GLOBAL SMOOTHNESS PRESERVATION BY SOME NONLINEAR MAX-PRODUCT OPERATORS

Lucian Coroianu and Sorin G. Gal

Abstract. In this paper we study the problem of partial global smoothness preservation in the cases of max-product Bernstein approximation operators, max-product Hermite-Féjer interpolation operators based on the Chebyshev nodes of first kind and max-product Lagrange interpolation operators based on the Chebyshev nodes of second kind.

1. Introduction

In several recent papers, the approximation and shape preserving properties for the so-called max-product Bernstein operators (see [2, 3, 6]), max-product Hermite-Féjer interpolation operators (see [4]) and max-product Lagrange interpolation operators (see [5, 7]) were studied. One of the main characteristic is that these max-product operators present much better approximation properties than their linear counterpart (especially than the Hermite-Féjer and Lagrange polynomials).

In this paper we extend these studies for the above mentioned max-product operators, to the global smoothness preservation property.

The (partial) global smoothness preservation property can be described as follows. We say that the sequence of operators $L_n : C[a,b] \to C[a,b], n \in \mathbb{N}$, (partially) preserves the global smoothness of f, if for any $\alpha \in (0,1]$ and

 $f \in Lip \,\alpha = \{f : [a, b] \to \mathbb{R}; \exists M > 0, \text{ such that } |f(x) - f(y)| \le M |x - y|^{\alpha}\},\$

there exists $0 < \beta \leq \alpha$ independent of f and n, such that $L_n(f) \in Lip\beta$, for all $n \in \mathbb{N}$.

²⁰¹⁰ AMS Subject Classification: 41A05, 41A20, 41A17.

Keywords and phrases: Max-product Bernstein approximation operator; max-product Hermite-Féjer interpolation operator; max-product Lagrange interpolation operator; Chebyshev nodes of the first and second kind; global smoothness preservation.

The work of the first author was supported by the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/-/107/1.5/S/76841 with the title "Modern Doctoral Studies:Internationalization and Interdisciplinarity". Also, the works of both authors was supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-0861.

L. Coroianu, S. G. Gal

Equivalently, the property $L_n(f) \in Lip \beta$, for all $n \in \mathbb{N}$ means that there exists C > 0 independent of n but possibly depending on f, such that

 $\omega_1(L_n(f);h) \leq Ch^{\beta}$, for all $h \in [0,1], n \in \mathbb{N}$.

Here $\omega_1(f; \delta) = \sup\{|f(x+h) - f(x)|; 0 \le h \le \delta, x, x+h \in [a, b]\}$ is the uniform modulus of continuity, and of course, it can be replaced by other kinds of moduli of continuity too.

When $\beta = \alpha$ we have a complete global smoothness preservation.

It is well-known that, in general, if $(L_n(f)(x))_{n\in\mathbb{N}}$ is a sequence of linear Bernstein-type operators, then the complete global smoothness preservation holds (see e.g. the book [1]), while if $(L_n(f)(x))_{n\in\mathbb{N}}$ is a sequence of linear interpolation operators (in the sense that each $L_n(f)(x)$ coincides with f(x) on a system of given nodes), then excepting for example some particular Shepard operators, the interpolation conditions do not allow to have a complete global smoothness preservation property, i.e. in this case in general we have $\beta < \alpha$ (see [10] or [8, Chapter 1]).

In the present paper we study the global smoothness preservation property for the max-product Bernstein operator in Section 2, for the max-product Hermite-Féjer operator on the Chebyshev nodes of first kind in Section 3 and for the maxproduct Lagrange operator on the Chebyshev nodes of second kind in Section 4.

As a conclusion, we will derive that these max-product operators have the nice property that the images of the Lipschitz classes $Lip \alpha$, $0 < \alpha < 1$, is the same Lipschitz class $Lip \beta$, with $\beta = \frac{\alpha}{4+\alpha}$.

2. Max-product Bernstein operator

In this section we study the global smoothness preservation for the maxproduct Bernstein operator.

For a function $f : [0,1] \to \mathbb{R}_+$, the Bernstein approximation operator of maxproduct kind is given by the formula (see e.g. [9, p. 326])

$$B_n^{(M)}(f)(x) = \frac{\bigvee_{k=0}^n p_{n,k}(x) f\left(\frac{k}{n}\right)}{\bigvee_{k=0}^n p_{n,k}(x)},$$

where $p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}$ and $\bigvee_{k=0}^n p_{n,k}(x) = \max_{k=\{0,\dots,n\}} \{p_{n,k}(x)\}.$

REMARK. As it was proved in [3], $B_n^{(M)}(f)$ is a nonlinear (more exactly sublinear on the space of positive functions) operator, well-defined for all $x \in \mathbb{R}$, piecewise rational function on \mathbb{R} . Also, as it was proved in [2], $B_n^{(M)}(f)$ possesses some interesting approximation and shape preserving properties. For example, the order of uniform approximation is $\omega_1(f; 1/\sqrt{n})$ However, for some subclasses of functions including for example the class of concave functions and also a subclass of the convex functions, the essentially better order $\omega_1(f; 1/n)$ is obtained. In addition, $B_n^{(M)}(f)$ is continuous for any positive function f, preserves the monotonicity and the quasi-convexity. For the main results of this paper we need the following five lemmas.

