is a
sequence in X such that lim,,_,, Az, = z = lim,,_. Sz,, for some z € X.

DEFINITION 2.9. [11, 12] Let A, S : X — X be mappings. A and S are said to
be weakly compatible if they commute at coincidence points. That is, if Ax = Sz
implies that ASx = SAz, for z in X.

3. Main results

THEOREM 3.1. Let (X,F,A) be a complete N.A. Menger PM-space and

A, B,S,T: X — X be mappings satisfying

(1) A(X) € T(X), B(X) € 5(X),

(i1) the pairs {A, S} and {B,T} are weakly compatible and
(i11) g(F(Az, By;t)) < Qf[maX{Q(F(S:c, Ty;t)), g(F(Sz, Az;t)), g(F(T'y, By;t)),

3(9(F(Sz, By:t)) + g(F(Ty, Ax;t)))}],

for every x,y € X, where ¢ satisfies the condition (D). Then A,B,S and T have
a unique common fixed point in X .

Proof. Since A(X) C T(X), for any z9 € X, there exists a point x; € X such
that Azg = Tx;. Since B(X) C S(X), for this 21, we can choose a point 25 € X
such that Bx; = Sxo and so on. Inductively, we can define a sequence {y,} in X
such that

Yon = Axop = TTont1,  Yont1 = BEopg1 = Stopye forn=1,2,... (1)
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Let M,, = g(F(Azp, Bxny1;t)) = 9(F (Yn, Ynt1;t)) for n =1,2,.... Then
My, = g(F(Azoy, Bropy1;t))
S qS[max{g(F(ngn, Tx2n+1; t))a g(F(Sx2n7 Am?n; t)), g(F(TxQn—O—la B$2n+l; t))?
$(9(F(Szon, Bront1;t)) + g(F(Txani1, Azan; t))}]
S (b[max{g(F(yanl? Yon, t))7 g(F(anfh Yon, t))u g(F Y2n, Y2n+1; t))a
3(9(F(y20-1,Y2n4131)) + 9(F(Y2n, y2n; 1)))}]
S ¢[maX{g(F(y2n—17 Yons t))v g(F(y2n—17 Yon; t))a Q(F(Z/2n’ Yoan+1; t))v
(9(F(y2n-1,Y2n:t)) + 9(F (Y2n, Yon+1:t)))}]
i.e.
My, < @[max{Man_1, Man_1, Man, 5 (Man_1 + May)}] (2)
If My, > Ma,_1 then by (2) My, > ¢(Mas,), a contradiction. If Ma,—1 > M,
then by (2) Ma, < ¢(Map—_1). So by Lemma 2.1, we have lim,,_,oc Ma, =0, i.e.,
lirrlng(F(AxQn, Bxzony1;t)) =0 ie. liTang(F(ygn,ygn_i_l; t)) =0.
Similarly, we can show that
lim g(F(Bzroni1, Aront2;t)) = 0 e img(F(y2nt1,Yan+2;t)) = 0.
Thus we have lim,, g(F(Az,, Bxy41;t)) =0 for all ¢ > 0, i.e.

lHm g(F(yn, Yn+1;t)) =0 for all ¢ > 0. (3)

Before proceeding with the proof of the theorem, we first prove the following
claim:

Cram. Let A, B,S and T: X — X be maps satisfying (i), (it) and (iii) and
{yn} be defined by (1) such that
lim g(F(yn, yn115t)) = 0 (4)

for all n. Then {yn} is a Cauchy sequence.

Proof of Claim. Since g € Q, it follows that lim,— oo F(yn, yn+1;t) = 1 for each
t > 0 if and only if lim,— o0 g(F(yn, yYn+1;t)) = 1 for each ¢t > 0.

