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ON π-IMAGES OF SEPARABLE METRIC SPACES
AND A PROBLEM OF SHOU LIN

Tran Van An and Luong Quoc Tuyen

Abstract. In this paper, we give some characterizations of images of separable metric
spaces under certain π-maps, and give an affirmative answer to the problem posed by Shou Lin in
[Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing, 2002].

1. Introduction and preliminaries

In his book [7], S. Lin proved that a T1 and regular space X is a quotient com-
pact image of a separable metric space iff X is a quotient π-image of a separable
metric space, iff X has a countable weak base. But he does not know whether quo-
tient π-images of separable metric spaces and quotient compact images of separable
metric spaces are equivalent. So, the following question was posed by S. Lin.

Question 1.1. [8, Question 3.2.12] Is a quotient π-image of a separable metric
space a quotient compact image of a separable metric space?

In [10], S. Lin and P. Yan proved that a T1 and regular space X is a compact-
covering compact image of a separable metric space if and only if X is a sequentially-
quotient compact image of a separable metric space, if and only if X has a count-
able sn-network. And in [3], Y. Ge proved that a T1 and regular space X is a
sequentially-quotient compact image of a separable metric space if and only if X is
a sequentially-quotient π-image of a separable metric space, if and only if X has a
countable sn-network. Thus, we are interested in the following question.

Question 1.2. Is an image (resp., a sequentially-quotient π-image, a sequence-
covering π-image) of a separable metric space a compact image (resp., sequentially-
quotient compact image, sequence-covering compact image) of a separable metric
space?

In this paper, we give affirmative answers to the Question 1.1, Question 1.2
and give some characterizations of images of separable metric spaces under certain
π-maps.
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Throughout this paper, all spaces are assumed to be Hausdorff, all maps are
continuous and onto, N denotes the set of all natural numbers. Let P and Q be
two families of subsets of X, we denote (P)x = {P ∈ P : x ∈ P} and P∧Q =
{P ∩Q : P ∈ P, Q ∈ Q}. For a sequence {xn} converging to x and P ⊂ X, we say
that {xn} is eventually in P if {x} ∪ {xn : n ≥ m} ⊂ P for some m ∈ N, and {xn}
is frequently in P if some subsequence of {xn} is eventually in P .

Definition 1.3. [14] We say that f : X → Y is a weak-open map, if there
exists a weak base B =

⋃{By : y ∈ Y } for Y , and for every y ∈ Y , there exists
x ∈ f−1(y) such that for each open neighbourhood U of x, B ⊂ f(U) for some
B ∈ By.

Definition 1.4. Let d be a d-function on a space X.
(1) For each x ∈ X and n ∈ N, let Sn(x) = {y ∈ X : d(x, y) < 1/n}.
(2) X is sn-symmetric [5], if {Sn(x) : n ∈ N} is an sn-network at x in X for each

x ∈ X.
(3) X is Cauchy sn-symmetric, if it is sn-symmetric and every convergent sequence

in X is d-Cauchy.

Definition 1.5. Let P =
⋃{Pn : n ∈ N} be a σ-strong network for a space X.

(1) P is a σ-strong network consisting of covers (cs∗-covers, cs-covers, sn-covers),
if each Pn is a cover (resp., cs∗-cover, cs-cover, sn-cover).

(2) P is a σ-strong network consisting of finite covers (finite cs∗-covers, finite cs-
covers, finite sn-covers), if each Pn is a finite cover (resp., finite cs∗-cover,
finite cs-cover, finite sn-cover).

Notation 1.6. Let P =
⋃{Pn : n ∈ N} be a σ-strong network for a space X.

For each n ∈ N, put Pn = {Pα : α ∈ Λn} and endow Λn with the discrete topology.
Then,

M =
{

α = (αn) ∈
∏

n∈N
Λn : {Pαn} forms a network at some point xα ∈ X

}

is a metric space and the point xα is unique in X for every α ∈ M . Define
f : M → X by f(α) = xα. Let us call (f, M, X,Pn) a Ponomarev’s system,
following [11].

For some undefined or related concepts, we refer the readers to [6] and [8].

