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GLOBAL SMOOTHNESS PRESERVATION
BY SOME NONLINEAR MAX-PRODUCT OPERATORS

Lucian Coroianu and Sorin G. Gal

Abstract. In this paper we study the problem of partial global smoothness preservation
in the cases of max-product Bernstein approximation operators, max-product Hermite-Féjer in-
terpolation operators based on the Chebyshev nodes of first kind and max-product Lagrange
interpolation operators based on the Chebyshev nodes of second kind.

1. Introduction

In several recent papers, the approximation and shape preserving properties for
the so-called max-product Bernstein operators (see [2, 3, 6]), max-product Hermite-
Féjer interpolation operators (see [4]) and max-product Lagrange interpolation op-
erators (see [5, 7]) were studied. One of the main characteristic is that these
max-product operators present much better approximation properties than their
linear counterpart (especially than the Hermite-Féjer and Lagrange polynomials).

In this paper we extend these studies for the above mentioned max-product
operators, to the global smoothness preservation property.

The (partial) global smoothness preservation property can be described as
follows. We say that the sequence of operators L, : Cla,b] — Cla,b],n € N,
(partially) preserves the global smoothness of f, if for any « € (0,1] and

fe€Lipa={f:|a,b] - R;3IM > 0, such that |f(z) — f(y)] < M|z —y|*},

there exists 0 < # < « independent of f and n, such that L,(f) € Lip (3, for all
n € N.
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Equivalently, the property L, (f) € Lip 83, for all n € N means that there exists
C > 0 independent of n but possibly depending on f, such that

w1(Ly(f);h) < ChP, for all h € [0,1],n € N.

Here w1 (f;0) = sup{|f(z +h) — f(x)];0 < h < §,z,2+ h € [a,b]} is the uniform
modulus of continuity, and of course, it can be replaced by other kinds of moduli
of continuity too.

When 8 = « we have a complete global smoothness preservation.

It is well-known that, in general, if (L,(f)(z))nen is a sequence of linear
Bernstein-type operators, then the complete global smoothness preservation holds
(see e.g. the book [1]), while if (L, (f)(x))nen is a sequence of linear interpolation
operators (in the sense that each L, (f)(z) coincides with f(x) on a system of given
nodes), then excepting for example some particular Shepard operators, the inter-
polation conditions do not allow to have a complete global smoothness preservation
property, i.e. in this case in general we have 5 < « (see [10] or [8, Chapter 1]).

In the present paper we study the global smoothness preservation property for
the max-product Bernstein operator in Section 2, for the max-product Hermite-
Féjer operator on the Chebyshev nodes of first kind in Section 3 and for the max-
product Lagrange operator on the Chebyshev nodes of second kind in Section 4.

As a conclusion, we will derive that these max-product operators have the nice
property that the images of the Lipschitz classes Lipa, 0 < a < 1, is the same
Lipschitz class Lip 3, with 8 = ;2.

2. Max-product Bernstein operator

In this section we study the global smoothness preservation for the max-
product Bernstein operator.

For a function f :[0,1] — R, the Bernstein approximation operator of max-
product kind is given by the formula (see e.g. [9, p. 326])

V pos(@)f (5)
k=0
\/ pn,k(z)
k=0

where p, i(x) = (Z)xk(l — )" % and \/Z:0 P,k (T) = maxp_qo,... n} {Pn.k(T)}-

BM(f)(x) =

)

REMARK. As it was proved in [3], BM) (f) is a nonlinear (more exactly sublin-
ear on the space of positive functions) operator, well-defined for all z € R, piecewise
rational function on R. Also, as it was proved in [2], By(,M)( f) possesses some in-
teresting approximation and shape preserving properties. For example, the order
of uniform approximation is w1 (f; 1/4/n) However, for some subclasses of functions
including for example the class of concave functions and also a subclass of the
convex functions, the essentially better order w(f;1/n) is obtained. In addition,

B,(IM)( f) is continuous for any positive function f, preserves the monotonicity and
the quasi-convexity.
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For the main results of this paper we need the following five lemmas.

LEMMA 2.1. [2, Lemma 3.4] Forn € N, n > 1, we have

\/pn,k(x):pnyj(x)v fOT' all x € |: J J+1:|
k=0

P e i B
n+1l' n+1 ' J ’ "

REMARK. It easily follows that

j+1 j+1 .
P ( ) = Pnji1 (n—i—l) for all j € {0,1,...,n}.