LEMMA 2.1. [2, Lemma 3.4] For $n \in N$, $n \ge 1$, we have

$$\bigvee_{k=0}^{n} p_{n,k}(x) = p_{n,j}(x), \text{ for all } x \in \left[\frac{j}{n+1}, \frac{j+1}{n+1}\right], \ j = 0, 1, \dots, n.$$

REMARK. It easily follows that

$$p_{n,j}\left(\frac{j+1}{n+1}\right) = p_{n,j+1}\left(\frac{j+1}{n+1}\right) \text{ for all } j \in \{0, 1, \dots, n\}.$$

LEMMA 2.2. Let $n \in N$, $n \ge 1$ and $j \in \{0, 1, ..., n\}$. The following assertions hold:

(i) If
$$j \leq \frac{n}{2}$$
 then $p_{n,j}\left(\frac{j}{n+1}\right) \geq p_{n,j}\left(\frac{j+1}{n+1}\right)$;
(ii) If $j \geq \frac{n}{2}$ then $p_{n,j}\left(\frac{j}{n+1}\right) \leq p_{n,j}\left(\frac{j+1}{n+1}\right)$.

Proof. After elementary calculus, $p_{n,j}(\frac{j}{n+1}) \ge p_{n,j}(\frac{j+1}{n+1})$ is equivalent with

$$\left(\frac{j}{j+1}\right)^j \ge \left(\frac{n-j}{n-j+1}\right)^{n-j}$$

Let us consider the functions $g : [0,n] \to \mathbb{R}$, $g(x) = \left(\frac{x}{x+1}\right)^x$ and $h : [0,n] \to \mathbb{R}$, $h(x) = \left(\frac{n-x}{n-x+1}\right)^{n-x}$. We have $g'(x) = \left(\frac{x}{x+1}\right)^x \left(\frac{1}{x+1} - (\ln(x+1) - \ln x)\right) \le 0$

for all
$$x \in (0, 1]$$
, where we used the well-known inequality $\frac{1}{x+1} \leq \ln(x+1) - \ln x$, $x \in (0, \infty)$. Therefore, g is nonincreasing on $[0, 1]$. Since $h(x) = g(n-x)$ for all $x \in (0, n]$, it easily follows that h is nondecreasing on $[0, 1]$. Because $h(\frac{n}{2}) = g(\frac{n}{2})$ and noting the monotonicity of g and h , we conclude that both assertions of the lemma hold.

Throughout the paper, C, C_0 , C_1 , C_2 , c will denote absolute positive constants which can be of different values at each occurrence (and of different independencies mentioned correspondingly).

LEMMA 2.3. Let
$$n \in N$$
, $n \ge 1$ and $j \in \{0, 1, \dots, n\}$. Then

$$\min\left\{p_{n,j}\left(\frac{j}{n+1}\right), p_{n,j}\left(\frac{j+1}{n+1}\right)\right\} \ge \frac{C}{\sqrt{n}},$$

where C > 0 is an absolute constant independent of n and j.

Proof. We distinguish two cases: (i) n is even and (ii) n is odd.

Case (i). By Lemma 2.2 and by the Remark after Lemma 2.1, it follows that

$$\min\left\{p_{n,j}\left(\frac{j}{n+1}\right), p_{n,j}\left(\frac{j+1}{n+1}\right)\right\} \ge p_{n,n_0}\left(\frac{n_0}{n+1}\right) = p_{n,n_0}\left(\frac{n_0+1}{n+1}\right)$$

e $n_0 = \frac{n}{2}$ By direct calculation we get

where $n_0 = \frac{n}{2}$. By direct calculation we get

$$p_{n,n_0}\left(\frac{n_0}{n+1}\right) = \frac{(2n_0)!}{(n_0!)^2} \cdot \left(\frac{n_0(n_0+1)}{(2n_0+1)^2}\right)^{n_0} = \frac{(2n_0)!}{(n_0!)^2 4^{n_0}} \cdot \left(\frac{n_0^2 + n_0}{n_0^2 + n_0 + 1/4}\right)^{n_0}$$

By the Wallis's formula (see [12, p. 142])

$$\lim_{n \to \infty} \frac{2 \cdot 4 \cdot \dots (2n)}{1 \cdot 3 \cdot \dots (2n-1)\sqrt{2n+1}} = \sqrt{\frac{\pi}{2}},$$

it is immediate that

$$\frac{(2^n n!)^2}{(2n)!} \cdot \frac{1}{\sqrt{2n}} \sim \sqrt{\frac{\pi}{2}},$$

and therefore there exists two absolute constants $C_1, C_2 > 0$ (independent of n), such that

$$\frac{C_1}{\sqrt{n}} \le \frac{(2n)!}{(n!)^2 4^n} \le \frac{C_2}{\sqrt{n}}, \text{ for all } n \in \mathbb{N}.$$

On the other hand, we have

$$\left(\frac{n_0^2 + n_0}{n_0^2 + n_0 + 1/4}\right)^{n_0} \ge \left(\frac{n_0^2 + n_0}{n_0^2 + n_0 + 1}\right)^{n_0} \ge \left(\frac{2n_0}{2n_0 + 1}\right)^{n_0} \ge \frac{1}{\sqrt{e}}.$$

Taking into account these last two inequalities, we get $p_{n,n_0}(\frac{n_0}{n+1}) \geq \frac{C}{\sqrt{n}}$, which proves the lemma in this case.

Case (ii). By Lemma 2.2 and by the Remark after Lemma 2.1, it follows that

$$\min\left\{p_{n,j}(\frac{j}{n+1}), p_{n,j}(\frac{j+1}{n+1})\right\} \ge p_{n,n_1}(\frac{n_1+1}{n+1})$$

where $n_1 = \frac{n-1}{2}$. We have

$$p_{n,n_1}\left(\frac{n_1+1}{n+1}\right) = \frac{(2n_1+1)!}{n_1!(n_1+1)!} \cdot \left(\frac{n_1+1}{2n_1+2}\right)^{n_1} \cdot \left(\frac{n_1+1}{2n_1+2}\right)^{n_1+1}$$
$$= \frac{(2n_1)!}{(n_1!)^2 4^n} \cdot \frac{2n_1+1}{2n_1+2} \ge \frac{C}{\sqrt{n}}.$$

Collecting the estimates from the above two cases we get the desired conclusion. \blacksquare

LEMMA 2.4. One has

$$\bigvee_{k=0}^{n} p_{n,k}(x) \ge \frac{C}{\sqrt{n}}$$

for all $n \in N$, $n \ge 1$ and $x \in [0,1]$, where C > 0 is a constant independent of n and x.