2. Results

Lemma 2.1 For a space X, the following statements hold.
(1) If X has a σ-strong network consisting of cs∗-covers, then X is sn-symmetric.
(2) If X has a σ-strong network consisting of cs-covers, then X is Cauchy sn-
symmetric.

Proof. Let P =
⋃{Pn : n ∈ N} be a σ-strong network for X. For each x, y ∈ X

with x 6= y, let δ(x, y) = min{n : y /∈ st(x,Pn)}. Then, we define

d(x, y) =
{

0 if x = y,

1/δ(x, y) if x 6= y.
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(1) If each Pn is a cs∗-cover, then d is a d-function on X and st(x,Pn) = Sn(x)
for all n ∈ N. Since P is a σ-strong network consisting of cs∗-covers, {Sn(x) : n ∈ N}
is an sn-network at x for every x ∈ X. Therefore, X is sn-symmetric.

(2) If each Pn is a cs-cover, then X is sn-symmetric by (1). Now, we shall show
that every convergent sequence in X is d-Cauchy. In fact, let {xi} be a sequence
converging to x ∈ X. Then, for any ε > 0, choose k ∈ N such that 1/k < ε. Since
Pk is a cs-cover, there exist P ∈ Pk, and m ∈ N such that xi ∈ P for all i ≥ m.
This implies that d(xi, xj) < ε for all i, j ≥ m.

Lemma 2.2. Let X be an sn-symmetric space. Then,
(1) If P is a sequential neighbourhood at x, then Sn(x) ⊂ P for some n ∈ N.
(2) If X has a countable cs∗-network, then X has a countable sn-network.

Proof. (1) If not, for each n ∈ N, there exists xn ∈ Sn(x) − P . Then, {xn}
converges to x. Hence, there exists m ∈ N such that xn ∈ P for every n ≥ m. This
is a contradiction.

(2) Let P be a countable cs∗-network for X. We can assume that P is a
countable cs-network, and P is closed under finite intersections. For each x ∈ X,
put Gx = {P ∈ P : Sn(x) ⊂ P for some n ∈ N}, and put G =

⋃{Gx : x ∈ X}.
Then, each element of Gx is a sequential neighbourhood at x, and for P1, P2 ∈ Gx,
there exists P ∈ G such that P ⊂ P1 ∩ P2. Furthermore, by using the proof in [9,
Lemma 7], we get Gx is a network at x. Thus, (2) holds.

Lemma 2.3. For a Ponomarev’s system (f,M,X,Pn), where each Pn is finite.
Then, the following statements hold.
(1) M is separable.
(2) f is compact.
(3) f is pseudo-sequence-covering, if each Pn is a cs∗-cover.
(4) f is 1-sequence-covering compact-covering, if each Pn is an sn-cover.

Proof. Since each Pn is finite, (1) holds. For (2), by [11, Lemma 13(1)]. And
for (3), see the proof of (d) =⇒ (a) in [6, Theorem 4].

For (4), by using the proof of (e) =⇒ (f) in [6, Theorem 9], we get f is sequence-
covering. By (1) and [1, Theorem 2.5], f is 1-sequence-covering. Furthermore, since
P =

⋃{Pn : n ∈ N} is a σ-strong network consisting of finite sn-covers, X has a
countable cs-network. Thus, each compact subset of X is metrizable. Similar to
the proof of [13, Lemma 3.10], each Pn is a cfp-cover. By [11, Lemma 13(2)], f is
compact-covering.

Theorem 2.4. The following are equivalent for a space X.
(1) X is an sn-symmetric with a countable cs∗-network;
(2) X has a σ-strong network consisting of finite cs∗-covers;
(3) X is a pseudo-sequence-covering compact image of a separable metric space;
(4) X is a sequentially-quotient π-image of a separable metric space.