By Lemma 2.2, if {y,} is not a Cauchy sequence in X, there exists g > 0,
to > 0 and two sequences {m;} and {n;} of positive integers such that

(A) m; >n; +1 and n, — 0o as i — oo;
(B) g(F'(Ym,»yn;it0)) > g(1—€o) and g(F (yYm,—1,Yn,it0)) < g(L—€0), i =1,2,....
Since g(t) = 1 — ¢, we have
9(1 = €0) < g(F(Ym,»Yn,3to))
< 9(F (Ym,s Ymi—15t0)) + 9(F (Ym, -1, Yn;; o))
< 9(F (Ymis Ymi—13t0)) + g(1 — €o). (5)
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Asi— oo in (5) we have

lim g(F(ymmym;tO)) - g(]- - EO)' (6)

n—oo

On the other hand, we have

g(1 —€0) < g(F (Ym»> Yni3 to))
< 9(FYni> Yni+15t0)) + 9(F Ymi» Yni 415 t0)) (7)

Now consider g(F (Ym;, Yn;+1;%0)) in (7) and assume that both m, and n; are even.
Then, by (iii), we have
9EF Ymi» Ynit15to)) = g(F (A, , B, 113 t0))
< Pmax{g(F(Szm,, Ton,+15t0)), 9(F (ST, s A, t0)), g(F (T T, 41, Ban, 13 t0)),
3 (9(F (S, Bun,413t0)) + g(F(Tan, 41, Az, t0)))}]
< Pmax{g(F (Ym;—1,Yn;; £0))s 9(F (Ymi 1, Ym.310))s 9(F (Yn,s Yni415 10));
3 (9(F Ym,—1:Yn,+13%0)) + 9(F (Y, Ym,i o)) }]

Letting ¢ — oo in above equation, we have

g(l - 60) < ¢)[max{g(1 - 60)) O7O7g(1 - 60)}]a
ie. g(1 —ey) < &(g9(1 — €)), which is a contradiction. Hence the sequence {y,}
defined by (1) is a Cauchy sequence, which concludes the proof of the claim.

Since X is complete, then the sequence {y,} converges to a point z in
X and so the subsequences lim,, oo A%oy,, lim, o Bxoyi1, lim, oo STo, and
lim;, 00 TZon 11 of {y,} also converge to the limit z.

Since B(X) C S(X), there exists a point u € X such that z = Su. Then,
using (iii), we have
g(F(Au, z;t)) < g(F(Au, Bxo,—1)) + g(F(Bxap—_1,2))
< ¢lmax{g(F(Su, Txan-1;1)), g(F (Su, Au; 1)), g(F(Tw2n-1, Bran-1;1)),
3(9(F(Su, Bran—1)) + g(F(Tx2n-1, Au)))}]

Letting n — oo, we get

9(F(Au, ;1)) < ¢lmax{g(z,2:1)), g(F(z, Au; 1)), g(F(z, 2 1)),
3(9(F(z,2:1)) + g(F (2, Aus)))}]
= ¢[max{0, g(F(z, Au;t)),0, 3 (0 + g(F(z, Au;t)))}]
< ¢(g(F(Au, z;1)))
for all ¢ > 0, which implies that g(F(Au,z;t)) = 0 for all ¢ > 0 by Lemma 2.1.

Therefore Au = Su = z. Since A(X) C T(X), there exists a point v in X such
that z = Tw. Again using (iii), we have

g(F(z, Bv;t)) = g(F(Au, Bv;t))
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< ¢lmax{g(Su, Tv; 1)), g(F(Su, Au; 1)), g(F(Tv, Bv;t)),
3(9(F(Su, But)) + g(F(Tu, Au;t)))}]

< ¢lmax{g(z,z;1)), g(F(z, z; 1)), g(F (2, Bu; 1)),
3(9(F(z, Buit)) + g(F (2, 2:1)))}]

— $lmax{0,0, g(F(z, Bvit)), 1 (9(F (2, Buit)) + 0)}]

< ¢(g(F(Bwv, z;t))) for all t >0,

which implies that g(F(Bwv,z;t)) = 0 for all ¢ > 0 by Lemma 2.1. Therefore
Bv = Tv = z. Since A and S are weakly compatible mappings, ASz = SAz i.e.
Az = Sz. Now we show that z is a fixed point of A. If Az # z, then by (iii), we
have