Proof. Let $x \in [0,1]$ and $n \in \mathbb{N}$ be arbitrary fixed. Let us choose $j \in \{0, 1, \dots, n\}$ such that $x \in [\frac{j}{n+1}, \frac{j+1}{n+1}]$. Then we have

$$p_{n,j}(x) = \binom{n}{j} x^j (1-x)^{n-j} \ge \binom{n}{j} \left(\frac{j}{n+1}\right)^j \left(1-\frac{j+1}{n+1}\right)^{n-j}$$
$$= \binom{n}{j} \left(\frac{j}{n+1}\right)^j \left(\frac{n-j+1}{n+1}\right)^{n-j} \left(\frac{n-j}{n-j+1}\right)^{n-j}$$
$$= p_{n,j} \left(\frac{j}{n+1}\right) \left(\frac{n-j}{n-j+1}\right)^{n-j} \ge p_{n,j} \left(\frac{j}{n+1}\right) \frac{1}{e}.$$

But applying Lemma 2.3, we get $p_{n,j}(x) \geq \frac{C}{\sqrt{n}}$, which proves the present lemma.

REMARK. In fact, the lower estimate in Lemma 2.4 is the best possible. Indeed, by the proof of Lemma 2.3, there exists absolute constants C_1 , C_2 , such that

$$\frac{C_1}{\sqrt{n}} \le \frac{(2n)!}{(n!)^2 4^n} \le \frac{C_2}{\sqrt{n}},$$

for all $n \in \mathbb{N}$. Then, by Lemma 2.1 and by the proof of Lemma 2.2, it follows that $p_{n,n_0}(\frac{n_0}{n_0+1}) = \bigvee_{k=0}^n p_{n,k}(\frac{n_0}{n_0+1}) \leq \frac{C_0}{\sqrt{n}}$, where $n_0 = \lfloor \frac{n}{2} \rfloor$ and C_0 does not depend on n. This implies the desired conclusion.

Also, we have the following

LEMMA 2.5. For all bounded $f: [0,1] \rightarrow R_+, n \in N$ and h > 0, we have $\omega_1(B_n^{(M)}(f);h) \leq Cn^2 ||f||h,$ where $||f|| = \sup\{|f(x)|; x \in [-1,1]\}$ and C > 0 is a constant independent of f, n

and h.

Proof. By Lemma 2.4, it follows that $\bigvee_{k=0}^{n} p_{n,k}(x) \geq \frac{C}{\sqrt{n}}$, for all $x \in [0,1]$, with C > 0 independent of n and x. Then, we have

$$\begin{aligned} \left| B_n^{(M)}(f)(x) - B_n^{(M)}(f)(y) \right| &= \left| \frac{\bigvee_{k=0}^n p_{n,k}(x) f\left(\frac{k}{n}\right)}{\bigvee_{k=0}^n p_{n,k}(x)} - \frac{\bigvee_{k=0}^n p_{n,k}(y) f\left(\frac{k}{n}\right)}{\bigvee_{k=0}^n p_{n,k}(y)} \right| \\ &= \frac{1}{\bigvee_{k=0}^n p_{n,k}(x) \bigvee_{k=0}^n p_{n,k}(y)} \times \\ &\times \left| \bigvee_{k=0}^n p_{n,k}(y) \bigvee_{k=0}^n p_{n,k}(x) f\left(\frac{k}{n}\right) - \bigvee_{k=0}^n p_{n,k}(x) \bigvee_{k=0}^n p_{n,k}(y) f\left(\frac{k}{n}\right) \right| \\ &\leq Cn \left| \bigvee_{k=0}^n p_{n,k}(y) \bigvee_{k=0}^n p_{n,k}(x) f\left(\frac{k}{n}\right) - \bigvee_{k=0}^n p_{n,k}(x) \bigvee_{k=0}^n p_{n,k}(x) \bigvee_{k=0}^n p_{n,k}(y) f\left(\frac{k}{n}\right) \right| \end{aligned}$$

Without loss of generality, let us suppose that $B_n^{(M)}(f)(x) \ge B_n^{(M)}(f)(y)$. Let $k_1, k_2 \in \{0, 1, \dots, n\}$ be such that

$$\bigvee_{k=0}^{n} p_{n,k}(y) = p_{n,k_1}(y), \quad \bigvee_{k=0}^{n} p_{n,k}(x)f(\frac{k}{n}) = p_{n,k_2}(x)f(\frac{k_2}{n}).$$

Then (\mathcal{T}_{M})

$$\begin{split} \left| B_n^{(M)}(f)(x) - B_n^{(M)}(f)(y) \right| \\ &\leq Cn \left(\bigvee_{k=0}^n p_{n,k}(y) \bigvee_{k=0}^n p_{n,k}(x) f(\frac{k}{n}) - \bigvee_{k=0}^n p_{n,k}(x) \bigvee_{k=0}^n p_{n,k}(y) f(\frac{k}{n}) \right) \\ &= Cn \left(p_{n,k_1}(y) p_{n,k_2}(x) f(\frac{k_2}{n}) - \bigvee_{k=0}^n p_{n,k}(x) \bigvee_{k=0}^n p_{n,k}(y) f(\frac{k}{n}) \right) \\ &\leq Cn \left(p_{n,k_1}(y) p_{n,k_2}(x) f(\frac{k_2}{n}) - p_{n,k_1}(x) p_{n,k_2}(y) f(\frac{k_2}{n}) \right) \\ &= Cnf(\frac{k_2}{n}) [p_{n,k_1}(y) p_{n,k_2}(x) - p_{n,k_1}(x) p_{n,k_2}(x)] \\ &= Cnf(\frac{k_2}{n}) [(p_{n,k_1}(y) p_{n,k_2}(x) - p_{n,k_1}(x) p_{n,k_2}(x)) \\ &\quad + (p_{n,k_1}(x) p_{n,k_2}(x) - p_{n,k_1}(x) p_{n,k_2}(x)) \\ &= Cnf(\frac{k_2}{n}) [p_{n,k_2}(x) (p_{n,k_1}(y) - p_{n,k_1}(x)) + p_{n,k_1}(x) (p_{n,k_2}(x) - p_{n,k_2}(y))]. \end{split}$$