Proof. (1) =⇒ (2). Let X be an sn-symmetric space with a countable cs∗-
network. By Lemma 2.2(2), X has a countable sn-network P =

⋃{Px : x ∈ X} =
{Pn : n ∈ N}. For each m,n ∈ N, put Am,n = {x ∈ X : Sn(x) ⊂ Pm}; Bm,n =
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X − Am,n, and Fm,n = {Pm, Bm,n}. Then, each Fm,n is finite. Furthermore, we
have

(i) Each Fm,n is a cs∗-cover. Let L = {xi : i ∈ N} be a sequence converging
to x ∈ X, then

Case 1. If x ∈ Am,n, then Sn(x) ⊂ Pm. Thus, L is eventually in Pm ∈ Fm,n.
Case 2. If x /∈ Am,n and L ∩ Bm,n is infinite, then L is frequently in Bm,n ∈

Fm,n.
Case 3. If x /∈ Am,n and L ∩Bm,n is finite, then there exists i0 ∈ N such that

{xi : i ≥ i0} ⊂ L ∩ Am,n. Since xi ∈ Am,n, xi ∈ Sn(xi) ⊂ Pm for each i ≥ i0. On
the other hand, since {xi} converges to x, {xi} is eventually in Sn(x). Thus, there
exists k0 ≥ i0 such that d(x, xi) < 1/n for all i ≥ k0. Then, {x, xi} ⊂ Sn(xi) ⊂ Pm

for all i ≥ k0. This follows that L is eventually in Pm ∈ Fm,n.
Therefore, each Fm,n is a cs∗-cover for X.
(ii) {st(x,Fm,n) : m,n ∈ N} is a network at x. Let x ∈ U with U open in

X. Since Px is an sn-network at x, there exists m0 ∈ N such that Pm0 ∈ Px and
Pm0 ⊂ U . By Lemma 2.2(1), there exists n0 ∈ N such that Sn0(x) ⊂ Pm0 . This
implies that x ∈ Am0,n0 . Hence, st(x,Fm0,n0) = Pm0 ⊂ U .

Next, we write {Fm,n : m,n ∈ N} = {Hi : i ∈ N}, and for each i ∈ N, put
Gi =

∧{Hj : j ≤ i}. Then, G =
⋃{Gi : i ∈ N} is a σ-strong network consisting of

finite cs∗-covers for X. Thus, (2) holds.
(2) =⇒ (3). Let

⋃{Pn : n ∈ N} be a σ-strong network consisting of finite
cs∗-covers for X. Consider the Ponomarev’s system (f, M, X,Pn). By Lemma 2.3,
(3) holds.

(3) =⇒ (4). It is obvious.
(4) =⇒ (1). Assume that (4) holds. Since M is separable, there exists a

countable dense subset D of M . For each n ∈ N, let Pn = {f(Sn(x)) : x ∈ D}.
Since f is a sequentially-quotient π-map,

⋃{Pn : n ∈ N} is a σ-strong network
consisting of countable cs∗-covers for X. Thus, X has a countable cs∗-network.
On the other hand, by Lemma 2.1(1), X is sn-symmetric. Hence, (1) holds.

The following corollary holds by Theorem 2.4.

Corollary 2.5. The following are equivalent for a space X.
(1) X is a symmetric with a countable cs∗-network;
(2) X is a sequential space with a σ-strong network consisting of finite cs∗-covers;
(3) X is a pseudo-sequence-covering quotient compact image of a separable metric

space;
(4) X is a quotient π-image of a separable metric space.

Remark 2.6. By Corollary 2.5, we get an affirmative answer to the Question
1.1.

Theorem 2.7. The following are equivalent for a space X.
(1) X is a Cauchy sn-symmetric with a countable cs∗-network;
(2) X has a σ-strong network consisting of finite cs-covers;
(3) X has a σ-strong network consisting of finite sn-covers;
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(4) X is a 1-sequence-covering compact-covering compact image of a separable
metric space;

(5) X is a sequence-covering π-image of a separable metric space.

