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SOLUTION OF NONLINEAR INTEGRAL EQUATIONS VIA
FIXED POINT OF GENERALIZED CONTRACTIVE CONDITION

R. K. Verma and H. K. Pathak

Abstract. The main aim of our paper is to prove the existence of a solution of a system
of simultaneous Voltera-Hammerstein nonlinear integral equations by the help of a common fixed
point theorem satisfying a generalized contractive condition. For, we have used a common fixed
point result of generalized contractive condition in a complete metric space for two pairs of weakly
compatible mappings.

1. Introduction

In 2002, Branciari introduced the notion of contractions of integral type and
proved fixed point theorem for this class of mappings. Further results on this class
of mappings were obtained by [2, 3, 4, 12]. Zhang [13] and Abbas and Rhoades [1]
replaced the integral operator by a monotone nondecreasing function. By F we
denote the set of all continuous, monotone nondecreasing real-valued function F :
[0,∞) → [0,∞) such that F (x) = 0 if and only if x = 0. In [13], following results
were proved:

Lemma 1.1. (Zhang [13]) Let F ∈ F and εn ⊆ [0,∞). Then limn→∞ F (εn) =
0 implies limn→∞ εn = 0.

Let a ∈ (0, +∞], R+
a = [0, a) and ψ : R+

a → R+. Then define the family
Ψ[0, a) of ψ by: Ψ[0, a) := {ψ : ψ satisfies (i)-(iii)}, where:
(i) ψ(t) < t for each t ∈ (0, a),
(ii) ψ is non-decreasing and right upper semi-continuous,
(iii) limn→∞ ψn(t) = 0 for each t ∈ (0, a).

Lemma 1.2. (Zhang [13]). If ψ ∈ Ψ[0, a), then ψ(0) = 0.

We extend the following theorem of Zhang for a quadruple of mappings:
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Theorem 1.3. (Zhang [13]) Let (X, d) be a complete metric space and let
D = sup{d(x, y) : x, y ∈ X}. Set a = D, if D = ∞ and a > D, if D < ∞. Suppose
that A,B : X → X, F ∈ =[0, a) and ψ ∈ Ψ[0, F (a− 0)) satisfy:

F (d(Ax,By)) ≤ ψ(F (m(x, y))), ∀x, y ∈ X,

where m(x, y) = max{d(x, y), d(Ax, x), d(By, y), 1
2 [d(Ax, y) + d(By, x)]}. Then A

and B have a unique common fixed point in X. Moreover for each x0 ∈ X, the
iterated sequence {xn} with x2n+1 = Ax2n and x2n+2 = Bx2n+1 converges to the
common fixed point of A and B.

Besides, Jungck [5] introduced compatible mappings, defined below, in a metric
space as a generalization of commuting mappings and weakly commuting mappings
[11]. This was further generalized to weakly compatible mappings by Jungck [6].

Definition 1. Let A and S be two self-maps of a metric space (X, d). The
pair (A,S) is said to be compatible if limn→∞ d(ASxn, SAxn) = 0, whenever there
exist a sequence {xn} in X such that limn→∞Axn = limn→∞ Sxn = t, for some
t ∈ X.

Definition 2. Let A,S : X → X, then the pair (A,S) is said to be weakly
compatible if they commute at their coincidence points; i.e., ASu = SAu whenever
Au = Su, for some u ∈ X.

Compatible mappings are weakly compatible, but the converse need not be
true.

2. Main results

The following Theorem 2.1 is a special case of Theorem 1 of Jungck and Rhoad-
es [7]. First we use the following theorem, then we apply this theorem to prove the
existence solution of a system of nonlinear Voltera-Hammerstein integral equation.

Theorem 2.1. Let (X, d) be a complete metric space and A,B, S, T : X → X
be four maps. Suppose F ∈ =[0, a) and ψ ∈ Ψ[0, F (a− 0)) are functions satisfying:

(i) A(X) ⊆ T (X), B(X) ⊆ S(X),
(ii) F (d(Ax,By)) ≤ ψ(F (max{d(Sx, Ty), d(Ax, Sx), d(By, Ty),

1
2 [d(By, Sx) + d(Ax, Ty)]})) for each x, y ∈ X.