Taking into account that $p_{n,k_1}(x) \leq 1$ and $p_{n,k_2}(x) \leq 1$, we get

$$\begin{aligned} \left| B_n^{(M)}(f)(x) - B_n^{(M)}(f)(y) \right| \\ &\leq Cn \left\| f \right\| \left(\left| p_{n,k_1}(y) - p_{n,k_1}(x) \right| + \left| p_{n,k_2}(x) - p_{n,k_2}(y) \right| \right) \\ &\leq Cn \left\| f \right\| \left(\left\| p_{n,k_1}' \right\| \left| x - y \right| + \left\| p_{n,k_2}' \right\| \left| x - y \right| \right). \end{aligned}$$

If k = 0 or k = n, then $p_{n,k}(x) = x^n$ and we get $||p'_{n,k}|| = n$. If $k \in [1, 2, ..., n-1]$, then it is known that $p'_{n,k}(x) = n(p_{n-1,k-1}(x) - p_{n-1,k}(x))$. Consequently, we obtain $||p'_{n,k}|| \le 2n$ for all $k \in \{0, 1, ..., n\}$. Clearly, this implies

$$\left| B_n^{(M)}(f)(x) - B_n^{(M)}(f)(y) \right| \le Cn^2 \|f\| \|x - y\|$$

Passing to supremum with $|x - y| \le h$, the lemma is proved.

We are now in position to prove the main result of this section.

THEOREM 2.6. Let $f : [0,1] \to R_+$. If $f \in Lip_M \alpha$ with $0 < \alpha \le 1$, then for all $n \in N$ and $0 \le h \le 1$ we have

$$\omega_1(B_n^{(M)}(f);h) \le ch^{\alpha/(4+\alpha)},$$

where c > 0 is independent of n and h (but depends on f).

Proof. By Lemma 2.5 we get

$$\omega_1(B_n^{(M)}(f);h) \le Cn^2h$$
, for all $h \in [0,1]$,

where C > 0 is independent of n and h.

On the other hand, for $|x - y| \le h$, by [2, Theorem 4.1], we get $|B_n^{(M)}(f)(x) - B_n^{(M)}(f)(y)|$

$$\leq |B_n^{(M)}(f)(x) - f(x)| + |f(x) - f(y)| + |f(y) - B_n^{(M)}(f)(y)|$$

$$\leq 2||B_n^{(M)}(f) - f|| + Ch^{\alpha} \leq c \left[\frac{1}{n^{\alpha/2}} + h^{\alpha}\right].$$

Passing to supremum with $|x - y| \le h$, it follows

$$\omega_1(B_n^{(M)}(f);h) \le C\left[\frac{1}{n^{\alpha/2}} + h^{\alpha}\right].$$

Therefore, for all $n \in \mathbb{N}$ and $0 \le h \le 1$ we get

$$\omega_1(B_n^{(M)}(f);h) \le c \min\left\{n^2 h, \frac{1}{n^{\alpha/2}} + h^{\alpha}\right\},\$$

where c > 0 is independent of n and h. The optimal choice here is obtained when $n^2h = \frac{1}{n^{\alpha/2}}$, that is if $h = \frac{1}{n^{2+\alpha/2}}$. Indeed, if $h < \frac{1}{n^{2+\alpha/2}}$ then the minimum is the first term, and when $h > \frac{1}{n^{2+\alpha/2}}$ then is the second term. This therefore implies $n = \frac{1}{h^{1/(2+\alpha/2)}}$ and replacing above we obtain

$$\omega_1(B_n^{(M)}(f);h) \le ch^{\alpha/(4+\alpha)}, \text{ for all } n \in \mathbb{N}, h \in [0,1],$$

which proves the theorem. \blacksquare

REMARKS. 1) Theorem 2.6 shows that the images of the class $Lip \alpha$, $\alpha \in (0, 1]$, through all the max-product Bernstein operators $B_n^{(M)}$, $n \in \mathbb{N}$, belong to the same class $Lip \beta$, with $\beta = \frac{\alpha}{4+\alpha}$.

2) It is an open question if the exponent $\alpha/(4+\alpha)$ in the statement of Theorem 2.6 is the best possible.

3) Comparing with the complete global smoothness property of the linear Bernstein polynomials (see e.g. [1, p. 231, relation (7.1)]), the result in Theorem 2.6 is weaker. But this is not an unexpected result, taking into account that each max-product Bernstein operator $B_n^{(M)}(f)$, has a finite number of points where is not differentiable.

3. Max-product Hermite-Féjer operator

In this section we find global smoothness preservation for the max-product Hermite-Féjer interpolation operator based on the Chebyshev nodes of first kind.

