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RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
WITH VARYING ARGUMENTS

N. Ravikumar and S. Latha

Abstract. In this paper, we define the subclasses Vs(A, B) and Ks(A, B) of analytic func-
tions by using Q‘Sf(z) For functions belonging to these classes, we obtain coefficient estimates,
distortion bounds and many more properties.

1. Introduction

Let A denote the class of all analytic functions of the form

flz)=2z+ i A 2™ (1.1)

m=2
defined in the unit disc i = {z : |z| < 1}. Let A/ denote the subclass of A consisting
of functions normalized by f(0) =0 and f/(0) = 1 which are univalent in U.

Silverman [8] defined the class V(6,,) as the class of all functions in A such
that arga,, = 0,, for all m. If further there exists a real number [ such that
O+ (m—1)8 =m (mod 2), then f is said to be in the class V(6,,, 3). The union
of V(0,,,, B) taken over all possible sequences {6,,} and all possible real numbers (3
is denoted by V.

The class A is closed under convolution or Hadamard product
(f *g)(z) =z+ Z by 2™, z€eU, (1.2)
m=2

where f is given by (1.1) and g(2) =z + > _, by 2™.
Fractional derivative of order § of an analytic function f is defined by

5 1 d mf@)
DZf(Z)F(l—&)dz/O Gt 0<s<1.
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f is an analytic function in a simply connected region of the z-plane containing
the origin and the multiplicity of (z — ¢)~% is removed by requiring log(z — t)
to be real when (z — t) is greater than 0. Clearly f(z) = lims_o DJf(z) and
f'(z) =lims_1 DI f(z).

For the analytic function f of the form (1.1) we put

Qf(2) =T(2—6)2°Df(z) = z + f K(m,8)amz",

m=2

where K(m.d) = %'

Now we define the class Vs(A, B) consisting of functions f € V such that

ADF() 1+ Aw(z)

TR " 11 Bo()’ ~1<A<B<1 (1.3)

Here w(z) is analytic, w(0) = 0 and |w(2)| < 1, z € Y. The following basic result is
well known.

LEMMA 1.1 [Schwarz’s Lemma] Let w be analytic with w(0) = 0, and |w(z)] < 1
for z € U. Then |w(2)| < |z|. The equality holds if and only if w(z) = Az, where
Al = 1.

Let KCs(A, B) denote the class of functions f € V such that zf' € V5(4, B).

2. Main Results

THEOREM 2.1. A function f €V is in Vs(A, B) if and only if

S (B + 1)m — (A+ DK (m,6)|am| < (B — A), 2.1)

m=2

where —1 < A< B<1,m?>2.
Proof. Suppose f € Vs(A, B). Then

Af(2) _ 1+ Aw(z)

= , —1<A<B<I1.
Qs f(2) 1+ Bw(z) - -

From this we get,
o) = ALY - 1)
T (A - ABf() B

By Schwarz’s Lemma, we get

io: (1 —m)K(m,d)amz""1
R m=2 <1 (2.2)

(B—A)+ (mB — A)K(m,§)a,z™"!

T8
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Since f € V, f lies in V(6,,, 8) for some sequence {6,,} and a real number 3, such
that 6, + (m —1)3 =7 (mod 27). Setting z = re’’, we get

o0 —_

ST (1 —=m)K (m, 8)|ap|rm— el @m+(m=1)5)
R <1. (2.3)
(B—A)+ 3 (mB — A)|ay,|r™ e @nt(m=1)8)
m=2

i (m — 1)K (m,d)|am|r™! < (B—A) - i (mB — A)K (m, 8)|ay,|r™ 1,
m=2 m=2

N B +1)m—(A+ 1)K (m,d)|an|r™=t < (B - A). (2.4)

m=2

Letting r — 1, we get (2.1).
Conversely, suppose f € V and satisfies (2.1). In view of (2.4), which is implied
by (2.1), since r™~! < 1, we have

i(l — m)K(m, §)amzm"1| < i(m— DK (m, 8)|ap|[rm—1
<(B-A) - (mB — A)K (m, §)|an,|r™ !

8 [0

< ’(B —A)— > (mB—-A)K(m,8)amz™"1!

m=2
which gives (2.2) and hence it follows that f € V5(A, B). m
COROLLARY 2.2. If f € V is in V5(A, B) then
(B—-4)
(B+1)m—(A+1)]K(m,d)’
The equality holds for the function f given by
(B—-A4)

H&) =2 B Dm — (At DIK(m.0) con, zell.

|am|§[ for m>2, —-1<A<B<I1.

For parametric values a = n + 1, ¢ = 1, we get the following result proved by
Padmanabhan and Jayamala [4] as corollaries to the above theorem.

COROLLARY 2.3. Let f € V. Then f € V,(A, B) if and only if

>  (n+m-—1)!
A D m—1)

where Cp, = (B+1)(n+m) — (A+1)(n+1).

Crnlam| < (B - A),

The equality holds for the function f given by

_ F(c+m—1T(a+1)(B—A) i0,, m
f(z) =2+ T(a+m— D) Do emzm oz el
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THEOREM 2.4. Let f € V. Then f(z) = z+ > _yamz™ is in K(A, B, a,c) if
and only if
x  TI(a+m—1)(c)
m=e L(c+m —1I(a+1)

where Dy, = [(B+1)(a+m—1)— (A+1)a], -1< A< B<1,a,ceR\Z,.

mDpa, < B— A,

Now we examine the extreme points of the class V(A, B, a, ¢).