9(F(Az 1)) = g(F(Az, But)) < glmax{g(F(Sz, Tv;)), g(F(Sz, Az t)),
9(F(Tv, Bui1)), 1(g(F(Sz, Bv)) + g(F(Tv, A2)))}]

< pmax{g(F(Az,21)),0,0, 5(9(F(Az 2)) + g(F (2, A2)))}]
< ¢(g(F(Az, zt))) forall ¢ >0,

which implies that g(F(Az, z;t)) = 0 for all ¢ > 0 by Lemma 2.1. Therefore Az = z.
Hence Az = Sz = z.

Similarly, as B and T are weakly compatible mappings, we have Bz =Tz = z,
since by (iii), we have
9(F(z, Bz;t)) = g(F(Az, Bz;t)) < ¢lmax{g(F(Sz, Tz t)), g(F(Sz, Az t)),
9(F (T2, Bz:t)), 5(9(F(Sz, Bz)) + g(F (T2, Az)))}]
< ¢max{g(F(z, Bz:1)),0,0, 3(9(F(2, Bz)) + g(F(Bz, 2)))}]
< ¢(g(F(Bz,z2;t))) for all t >0,

which implies that g(F(Bz, z;t)) = 0 for all t > 0 by Lemma 2.1. Therefore Bz = z.
Hence Bz =Tz = z.

Thus Az = Bz = Sz =Tz = z, that is, z is a common fixed point of A, B, S
and T.

Finally, in order to prove the uniqueness of z, suppose that w is another com-
mon fixed point of A, B, S and T. Then by (iii), we have

9(F(z,w;t)) = g(F(Az, Bw;t)) < ¢p[max{g(F(Sz,Tw;t)),g(F(Sz, Az;t)),
g(F(Tw Buwst)), 5(9(F(Sz, Bw;t)) + g(Tw, Az;t)))}]
d(g(F(z,w;t))) for all ¢ >0,

which implies that g(F(z,w;t)) = 0 for all ¢ > 0 by Lemma 2.1. Hence z = w.
Therefore z is a unique common fixed point of A, B, S and T. m
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COROLLARY 3.1. Let A,S,T : X — X be the mappings satisfying
(i) A(X) € S(X)NT(X),
(i1) the pairs {A, S} and {A, T} are weakly compatible and
(1ii) g(F(Az, Ay;t)) < gplmax{g(F(Sz, Ty;t)), g(F (S, Az;t)), g(F(Ty, Ay;t))
3(g(F(Sz, Ay: 1)) + g(F(Ty, Az;1)))}],
for every x,y € X, where ¢ satisfies the condition (D). Then A, S and T have a
unique common fized point in X.

COROLLARY 3.2. Let A,S: X — X be the mappings satisfying
(1) A(X) € S(X),
(i3) the pair {A, S} is weakly compatible and
(iii) g(F(Az, Ay;t)) < gplmax{g(F(Sz, Sy;1)), g(F(Sz, Ax; 1)), g(F(Sy, Ay; 1))
3(9(F(Sz, Ay: 1)) + g(F(Sy, Az; 1))},
for every x,y € X, where ¢ satisfies the condition (®). Then A and S have a
unique common fized point in X.

We can also derive the following results from Theroem 3.1.

COROLLARY 3.3. Let S and T be two continuous self-maps of a complete N.A.
Menger PM-space (X, F,A). Let A be a self-map satisfying
(1) {A,S} and {A,T} are pointwise R-weakly commuting and A(X) C S(X) N
T(X),
(i1) g(F(Az, Ay;t)) < ¢plmax{g(F(Sz, Ty;1)), g(F (S, Ax;1)), g(F (S, Ay;t)),
g(F(Ty, Ay; 1))},
for every x,y € X, where ¢ satisfies the condition (®). Then A,S and T have a
unique common fixed point in X .