Proof. (1) =⇒ (2). Let (1) holds. Since every Cauchy sn-symmetric is sn-
symmetric, by using again notations and arguments as in the proof (1) =⇒ (2) of
Theorem 2.4, it suffices to prove that each Fm,n is a cs-cover for X. Let x ∈ X
and L = {xi : i ∈ N} be a sequence converging to x; then

Case 1. If x ∈ Am,n, then Sn(x) ⊂ Pm. Hence, L is eventually in Pm ∈ Fm,n.
Case 2. If x /∈ Am,n and L∩Am,n is finite, then L is eventually in Bm,n ∈ Fm,n.
Case 3. If x /∈ Am,n and L ∩ Am,n is infinite, then we can assume that

L ∩ Am,n = {xik
: k ∈ N}. Since X is Cauchy sn-symmetric and L converges

to x, there exists n0 ∈ N such that d(xi, xj) < 1/n and d(x, xi) < 1/n for all
i, j ≥ n0. Now, we pick k0 ∈ N such that ik0 ≥ n0. Since d(xik0

, x) < 1/n and
d(xik0

, xi) < 1/n for every i ≥ n0, L is eventually in Sn(xik0
). Furthermore, since

xik0
∈ Am,n, Sn(xik0

) ⊂ Pm. Hence, L is eventually in Pm ∈ Fm,n.
Therefore, each Fm,n is a cs-cover for X.
(2) =⇒ (3). Let

⋃{Fi : i ∈ N} be a σ-strong network consisting of finite
cs-covers for X. For each i ∈ N, put Pi =

{
P ∈ Fi : there exist x ∈ X, k ∈

N such that Sk(x) ⊂ P
}
. Then, each Pi is finite and each P ∈ Pi is a sequential

neighbourhood of some x ∈ X. Furthermore, by using the proof in [9, Lemma 7],
for each x ∈ X, there exist P ∈ Pi and k ∈ N such that Sk(x) ⊂ P . Thus, for each
x ∈ X, there exists P ∈ Pi such that P is a sequential neighbourhood at x. Then,⋃{Pn : n ∈ N} is a σ-strong network consisting of finite sn-covers for X.

(3) =⇒ (4). Let
⋃{Pn : n ∈ N} be a σ-strong network consisting of finite

sn-covers for X. Consider the Ponomarev’s system (f, M, X,Pn). By Lemma 2.3,
(4) holds.

(4) =⇒ (5). It is obvious.
(5) =⇒ (1). Assume that (5) holds. Then, X has a countable cs∗-network.

Furthermore, by [6, Proposition 16(3b)], X has a σ-strong network consisting of
cs-covers. It follows from Lemma 2.1(2) that X is Cauchy sn-symmetric.

The following corollary holds by [1, Corollary 2.8] and Theorem 2.7.

Corollary 2.8 The following are equivalent for a space X.
(1) X is a Cauchy symmetric space with a countable cs∗-network;
(2) X is a sequential space with a σ-strong network consisting of finite cs-covers;
(3) X is a sequential space with a σ-strong network consisting of finite sn-covers;
(4) X is a weak-open compact-covering compact image of a separable metric space;
(5) X is a weak-open π-image of a separable metric space.

Remark 2.9. Using [4, Example 3.1], it is easy to see that X is Hausdorff, non-
regular and X has a countable base, but it is not a sequentially-quotient π-image of
a metric space. This shows that “sn-symmetric” (resp., “Cauchy sn-symmetric”)
cannot be omitted in Theorem 2.4 (resp., Theorem 2.7).

Theorem 2.10. The following are equivalent for a space X.
(1) X has a countable network;
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(2) X has a σ-strong network consisting of finite covers;
(3) X is a compact image of a separable metric space;
(4) X is a π-image of a separable metric space;
(5) X is an image of a separable metric space.

Proof. (1) =⇒ (2). Let P = {Pn : n ∈ N} be a countable network for X. For
each n ∈ N, put Pn = {Pn, X−Pn} and Gn =

∧{Pi : i ≤ n}. Then,
⋃{Gn : n ∈ N}

is a σ-strong network consisting of finite covers.
(2) =⇒ (3). Let

⋃{Pn : n ∈ N} be a σ-strong network consisting of finite
covers for X. Consider the Ponomarev’s system (f,M,X,Pn). Then, (3) holds by
Lemma 2.3.

(3) =⇒ (4) =⇒ (5) =⇒ (1). It is obvious.
Remark 2.11. By Theorem 2.4, Theorem 2.7 and Theorem 2.10, we get an

affirmative answer to the Question 1.2.
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