(iii) If the pairs (A,S) and (B, T ) are weakly compatible, then A,B, S, T have
a unique common fixed point in X.

2.1. Solution of nonlinear integral equations.
Now, we give the following application to Theorem 2.1 in the line of Pathak et.

al. [8, 9, 10]. Consider the following simultaneous Voltera-Hammerstein nonlinear
integral equations:

x(t) = w(t, x(t)) + µ

∫ t

0

m(t, s)gi(s, x(s)) ds + λ

∫ ∞

0

k(t, s)hj(s, x(s)) ds (2.1)
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for all t ∈ [0,∞), where w(t, x(t)) ∈ L[0,∞) is known, m(t, s), k(t, s), gi(s, x(s))
and hj(s, x(s)), i, j = 1, 2 and i 6= j are real or complex valued functions that are
measurable both in t and s on [0,∞) and λ, µ are real or complex numbers. These
functions satisfy the following conditions:

Condition (C0): The integral
∫∞
0
|w(s, x(s))| ds is bounded for all x(s) ∈

L[0,∞) and there exists K0 > 0 such that for each s ∈ [0,∞),

|w(s, x(s))− w(s, y(s))| ≤ K0|x(s)− y(s)|, ∀x, y ∈ L[0,∞).

Condition (C1):
∫ ∞

0

sup
0≤s<∞

|m(t, s)| dt = M1 < +∞.

Condition (C2):
∫ ∞

0

sup
0≤s<∞

|k(t, s)| dt = M2 < +∞.

Condition (C3): gi(s, x(s)) ∈ L[0,∞), ∀x ∈ L[0,∞) and there exists K1 > 0
such that for all s ∈ [0,∞),

|g1(s, x(s))− g2(s, y(s))| ≤ K1|x(s)− y(s)|, ∀x, y ∈ L[0,∞).

Condition (C4): hi(s, x(s)) ∈ L[0,∞) for all x ∈ L[0,∞) and there exists
K2 > 0 such that for all s ∈ [0,∞),

|h1(s, x(s))− h2(s, y(s))| ≤ K2|x(s)− y(s)|, ∀x, y ∈ L[0,∞).

The existence theorem can be formulated as follows:

Theorem 2.2. Let F and ψ be two functions as defined in Theorem 2.1. If in
addition to assumptions (C0)−−(C4), the following conditions are also satisfied:

(a) For i, j = 1, 2 with i 6= j,

λ

∫ ∞

0

k(t, s)hi(s, w(s, x(s)) + µ

∫ s

0

m(s, τ)gj(τ, x(τ)) dτ) ds = 0.

(b) For some x ∈ L[0,∞),

µ

∫ t

0

m(t, s)gi(s, x(s)) ds = x(t)− w(t, x(t))− λ

∫ ∞

0

k(t, s)hi(s, x(s)) ds

= Γi(t) ∈ L[0,∞).

If for some Γi(t) ∈ L[0,∞), there exists θi(t) ∈ L[0,∞) such that:

(c) µ

∫ t

0

m(t, s)gi(s, x(s)− Γi(s)) ds = w(t, x(t)) + λ

∫ ∞

0

k(t, s)hi(s, x(s)− Γi(s)) ds

= θi(t), i = 1, 2,
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then the system of simultaneous Voltera-Hammerstein nonlinear integral equation
(2.1) has a unique solution in L[0,∞) for each pair of real or complex numbers λ,
µ with

K0 + |µ|M1K1 + |λ|M2K2 < 1 and

F (|µ|M1K1p) ≤ ψ(1− (K0 + |λ|M2K2)p), p ≥ 0.
(2.2)

Proof. Comparing the notation with Theorem 2.1, here X = L[0,∞). For
every x(s) ∈ L[0,∞), we define the mappings A,B, S, T by:

Ax(t) = µ

∫ t

0

m(t, s)g1(s, x(s)) ds, Bx(t) = µ

∫ t

0

m(t, s)g2(s, x(s)) ds,

Sx(t) = (I − C)x(t) and Tx(t) = (I −D)x(t),

where

Cx(t) = w(t, x(t)) + λ

∫ ∞

0

k(t, s)h1(s, x(s)) ds,

Dx(t) = w(t, x(t)) + λ

∫ ∞

0

k(t, s)h2(s, x(s)) ds.