Let $f: [-1,1] \to \mathbb{R}$ and $x_{n,k} = \cos(\frac{2k+1}{2(n+1)}\pi) \in (-1,1), k \in \{0,\ldots,n\}, -1 < x_{n,n} < x_{n,n-1} < \cdots < x_{n,0} < 1$, be the roots of the first kind Chebyshev polynomial $T_{n+1}(x) = \cos[(n+1) \arccos(x)]$. Denoting

$$h_{n,k}(x) = (1 - xx_{n,k}) \cdot \left(\frac{T_{n+1}(x)}{(n+1)(x - x_{n,k})}\right)^2,$$

it is well known that the max-product Hermite-Fejér interpolation operator is given by the formula (see [5])

$$H_{2n+1}^{(M)}(f)(x) = \frac{\bigvee_{k=0}^{n} h_{n,k}(x) f(x_{n,k})}{\bigvee_{k=0}^{n} h_{n,k}(x)}$$

where $\bigvee_{k=0}^{n} h_{n,k}(x) = \max_{k=\{0,\dots,n\}} \{h_{n,k}(x)\}.$

REMARK. As it was proved in [5], $H_{2n+1}^{(M)}(f)(x)$ is a nonlinear (more exactly sublinear on the space of positive functions) operator, well-defined for all $x \in \mathbb{R}$ and a continuous, piecewise rational function on \mathbb{R} . Also, $H_{2n+1}^{(M)}(f)(x_{n,j}) = f(x_{n,j})$ for all $n \in \mathbb{N}$ and $j = 0, 1, \ldots, n$, that is interpolatory on the points $x_{n,j}, n \in \mathbb{N}, j \in$ $\{0, \ldots, n\}$.

Firstly, we need the following auxiliary result.

THEOREM 3.1. For all bounded $f: [-1,1] \to \mathbb{R}_+$, $n \in N$ and h > 0, we have $\omega_1(H_{2n+1}^{(M)}(f);h) \leq Cn^4 ||f||h,$

where $\|f\| = \sup\{|f(x)|; x \in [-1,1]\}$ and C > 0 is independent of n and h.

Proof. Since $\sum_{k=0}^{n} h_{n,k}(x) = 1$ for all $x \in [-1, 1]$, it follows that $\bigvee_{k=0}^{n} h_{n,k}(x) \ge 1/(n+1) \ge 1/(2n)$, for all $x \in [-1, 1]$. Then, we have

$$\begin{aligned} |H_{2n+1}^{(M)}(f)(x) - H_{2n+1}^{(M)}(f)(y)| \\ &= \left| \frac{\bigvee_{k=0}^{n} h_{n,k}(x) f(x_{n,k})}{\bigvee_{k=0}^{n} h_{n,k}(x)} - \frac{\bigvee_{k=0}^{n} h_{n,k}(y) f(x_{n,k})}{\bigvee_{k=0}^{n} h_{n,k}(y)} \right| \\ &= \frac{1}{\bigvee_{k=0}^{n} h_{n,k}(x)} \frac{\bigvee_{k=0}^{n} h_{n,k}(y)}{\bigvee_{k=0}^{n} h_{n,k}(y)} \times \\ &\times \left| \bigvee_{k=0}^{n} h_{n,k}(y) \bigvee_{k=0}^{n} h_{n,k}(x) f(x_{n,k}) - \bigvee_{k=0}^{n} h_{n,k}(x) \bigvee_{k=0}^{n} h_{n,k}(y) f(x_{n,k}) \right| \\ &\leq 4n^{2} \left| \bigvee_{k=0}^{n} h_{n,k}(y) \bigvee_{k=0}^{n} h_{n,k}(x) f(x_{n,k}) - \bigvee_{k=0}^{n} h_{n,k}(x) \bigvee_{k=0}^{n} h_{n,k}(y) f(x_{n,k}) \right|. \end{aligned}$$

Without loss of generality, let us suppose that $H_{2n+1}^{(M)}(f)(x) \ge H_{2n+1}^{(M)}(f)(y)$. Let $k_1, k_2 \in \{0, 1, \ldots, n\}$ be such that

$$\bigvee_{k=0}^{n} h_{n,k}(y) = h_{n,k_1}(y),$$
$$\bigvee_{k=0}^{n} h_{n,k}(x)f(x_{n,k}) = h_{n,k_2}(x)f(x_{n,k_2})$$

Then

$$\begin{aligned} \left| H_{2n+1}^{(M)}(f)(x) - H_n^M(f)(y) \right| \\ &\leq 4n^2 \left(\bigvee_{k=0}^n h_{n,k}(y) \bigvee_{k=0}^n h_{n,k}(x) f(x_{n,k}) - \bigvee_{k=0}^n h_{n,k}(x) \bigvee_{k=0}^n h_{n,k}(y) f(x_{n,k}) \right) \\ &= 4n^2 \left(h_{n,k_1}(y) h_{n,k_2}(x) f(x_{n,k_2}) - \bigvee_{k=0}^n h_{n,k}(x) \bigvee_{k=0}^n h_{n,k}(y) f(x_{n,k}) \right) \end{aligned}$$

Global smoothness preservation by max-product operators

$$\leq 4n^{2} (h_{n,k_{1}}(y)h_{n,k_{2}}(x)f(x_{n,k_{2}}) - h_{n,k_{1}}(x)h_{n,k_{2}}(y)f(x_{n,k_{2}}))$$

$$= 4n^{2} f(x_{n,k_{2}})[h_{n,k_{1}}(y)h_{n,k_{2}}(x) - h_{n,k_{1}}(x)h_{n,k_{2}}(y)]$$

$$= 4n^{2} f(x_{n,k_{2}})[(h_{n,k_{1}}(y)h_{n,k_{2}}(x) - h_{n,k_{1}}(x)h_{n,k_{2}}(x)) + (h_{n,k_{1}}(x)h_{n,k_{2}}(x) - h_{n,k_{1}}(x)h_{n,k_{2}}(y))]$$

$$= 4n^{2} f(x_{n,k_{2}})[h_{n,k_{2}}(x) - h_{n,k_{1}}(x)h_{n,k_{2}}(y)]$$

 $= 4n^2 f(x_{n,k_2})[h_{n,k_2}(x)(h_{n,k_1}(y) - h_{n,k_1}(x)) + h_{n,k_1}(x)(h_{n,k_2}(x) - h_{n,k_2}(y))]$ Taking into account that $h_{n,k_1}(x) \le 1$ and $h_{n,k_2}(x) \le 1$, we get

$$|H_{2n+1}^{(M)}(f)(x) - H_{2n+1}^{(M)}(f)(y)| \\ \leq 4n^2 ||f|| (|h_{n,k_1}(y) - h_{n,k_1}(x)| + |h_{n,k_2}(x) - h_{n,k_2}(y)|) \\ \leq 4n^2 ||f|| (||h'_{n,k_1}|| |x - y| + ||h'_{n,k_2}|| |x - y|).$$