THEOREM 2.5. Let f(z) € V(A, B, a,c) with arg a,, = 0,,, where
[0 + (m —1)8] =7 (mod 27). Define fi1(z) = z and
Flc+m—1)T(a+1)(B—A) ,
Wm gm =2,3,...
Tla+tm—1I(c) Dn ¢ ~ 7 MT5%

fm(z) =z+
—-1<A<B<1l,aceR\Z,,zel. fe V(A B,a,c) if and only if f can be
expressed as f(2) = > oo, pim [m(2) where pi, >0 and >0 jiy = 1.

Proof. It f(z) =300 _1 mfm(2) with D" 1t = 1, i, > 0, then

<  T(la+m—1)T(c) Tletm-—1I'(a+1)(B-A)
o Tletm—Dl@a+1) ™™ "Tlatm—-1I() Dm

= i;um(B—A) — (1—m)(B—A4) < (B—A).

Hence f € V(A4, B, a,c).
Conversely, let f(z) =z + > _,anz™ € V(A, B, a,c), define

_ Tla+m—-1T(c) |am|Dyp
Fm = Tletm—1)I@a+1) (B-A)

—92.3,...

and define pg =1 =", ftm,. From Theorem 2.1, Y °_, p, < 1 and so pg > 0.

Since ,Ufmfm(z) = ,Lme + am,zma ijzl ,umfm(z) =z+ Z:zg amzm = f(Z) u
THEOREM 2.6. Define fi(z) = z and

F(c+m—1)F(a+1)(B—A)Zm 9.3

fm(z) = 2 I'(a+m —1)(c) D, ’

—-1<A<B<1l,a,ceR\Z;,z€U. Then f € K(A, B,a,c) if and only if f can
be expressed as f(2) = > oo fim fm(2) where pi, >0 and Y00 jiy = 1.

THEOREM 2.7. The class V(A, B, a,c) is closed under convex linear combina-
tion.

Proof. Let f,g € V(A, B,a,c) and let

flz)=2+ io: amz™, g(z)=z+ io: b 2™.
m=2

m=2
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For n such that 0 < 5 < 1, it suffices to show that the function defined by
h(z) = (1 —-n)f(z) +ng(z), z € U belongs to V(A, B,a,c). Now

h(z) =z + Z[( 1) + N 2"

Applying Theorem 2.1 to f,g € V(4, B, a,c), we have

o T(la+m—-1I(c)
m=el(c+m—1)T(a+1)

Dm[(l —n)am + nbm]

o0

T'(a+m—1)T(c) F(a+m — 1)I(e)
mz2r( Fa+1>Dmam+ ZF - D@t

)T
<@ =n)(B-A)+nB-A)=

This implies that h € V(A, B,a,c). m

COROLLARY 2.8. If fi(2), fa(2) are in V(A, B, a,c) then the function defined
by g(2) = 2[f1(2) + f2(2)] is also in V(A, B, a,c).

THEOREM 2.9. The class K(A, B, a,c) is closed under convex linear combina-
tion.

THEOREM 2.10. Let for j = 1,2,....m, fj(z) = 24+ > o sam ;2" €
V(A,B,a,c) and 0 < A\; < 1 such that Z;"Zl Aj = 1. Then the function F(z)
defined by F(z) =371, N fj(2) is also in V(A, B, a,c).

Proof. For each j € {1,2,...,m} we obtain

I'(a+m—1)'(c)
(c+m—1T(a+1)

Z Dm |am| <B A
m=2 r

Since F'(z) = Z;nﬂ Aj(2 = Ymmg Am,j2™) = 2 — Z:no,:z(zj 1 Ajlm,5)2",

<  T(a+m—1)T(c) m
me2 L'(c+m—1TI'(a+1) m[jgl Ajm, ]
- S8 Pt ) < S <54

Therefore F(z) € V(A, B,a,c). m
THEOREM 2.11. Let f(z) € V(A4, B, a,c) and Komato operator of f is defined

K2) = /01 <CF+( 71))7# (1og % ) f(;z) i,

¢>—1,v>0. Then k(z) € V(A, B, a,c).

by
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Proof. We have

x c+1\" m
_Z—'—mz_:Q(c—i-m) amz™.

Since f € V(A, B, a,c) and since (fj’%)v < 1, we have

> Tla+m-—1I(c)
m=a D(c+m—1)T(a+1)

c+1
c+m

[a+m—mu+3ﬂ< )%m<B—A.-

In the next theorem we will find distortion bound for L(a,c)f(z2).

THEOREM 2.12. If f € V(A, B, a,c), then

(B—AT(c+1)

(B— AT(c+1)
=0

o < 1L(@ ) f(2)] < el + 555

i

Proof. Let f(z) € V(A, B,a,c). Using Theorem 2.1,
o0 < (B—A)T(c+1)

2 S T D)
Therefore
5 X T(a+m—1)(c) (B—AT(c+1)
and
L@, ()] = o]z 3 et DI B Aer Y e

m > -
2 Term-TT@+n DoT(c)
REMARK 2.13. (i) For parametric values of a =1 and ¢ =1 we get

(B—AT(c+1) (B—AT(c+1)

. 2 < < 2,
ol = T < ) < 2l + T
(ii) For parametric values of a = 2 and ¢ =1 we get
(B—A)T(c+1) , (B—A)TI(c+1)
l——F"""—"F—F2| < <14 — =z
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THEOREM 2.14. Let f € V(A, B,a,c). Then for every 0 < § < 1 the function

Hs(2) = (1 — 8)f(2) +5/02 @dt.

Proof. We have Hs(z) = z+Y oo (1+ % —0) amz™. Since (1 + % —-9) <1,
m > 2, so by Theorem 2.1,

o0

T(a+m—1T(c)
mgg (1 * m 5) Dmaml"(c +m—1)T(a+1)
x©  Tla+m-—1I(c)

< mgg Flc+m—-1)T(a+1)

Dpa,, < B—A.

Therefore Hs(z) € V(A, B,a,c). m
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