Here w(t, x(t)) ∈ L[0,∞) is known and I is the identity operator on L[0,∞). First,
let us show that each A,B, C,D, S, T are operators from L[0,∞) into itself.

Indeed, we have
|Ax(t)| ≤ |µ| ∫∞

0
|m(t, s)|.|g1(s, x(s))| ds ≤ |µ| sup0≤s<∞ |m(t, s)| ∫∞

0
|g1(s, x(s))| ds

applying conditions (C1) and (C3) and thus, we have∫∞
0
|Ax(t)|dt ≤ |µ| ∫∞

0
sup0≤s<∞ |m(t, s)| dt

∫∞
0
|g1(s, x(s))| ds < +∞

and hence Ax ∈ L[0,∞). Similarly Bx ∈ L[0,∞).
For mapping C, we apply conditions (C2) and (C4) in the following way:∫∞

0
|Cx(t)dt| ≤ ∫∞

0
|w(t, x(t))| dt + |λ| ∫∞

0
sup

0≤s<∞
|k(t, s)| dt

∫∞
0
|h1(s, x(s))| ds <

+∞, as
∫∞
0
|w(t, x(t))| dt is bounded and hence C is a self operator on L[0,∞).

A similar argument is valid for D. Similarly S and T ∈ L[0,∞). Hence
A,B, C, D, S, T are operators from L[0,∞) into itself.

Let us show the condition (i) of Theorem 2.1. First, to prove A(X) ⊆ T (X),
i.e., A(L[0,∞)) ⊆ T (L[0,∞)), let x(t) ∈ L[0,∞) be arbitrary, then we have

T (Ax(t) + w(t, x(t))) = (I −D)(Ax(t) + w(t, x(t)))

= Ax(t)− λ

∫ ∞

0

k(t, s)h2(s,Ax(s) + w(s, x(s))) ds

= Ax(t)− λ

∫ ∞

0

k(t, s)h2[s, µ
∫ s

0

m(s, τ)g1(τ, x(τ)) dτ + w(s, x(s))] ds

= Ax(t), by assumption (a).

Thus A(L[0,∞)) ⊆ T (L[0,∞)). Similarly B(L[0,∞)) ⊆ S(L[0,∞)).
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Further, we check (ii) of Theorem 2.1. Suppose x, y ∈ L[0,∞). Then LHS is:

F (‖Ax−By‖) = F (
∫ ∞

0

|Ax(t)−By(t)| dt), by the definition of ‖ · ‖

= F (
∫ ∞

0

|µ
∫ t

0

m(t, s)[g1(s, x(s))− g2(s, x(s))] ds| dt)

≤ F (
∫ ∞

0

|µ| sup
0≤s<∞

|m(t, s)| dt

∫ ∞

0

|g1(s, x(s))− g2(s, y(s))| ds)

≤ F (|µ|M1

∫ ∞

0

K1|x(s)− y(s)| ds), by (C1) and (C3)

= F (|µ|M1K1‖x− y‖).
Thus we obtain

F (‖Ax−By‖) ≤ F (|µ|M1K1‖x− y‖). (2.3)

Similarly, using assumptions (C0), (C2) and (C4), we get

‖Cx−Dy‖ =
∫ ∞

0

|w(t, x(t))− w(t, y(t))

+ λ

∫ ∞

0

k(t, s)[h1(s, x(s))− h2(s, y(s))] ds| dt

≤
∫ ∞

0

|w(t, x(t))− w(t, y(t))| dt

+ |λ|
∫ ∞

0

sup
0≤s<∞

|k(t, s)| dt.