But by [10] (see also [8], first inequality on page 6) we have $||h'_{n,j}|| \leq Cn^2$, for all $n \in N$ and $j \in \{0, 1, ..., n\}$, where C > 0 is an absolute constant independent of n and j, which implies that

$$\left| H_{2n+1}^{(M)}(f)(x) - H_{2n+1}^{(M)}(f)(y) \right| \le Cn^4 \left\| f \right\| \left| x - y \right|.$$

Passing to supremum with $|x - y| \le h$, the theorem is proved.

The main result of this section is the following.

THEOREM 3.2. Let $f : [-1,1] \to \mathbb{R}_+$. If $f \in Lip_M \alpha$ with $0 < \alpha \leq 1$, then for all $n \in \mathbb{N}$ and 0 < h < 1 we have

$$\omega_1(H_{2n+1}^{(M)}(f);h) \le ch^{\alpha/(4+\alpha)},$$

where c > 0 is independent of n and h (but depends on f).

Proof. By Theorem 3.1 we get

$$\omega_1(H_{2n+1}^{(M)}(f);h) \le Cn^4h$$
, for all $h \in (0,1)$.

where C > 0 is independent of n and h.

On the other hand, for $|x - y| \le h$, by [4, Theorem 3.1], we get $|H_{2n+1}^{(M)}(f)(x) - H_{2n+1}^{(M)}(f)(x)| \le |H_{2n+1}^{(M)}(f)(x) - f(x)| + |f(x) - f(y)|$

$$+ |f(y) - H_{2n+1}^{(M)}(f)(y)| \le 2||H_{2n+1}^{(M)}(f) - f|| + Ch^{\alpha} \le c \left\lfloor \frac{1}{n^{\alpha}} + h^{\alpha} \right\rfloor,$$

where c > 0 is independent of n and h. Passing to supremum with $|x - y| \le h$ it follows

$$\omega_1(H_{2n+1}^{(M)}(f);h) \le C\left[\frac{1}{n^{\alpha}} + h^{\alpha}\right].$$

Therefore, for all $n \in \mathbb{N}$ and 0 < h < 1 we get

$$\omega_1(H_{2n+1}^{(M)}(f);h) \le c \min\left\{n^4 h, \frac{1}{n^{\alpha}} + h^{\alpha}\right\}.$$

The optimal choice here is obtained when $n^4h = \frac{1}{n^{\alpha}}$, that is if $h = \frac{1}{n^{4+\alpha}}$. Indeed, if $h < \frac{1}{n^{4+\alpha}}$ then the minimum is the first term, and when $h > \frac{1}{n^{4+\alpha}}$ then is the second term. This therefore implies $n = \frac{1}{h^{1/(4+\alpha)}}$ and replacing above we obtain

$$\omega_1(H_{2n+1}^{(M)}(f);h) \le ch^{\alpha/(4+\alpha)}, \text{ for all } n \in \mathbb{N}, h \in (0,1),$$

the theorem

which proves the theorem. \blacksquare

REMARKS. 1) Theorem 3.2 shows that the images of the class $Lip \alpha$, $\alpha \in (0, 1]$, through all the max-product Hermite-Féjer operators $H_{2n+1}^{(M)}$, $n \in \mathbb{N}$, belong to the same class $Lip\beta$, with $\beta = \frac{\alpha}{4+\alpha}$.

2) It is an open question if the exponent $\alpha/(4+\alpha)$ in the statement of Theorem 3.2 is the best possible.

4. Max-product Lagrange operator

In this section we find global smoothness preservation properties for the maxproduct Lagrange interpolation operator based on the Chebyshev nodes of second kind, plus the endpoints.

Let $f: [-1,1] \to \mathbb{R}$ and $x_{n,k} = \cos(\frac{n-k}{n-1}\pi) \in [-1,1]$, $k \in \{1,\ldots,n\}$ be the Chebyshev knots of second kind in [-1,1], plus the endpoints. More exactly, it is known that $x_{n,k}$ are the roots of $\omega_n(x) = \sin[(n-1)t]\sin t$, $x = \cos t$ (which represents in fact the Chebyshev polynomial of second kind of degree n-2, multiplied by $1-x^2$) and that in this case for the fundamental Lagrange polynomials we can write (see [11, p. 377])

$$l_{n,k}(x) = \frac{(-1)^{k-1}\omega_n(x)}{(1+\delta_{k,1}+\delta_{k,n})(n-1)(x-x_{n,k})}, \qquad n \ge 2, \quad k = 1, \dots, n$$

where $\omega_n(x) = \prod_{k=1}^n (x - x_{n,k})$ and $\delta_{i,j}$ denotes the Kronecker's symbol, that is $\delta_{i,j} = 1$ if i = j and $\delta_{i,j} = 0$ if $i \neq j$.