n+1

LEMMA 2.2. Letn € N, n>1 and j € {0,1,...,n}. The following assertions
hold:

o J J+TY.
(Z) [fj < b} then Dn,j <TL+].> an,j (n—&—l)’

y on J Jj+1

Proof. After elementary calculus, pn](ﬁ_l) > pn](%) is equivalent with

i Yo n=i \"’
_— > ————— .
Q+ﬂ> _(n—3+1)
Let us consider the functions g : [0,n] — R, g(z) = <L> and h : [0,n] — R,

z+1
fwx)==(nﬁ;il)"_z.\wehave

dm)z(Iil>w(xil—umx+1y4n@)go

for all z € (0,1], where we used the well-known inequality x%rl <ln(z+1)—Inz,
x € (0,00). Therefore, g is nonincreasing on [0, 1]. Since h(z) = g(n — z) for all
x € (0,n], it easily follows that h is nondecreasing on [0, 1]. Because h(g) = g(%)
and noting the monotonicity of g and h, we conclude that both assertions of the
lemma hold. m

Throughout the paper, C, Cy, Cy, Cs, ¢ will denote absolute positive constants
which can be of different values at each occurrence (and of different independencies
mentioned correspondingly).

LEMMA 2.3. Letn € N, n>1 and j € {0,1,...,n}. Then

mindp, (=2 po (ZELVL S ©
I\ n+1/)7" \n+1 = Jn’

where C' > 0 is an absolute constant independent of n and j.

Proof. We distinguish two cases: (i) n is even and (ii) n is odd.
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Case (i). By Lemma 2.2 and by the Remark after Lemma 2.1, it follows that
mindp (I NEEERNEN Mo _ mot1
DPn,j n+1 y Pn,j ntl Z Pn,ng ntl = Pn,ng T
where ng = 5. By direct calculation we get
no n
» ( no ) _ (QTL())! ' n()(’n(] + 1) _ (2710)' ' ( TL(Q) —+ ng > 0
O\ n+1 (noh)?  \ (2ng +1)° (no!)24m0 \ng+no+1/4
By the Wallis’s formula (see [12, p. 142])
2-4-...(2n) ™

lim

nso1-3-.. . (2n—1)y2n+1 V2

it is immediate that
(2mn1?2 1 T
(277,)' vV on 2’
and therefore there exists two absolute constants Ci,C2 > 0 (independent of n),
such that
G e G
v T (n)24r T n

On the other hand, we have

mgtmo " (_mptmo \" ([ 2m0 \"_ 1
ng+mno+1/4 “\nd+no+1 “\2ng+1 ~ e

Taking into account these last two inequalities, we get pnmo(n’:{’l) > %, which

, for all n € N.

proves the lemma in this case.

Case (ii). By Lemma 2.2 and by the Remark after Lemma 2.1, it follows that

min {pn,j(m)apn,j(m)} > pn,m(m)

where nq = ”T’l We have
n+1\ (20 + 1) n+1\™ [ng+1\™m
P \ 1 ) T nitl i + 1) 20y 1 2 21 + 2
- (277,1)' 2n1—|—1 > C

o (n1!)24" . 27’[,1 + 2~ ﬁ

Collecting the estimates from the above two cases we get the desired conclusion. m

LEMMA 2.4. One has
k=0

forallm € N, n>1 and z € [0,1], where C > 0 is a constant independent of n
and x.
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Proof. Let x € [0,1] and n € N be arbitrary fixed. Let us choose

j€40,1,...,n} such that « € [n—ﬂ, %} Then we have

‘ . N 1\
Dn,j(z) = T_ij(lfx)"ﬂz n J 17]—'_
’ J J n+1 n+1
_[n i N m—j+I\N"7 n—j \"
/) \n+1 n+1 n—j+1
(L Y ()
"I\ n+1 n—j+1 =TI \n+1) e

But applying Lemma 2.3, we get p, ;(z) > f’ which proves the present lemma. m

REMARK. In fact, the lower estimate in Lemma 2.4 is the best possible. Indeed,

by the proof of Lemma 2.3, there exists absolute constants C;, C5, such that

Cl (271)' 02

L < < =

vn T (nh)24r T n
for all n € N. Then, by Lemma 2.1 and by the proof of Lemma 2.2, it follows that
Prno (7087) = Vizo Pk (oty) < f’ where ng = [5] and Cy does not depend on
n. This implies the desired conclusion.

Also, we have the following
LEMMA 2.5. For all bounded f : [0,1] — Ry, n € N and h > 0, we have
wi (B (f);h) < Cn?| [k,

where || f|| = sup{|f(z)|;x € [-1,1]} and C > 0 is a constant independent of f, n
and h.