∫ ∞

0

|h1(s, x(s))− h2(s, y(s)) ds|

≤ (K0 + |λ|M2K2)‖x− y‖.
Thus we obtain

‖Cx−Dy‖ ≤ (K0 + |λ|M2K2)‖x− y‖. (2.4)

Hence, for the RHS of (ii), we have

F (M(x, y))

= F (max{‖Sx− Ty‖, ‖Ax− Sx‖, ‖By − Ty‖, 1
2
[‖By − Sx‖+ ‖Ax− Ty‖]})

≥ F (‖Sx− Ty‖), as F is non-decreasing

= F (‖(I − C)x− (I −D)y‖)
= F (‖x− y‖ − ‖Cx−Dy‖), by the triangle property of ‖ · ‖
≥ F (‖x− y‖ − (K0 + |λ|M2K2)‖x− y‖), by (2.4)

= F ({1−K0 − |λ|M2K2}‖x− y‖).
Thus we obtain

F (M(x, y)) ≥ F ({1−K0 − |λ|M2K2}‖x− y‖). (2.5)
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Next, since the function ψ is non-decreasing, so that

ψ(F (M(x, y))) ≥ ψ(F ({1−K0 − |λ|M2K2}.‖x− y‖)), by (2.5)

≥ F (|µ|M1K1‖x− y‖), by (2.2)

≥ F (‖Ax−By‖), by (2.3).

Thus the generalized contractive condition (ii) of Theorem 2.1 is satisfied.
Now we prove that the pair (A,S) is weakly compatible. For this we have

‖SAx(t)−ASx(t)‖ = ‖(I − C)Ax(t)−A(I − C)x(t)‖
= ‖Ax(t)− CAx(t)−Ax(t) + ACx(t)‖ = ‖ACx(t)− CAx(t)‖ (2.6)

Now whenever Ax(t) = Sx(t), we have

µ

∫ t

0

m(t, s)g1(s, x(s)) ds = x(t)− w(t, x(t))− λ

∫ ∞

0

k(t, s)h1(s, x(s)) ds. (2.7)

Using eq. (2.7) in (2.6), we get

‖SAx(t)−ASx(t)‖ = ‖ACx(t)− CAx(t)‖

= ‖AC[w(t, x(t)) + λ

∫ ∞

0

k(t, s)h1(s, x(s)) ds + µ

∫ t

0

m(t, s)g1(s, x(s)) ds]

− CA[w(t, x(t)) + λ

∫ ∞

0

k(t, s)h1(s, x(s)) ds + µ

∫ t

0

m(t, s)g1(s, x(s)) ds]‖

= ‖A[w(t, x(t)) + λ

∫ ∞

0

k(t, s)h1(s, x(s)− Γ1(s)) ds]

− C[µ
∫ t

0

m(t, s)g1(s, x(s)− Γ1(s)) ds]‖

= ‖µ
∫ t

0

m(t, s)g1[s, w(s, x(s)) + λ

∫ ∞

0

k(s, τ)h1(τ, x(τ)− Γ1(τ)) dτ ] ds

− w(t, x(t))− λ

∫ ∞

0

k(t, s)h1[s, µ
∫ s

0

m(s, τ)g1(τ, x(τ)− Γ1(τ)) dτ ] ds‖
= 0, from (2.1).

This shows that the pair (A,S) is weakly compatible. Similarly (B, T ) is also
weakly compatible. Hence all the conditions of our Theorem 2.1 are satisfied and
the solution of eq. (2.1) exists.

Finally, let us show the uniqueness of solution, let v(t) ∈ L[0,∞) be another
solution of (2.1), then by (C0)–(C4), we have

‖u(t)− v(t)‖ ≤
∫ ∞

0

|w(t, u(t))− w(t, v(t)) + µ

∫ t

0

m(t, s)(g1(s, u(s))

− g2(s, v(s))) ds + λ

∫
k(t, s)(h1(s, u(s))− h2(s, v(s))) ds| dt
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≤ (K0 + |µ|M1K1 + |λ|M2K2)‖u(t)− v(t)‖ < ‖u(t)− v(t)‖
a contradiction. Thus the solution is unique. This completes the proof.

We have shown in the proof of Theorem 2.2 that, all the conditions (i)–(iii) of
Theorem 2.1 are satisfied, and also that the nonlinear V-H integral equation (2.1)
of Theorem 2.2 has a unique solution in L[0,∞).

Below we put A = B, S = T , L[0,∞) = BC[0,∞), g1 = g2 = g, h1 = h2 = h,
λ = µ = 1 in eq. (2.1) of Theorem 2.2, to get the following Example 2.3, as a
reduced nonlinear integral equation (2.8). Obviously, for these special values in
this example, all the conditions (i)–(iii) of Theorem 2.1 are satisfied.