Then, the max-product Lagrange interpolation operator is given by the formula (see [4])

$$L_n^{(M)}(f)(x) = \frac{\bigvee_{k=1}^n l_{n,k}(x)f(x_{n,k})}{\bigvee_{k=1}^n l_{n,k}(x)}, \qquad x \in [-1,1],$$

where $\bigvee_{k=1}^{n} l_{n,k}(x) = \max_{k=\{1,\dots,n\}} \{l_{n,k}(x)\}.$

REMARK. As it was proved in [5], $L_n^{(M)}(f)(x)$ is a nonlinear (more exactly sublinear on the space of positive functions) operator, well-defined for all $x \in \mathbb{R}$ and a continuous, piecewise rational function on \mathbb{R} . Also, $L_n^{(M)}(f)(x_{n,j}) = f(x_{n,j})$ for all $n \in \mathbb{N}$ and $j = 1, \ldots, n$, that is interpolatory on the points $x_{n,j}, n \in \mathbb{N}, j \in \{0, \ldots, n\}$.

Firstly, we need the following result.

THEOREM 4.1. For all bounded $f: [-1,1] \to \mathbb{R}_+$, $n \in N$ and h > 0, we have $\omega_1(L_n^{(M)}(f);h) \leq Cn^4 ||f||h,$

where C is an absolute constant independent of f, h and n.

Proof. Since $\sum_{k=1}^{n} l_{n,k}(x) = 1$ for all $x \in [-1, 1]$, it follows that $\bigvee_{k=1}^{n} l_{n,k}(x) \ge 1/n$ for all $x \in [-1, 1]$. Then, we have

$$\left| L_n^{(M)}(f)(x) - L_n^{(M)}(f)(y) \right|$$

Global smoothness preservation by max-product operators

$$= \left| \frac{\bigvee_{k=1}^{n} l_{n,k}(x) f(x_{n,k})}{\bigvee_{k=1}^{n} l_{n,k}(x)} - \frac{\bigvee_{k=1}^{n} l_{n,k}(y) f(x_{n,k})}{\bigvee_{k=1}^{n} l_{n,k}(y)} \right|$$
$$= \frac{1}{\bigvee_{k=1}^{n} l_{n,k}(x)} \frac{\bigvee_{k=1}^{n} l_{n,k}(y)}{\bigvee_{k=1}^{n} l_{n,k}(x)} \times \left| \bigvee_{k=1}^{n} l_{n,k}(y) \bigvee_{k=1}^{n} l_{n,k}(x) f(x_{n,k}) - \bigvee_{k=1}^{n} l_{n,k}(x) \bigvee_{k=1}^{n} l_{n,k}(y) f(x_{n,k}) \right|$$
$$\leq n^{2} \left| \bigvee_{k=1}^{n} l_{n,k}(y) \bigvee_{k=1}^{n} l_{n,k}(x) f(x_{n,k}) - \bigvee_{k=1}^{n} l_{n,k}(x) \bigvee_{k=1}^{n} l_{n,k}(x) f(x_{n,k}) \right|.$$
(10)

Without loss of generality let us suppose that $L_n^{(M)}(f)(x) \ge L_n^{(M)}(f)(y)$. Let $k_1, k_2 \in \{1, 2, ..., n\}$ be such that

$$\bigvee_{k=1}^{n} l_{n,k}(y) = l_{n,k_1}(y),$$
$$\bigvee_{k=1}^{n} l_{n,k}(x) f(x_{n,k}) = l_{n,k_2}(x) f(x_{n,k_2}).$$

Then

Then

$$\begin{aligned} \left| L_{n}^{(M)}(f)(x) - L_{n}^{(M)}(f)(y) \right| \\ &\leq n^{2} \left(\bigvee_{k=1}^{n} l_{n,k}(y) \bigvee_{k=1}^{n} l_{n,k}(x) f(x_{n,k}) - \bigvee_{k=1}^{n} l_{n,k}(x) \bigvee_{k=1}^{n} l_{n,k}(y) f(x_{n,k}) \right) \\ &= n^{2} \left(l_{n,k_{1}}(y) l_{n,k_{2}}(x) f(x_{n,k_{2}}) - \bigvee_{k=1}^{n} l_{n,k}(x) \bigvee_{k=1}^{n} l_{n,k}(y) f(x_{n,k}) \right) \\ &\leq n^{2} \left(l_{n,k_{1}}(y) l_{n,k_{2}}(x) f(x_{n,k_{2}}) - l_{n,k_{1}}(x) l_{n,k_{2}}(y) f(x_{n,k_{2}}) \right) \\ &= n^{2} f(x_{n,k_{2}}) [l_{n,k_{1}}(y) l_{n,k_{2}}(x) - l_{n,k_{1}}(x) l_{n,k_{2}}(y)] \\ &= n^{2} f(x_{n,k_{2}}) [(l_{n,k_{1}}(y) l_{n,k_{2}}(x) - l_{n,k_{1}}(x) l_{n,k_{2}}(x)) \\ &+ \left(l_{n,k_{1}}(x) l_{n,k_{2}}(x) - l_{n,k_{1}}(x) l_{n,k_{2}}(x) \right) \\ &= n^{2} f(x_{n,k_{2}}) [l_{n,k_{2}}(x) (l_{n,k_{1}}(y) - l_{n,k_{1}}(x)) + l_{n,k_{1}}(x) (l_{n,k_{2}}(x) - l_{n,k_{2}}(y))]] \\ &= n^{2} f(x_{n,k_{2}}) [l_{n,k_{2}}(x) (l_{n,k_{1}}(y) - l_{n,k_{1}}(x)) + l_{n,k_{1}}(x) (l_{n,k_{2}}(x) - l_{n,k_{2}}(y))]]. \\ \\ \text{Consequently, we get} \\ &|L_{n}^{(M)}(f)(x) - L_{n}^{(M)}(f)(y)| \end{aligned}$$

$$\begin{split} L_n^{(M)}(f)(x) &- L_n^{(M)}(f)(y) | \\ &\leq C_0 n^2 \|f\| \left(|l_{n,k_1}(y) - l_{n,k_1}(x)| + |l_{n,k_2}(x) - l_{n,k_2}(y)| \right) \\ &\leq C_0 n^2 \|f\| \left(\|l_{n,k_1}'\| \|x - y\| + \|l_{n,k_2}'\| \|x - y\| \right). \end{split}$$

By [8, the proof of Theorem 1.2.3, p. 13], we have $|l'_{n,k}(x)| \leq C_0 n^2$, for all $x \in [-1, 1], n \in \mathbb{N}$ and $k \in \{1, 2, ..., n\}$, where C_0 is an absolute constant independent of f and n.