Taking T'= S in Corollary 3.3 we get the following corollary unifying Vasuki’s
theorem [20], which in turn also generalizes the result of Pant [15].

COROLLARY 3.4. Let (X, F,A) be a complete N.A. Menger PM-space and S
be a continuous self-mapping of X. Let A be another self-mapping of X satisfying
that
(1) {A,S} is R-weakly commuting with A(X) C S(X),

(i1) g(F(Az, Ay, a;t)) < ¢p[max{g(F(Sz, Sy;t)), g(F(Sz, Aw;t)), g(F(Sw, Ay; 1)),
9(F(Sy, Ay; 1))},

for each x,y € X and ¢ satisfies the condition (P). Then A and S have a unique

common fized point.

REMARK 3.1. In Theorem 3.1, if S and T are continuous and pairs {4, S}
and {B,T} are compatible instead of condition (ii), the theorem remains true.

REMARK 3.2. In our generalization the inequality condition (iii) satisfied by
the mappings A, B,S and T is stronger than that of Theorem 2 of Khan and
Sumitra [13] and Theorem 1.9 of Vasuki [20].
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ExaMpPLE 3.1. Let X = R and A,S5,T: X — X be mappings such that
S(x) =2z — 1,

—1—2z, <0

0,
T(z)=< 2x—1, 0<z<1 and A(z)—{ )
z+1 = x#_l

e w2l

z=-—1

Then we see that
(i) {A, S} and {A, T} are point-wise R-weakly commuting.
(ii) A(X) CS(X)NT(X).
(iii) 1 is the unique common fixed point of A, S and T.

(iv) g(F(Az, Ay;t)) < ¢plmax{g(F(Sz, Ty;1)), g(F(Sz, Ax;t)),
g(F(Sx, Ay;t)), g(F(Ty, Ay; t))}], for every z,y € X is also true.

4. An application

THEOREM 4.1. Let (X,F,A) be a complete N. A. Menger PM-space and
A, B,S and T be mappings from the product X x X to X such that

AX x{y}) €T(X x{y}), BX x{y}) S (X x{y}),
9(F(A(T(z,y),y), T(Az,y),y);t)) < g(F(A(z,y), T (z,y); 1)),
g(F(B(S(x,9),y),5(B(z,y),y);1)) < g(F(B(z,y), S(z,y); 1)), (8)

forallt > 0. If S and T are continuous with respect to their direct argument and
9(F(A(z,y),B(2",y);t)) < dplmax{g(F(S(z,y), T(z",y);1)),
9(F(S(@,y), A(z,y): 1), g(F(T(".y), B(a',y); 1)),
3(9(F(S(z,y), B(z',y);t)) + g(F ( (@"y"), A,y )} (9)

for allt >0 and z,y,x',y" in X, then there exists only one point b in X such that
A(by) = S(b,y) = B(b,y) =T(b,y) VyeX.

Proof. By (8) and (9),
9(F(A(z,y),.B(z',y');1)) < dlmax{g(F(S(z,y), T(2",y'); 1)),
9(F(S(z,y), A(x,y); 1)), g(F(T(a' )B(ﬂ? y')it)),
3(9(F(S(z,y), B(z',y):t) + g(F ( (@',y"), A(z,y): 1) }]

for all ¢ > 0, therefore by Theorem 3.1, for each y in X, there exists only one z(y)
in X such that
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for every y,3" in X and

9(F(2(y),x(y');t) = g(F(Az(y), v), A@(y'),y); 1))
< plmax{g(F(A(z,y), A=, y'); 1)), g(F(A(z,y), A(z,9); 1)),
g(F(T(2',y"), A(z',y); 1)),
$(9(F(A(z,y), A, y); 1) + g(F(A(', ), Az, y); 1))}
= g(F(z(y), z(y'); 1)).

This implies that z(y) = z(y’) and hence z(-) is some constant b € X so that

Al,y) =b=T(b,y) =5S(b,y) =B(b,y) VyecX. n
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