Now, by another method, we will show below that, the nonlinear integral
equation have a unique solution in BC[0,∞). This will completely validate our
Theorem 2.2.

Example 2.3. Consider the following nonlinear integral equation in BC[0,∞):

x(t) = w(t, x(t)) +
∫ t

0

m(t, s)g(s, x(s)) ds +
∫ ∞

0

k(t, s)h(s, x(s)) ds (2.8)

Let P and Q be two operators from BC[0,∞] into itself as defined below:

(Px)(t) =
∫ t

0

m(t, s).x(s) ds and (Qx)(t) =
∫ ∞

0

k(t, s).x(s) ds

Let the following conditions hold:
(C0): |w(t, x(t))−w(t, y(t))| ≤ r|x(t)− y(t)|, ∀x(t), y(t) ∈ Br and r ≥ 0 a constant.
(C1): m(t, s) is such that Px(t) is continuous operator from BC[0,∞] into itself.
(C2): k(t, s) is such that Qx(t) is continuous operator from BC[0,∞] into itself.
(C3): |g(t, x(t)) − g(t, y(t))| ≤ K1|x(t) − y(t)|, ∀x(t), y(t) ∈ Br and K1 ≥ 0 a
constant.
(C4): |h(t, x(t)) − h(t, y(t))| ≤ K2|x(t) − y(t)|, ∀x(t), y(t) ∈ Br and K2 ≥ 0 a
constant.

Then there exists a unique solution of (2.8) provided M1K1 + M2K2 + r < 1
and |w(t, x(t))|+ M1|g(t, 0)|+ M2|h(t, 0)| ≤ r(1−M1K1 −M2K2), where M1, M2

are norms of P and Q, respectively.

Proof. Suppose the mappings A,B, S, T are defined below:
(Ux)(t) = w(t, x(t)) +

∫ s

0
m(t, s)g(s, x(s)) ds = w(t, x(t)) + (Ax)(t),

(Uy)(t) = w(t, y(t)) +
∫ s

0
m(t, s)g(s, y(s)) ds = w(t, y(t)) + (By)(t),

(V x)(t) =
∫∞
0

k(t, s)h(s, x(s)) ds = (Cx)(t)−w(t, x(t)) = x(t)−(Sx)(t)−w(t, x(t)),

(V y)(t) =
∫∞
0

k(t, s)h(s, y(s)) ds = (Dx)(t)−w(t, y(t)) = y(t)−(Ty)(t)−w(t, y(t)).
The operators U and V from Br into BC[0,∞) defined above are Banach

spaces. We show that (U + V ) : Br → Br is a contraction. For, let x ∈ Br then

|U(x)(t) + V (x)(t)| ≤ |w(t, x(t))|+ M1|g(t, x(t))|+ M2|h(t, x(t))|
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We have the following inequalities

|g(t, x(t))| ≤ |g(t, x(t))− g(t, 0)|+ |g(t, 0)| ≤ K1|x(t)|+ |g(t, 0)| (2.9)

Similarly,

|h(t, x(t))| ≤ |h(t, x(t))− h(t, 0)|+ |h(t, 0)| ≤ K2|x(t)|+ |h(t, 0)| (2.10)

From (2.9) and (2.10) we have

|U(x)(t)+V (x)(t)| ≤ |w(t, x(t))|+K1M1|x(t)|+M1|g(t, 0)|+M2|x(t)|+M2|h(t, 0)|.
Since by assumption

|w(t, x(t))|+ M1|g(t, 0)|+ M2|h(t, 0)| ≤ 1−K1M1 −K2M2

we have

|U(x)(t) + V (x)(t)| ≤ r(1−K1M1 −K2M2) + K1M1r + K2M2r = r.

Thus U(x)(t) + V (x)(t) ∈ Br. Also

|U(x)(t) + V (x)(t)− U(y)(t)− V (y)(t)|
≤ r|x(t)− y(t)|+ K1M1|x(t)− y(t)|+ K2M2|x(t)− y(t)|
= (r + K1M1 + K2M2)|x(t)− y(t)|.

Since (r + K1M1 + K2M2) < 1, so U + V is a contraction on Br; therefore by
Banach contraction theorem there exists a unique solution of (2.8). This completely
validates Theorem 2.2.
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