Replacing this above and passing to supremum with $|x-y| \leq h,$ the theorem is proved. \blacksquare

The main result of this section is the following.

THEOREM 4.2. Let $f : [-1,1] \to \mathbb{R}_+$. If $f \in Lip_M \alpha$ with $0 < \alpha \leq 1$, then for all $n \in \mathbb{N}$ and $0 \leq h \leq 1$ we have

$$\omega_1(L_n^{(M)}(f);h) \le ch^{\alpha/(4+\alpha)}.$$

where c > 0 is independent of n and h (but depends on f).

Proof. By Theorem 4.1 we get

$$\omega_1(L_n^{(M)}(f);h) \le Cn^4h$$
, for all $h \in [0,1]$,

where C > 0 is independent of n and h.

On the other hand, for $|x - y| \le h$, by [5, Theorem 3.3], we get

$$\begin{aligned} L_n^{(M)}(f)(x) - L_n^{(M)}(f)(x)| &\leq |L_n(f)(x) - f(x)| + |f(x) - f(y)| + |f(y) - L_n(f)(y)| \\ &\leq 2||L_n(f) - f|| + Ch^{\alpha} \leq c \left[\frac{1}{n^{\alpha}} + h^{\alpha}\right], \end{aligned}$$

where c > 0 is independent of n and h. Reasoning in continuation exactly as in the proof of Theorem 3.2 we get the desired conclusion.

REMARKS. 1) Theorem 4.2 shows that the images of the class $Lip \alpha$, $\alpha \in (0, 1]$, through all the max-product Lagrange operators $L_n^{(M)}$, $n \in \mathbb{N}$, belong to the same class $Lip \beta$, with $\beta = \frac{\alpha}{4+\alpha}$.

2) It is an open question if the exponent $\alpha/(4+\alpha)$ in the statement of Theorem 4.2 is the best possible.

3) Let us note that although they have better approximation properties (of Jackson type $\omega_1(f; 1/n)$, pointed out in [4] and [5]) than their linear counterpart polynomials, the above max-product Hermite-Féjer and max-product Lagrange operators satisfy weaker global smoothness preservation properties that their linear counterpart polynomials (compare above Theorem 3.2 with Corollary 1.2.1, pp. 7-8 in [8] and above Theorem 4.2 with Corollary 1.2.2, p. 15 in [8]). These are consequences of the fact that each max-product Hermite-Féjer operator, $H_{2n+1}^{(M)}(f)$, and each max-product Lagrange interpolation operator $L_n^{(M)}(f)$, obviously has a finite number of points where it is not differentiable.

REFERENCES

- G.A. Anastassiou, S.G. Gal, Moduli of Continuity and Global Smoothness Preservation, Birkhäuser, Boston-Basel-Berlin, 2000.
- [2] B. Bede, L. Coroianu, S.G. Gal, Approximation and shape preserving properties of the Bernstein operator of max-product kind, Intern. J. Math. and Math. Sci. volume 2009, Art. ID 590589, 26 pages, doi:10.1155/2009/590589.
- [3] B. Bede, S.G. Gal, Approximation by nonlinear Bernstein and Favard-Szász-Mirakjan operators of max-product kind, J. Concrete Appl. Math. 8 (2010), 193–207.

- [4] L. Coroianu, S.G. Gal, Approximation by nonlinear Hermite-Fejér interpolation operators of max-product kind on Chebyshev nodes, Revue d'Anal. Numér. Théor. Approx. (Cluj) 39 (2010), 21–31.
- [5] L. Coroianu, S.G. Gal, Approximation by nonlinear Lagrange interpolation operators of maxproduct kind on Chebyshev nodes, J. Comp. Anal. Appl. 13 (2011), 211–224.
- [6] L. Coroianu and S.G. Gal, Classes of functions with improved estimates in approximation by the max-product Bernstein operator, Analysis and Applications, accepted for publication.
- [7] L. Coroianu, S.G. Gal, Approximation by max-product Lagrange interpolation operators, Studia Univ. "Babes-Bolyai", ser. math., 56, 2 (2011), 315–325.
- [8] S.G. Gal, Global Smoothness and Shape Preserving Interpolation by Classical Operators, Birkhäuser, Boston-Basel-Berlin, 2005.
- [9] S.G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser, Boston-Basel-Berlin, 2008.
- [10] S.G. Gal, J. Szabados, On the preservation of global smoothness by some interpolation operators, Studia Sci. Math. Hungar. 35 (1999), 397–414.
- [11] G. Mastroianni, J. Szabados, Jackson order of approximation by Lagrange interpolation, Suppl. Rend. Circ. Mat. Palermo ser. II, 33 (1993), 375–386.
- [12] E. Stein, R. Shakarchi, Complex Analysis, Princeton University Press, Princeton, NJ, 2003.

(received 21.02.2011; in revised form 13.04.2011; available online 01.07.2011)

University of Oradea, Department of Mathematics and Computer Science, Str. Universitatii $1,\,410087$ Oradea, Romania

E-mail: lcoroianu@uoradea.ro, galso@uoradea.ro