Proof. By Lemma 2.4, it follows that \/}_,pnk(z) >
with C' > 0 independent of n and x. Then, we have

V k@ f () V pur®)f (2)
k=0 k=0

\T} pn,k(x) \T} pn,k(y)
k=0 k=0

1
- n n X

V Pok(x) \/ Pk (Y)
k=0 =
y) \/ pn,k( \/ Dn, k \/ Dn, k
k=0
\/ Pri(v) \/pn,k( k \/pnk: \/pn/c ‘

k=0
Without loss of generality, let us suppose that B(M)( Hx) > BflM)( ). Let
k1,ko € {0,1,...,n} be such that

\ 2ok () = Pop (), \/pnk = Prko (2 )f(%)-
k=0

f’ for all z € [0, 1],

B (f)(@) = BM(N(y)| =

<Cn
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Then
|BM(f)(x) = B () ()]

(\/pn,k )\/pn,k( \/pnk \/pnk )
k=0 k=0
<pn kl Pnk2 % \/pnk \/pnk % )

k2 k

<Cn (p s (2) ~ Do 2o <y>f<§>)

=Cn f( )[pn k1( )pn,kz (.’t) — Pn.ky (‘r)pn,kz (y)]

=Cnf (;)[(pn,kl (Y)Pn ks () = ity (T) P kr (7))
+ (pn,lm (x)pn,/m (‘T) — Pn,kq (x)pn,k’z (y))]

k
= Cnf(f) [Pr k2 () Prer (¥) = Py (%)) + Pty (€) (Praiey (2) — P (9))]-
Taking into account that p, x, () <1 and p, k, (z) < 1, we get
B (£)(x) = B (f)()]
< On N f I (pnes () = Prs ()] + [Prke () = Pries (9)])
< On Al (19l e =l + [P, [l 2 = 1)
If k=0 or k =n, then p, x(r) = 2" and we get ||p;, ;|| =n. lfk € [1,2,...,n—1},
then it is known that pj, ,(¥) = n(pp-1k-1(2) — pp-1(x)). Consequently, we
obtain ||p;, .|| < 2n for all k € {0,1,...,n}. Clearly, this implies
BM(f)(@) = B (N w)| < Cn? 1S~y
Passing to supremum with |z — y| < h, the lemma is proved. m

We are now in position to prove the main result of this section.

THEOREM 2.6. Let f :[0,1] — Ry. If f € Lipyra with 0 < o < 1, then for
allne N and 0 < h <1 we have
w1 (BM(f); h) < ch®/AFa),
where ¢ > 0 is independent of n and h (but depends on f).

Proof. By Lemma 2.5 we get
w1 (BM)(f); h) < Cn?h, for all h € [0,1],
where C' > 0 is independent of n and h.
On the other hand, for | — y| < h, by [2, Theorem 4.1], we get

B () (@) = B ()(w)]
< [BM(f)(x) = f@)| + 1 (2) = f)l + £ (y) = BM (D ()]

<2 BM(F) — f|| + Ch* < ¢ {

1 [e%
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Passing to supremum with |z — y| < h, it follows

Wi (BYD (1) h) < © {1/ n h&} .
n

Therefore, for allmn € N and 0 < h <1 we get

1
w1 (BM)(f);h) < emin {th, 7 —l—ha},
n(X

where ¢ > 0 is independent of n and h. The optimal choice here is obtained when
n*h = —L5, that is if h = ——. Indeed, if h < —-— then the minimum is the
first term, and when h > W{X/Q then is the second term. This therefore implies
n = W and replacing above we obtain
wi(BM)(f);h) < eh®/U+9) for all n e N, h € [0,1],

which proves the theorem. m

REMARKS. 1) Theorem 2.6 shows that the images of the class Lip o, a € (0, 1],
through all the max-product Bernstein operators B,(LM), n € N, belong to the same
class Lip 8, with 0 = AHL&.

2) It is an open question if the exponent o/(44«) in the statement of Theorem
2.6 is the best possible.

3) Comparing with the complete global smoothness property of the linear Bern-
stein polynomials (see e.g. [1, p. 231, relation (7.1)]), the result in Theorem 2.6
is weaker. But this is not an unexpected result, taking into account that each
max-product Bernstein operator B7(1M)( f), has a finite number of points where is
not differentiable.

3. Max-product Hermite-Féjer operator

In this section we find global smoothness preservation for the max-product
Hermite-Féjer interpolation operator based on the Chebyshev nodes of first kind.

Let f:[-1,1] = R and 1 = 008(2%211)77) € (-1,1), k €{0,...,n}, -1 <
Top < Tpn-1 <+ < Tpo <1, bethe roots of the first kind Chebyshev polynomial

Tpt1(x) = cos[(n + 1)arccos(x)]. Denoting

hnp(x) = (1—zzHk) - <(n +7;7;zrx1(iﬂ)xn k)) ’

it is well known that the max-product Hermite-Fejér interpolation operator is given
by the formula (see [5])

HM (F)(2) = 220 :

where \/}_g h i (2) = maxp—o,.._ oy {Ank(x)}
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REMARK. As it was proved in [5], Héﬁﬂ_)l (f)(x) is a nonlinear (more exactly

sublinear on the space of positive functions) operator, well-defined for all € R and
a continuous, piecewise rational function on R. Also, Hé%r)l(f)(a:nj) = f(z, ;) for
alln € Nand j = 0,1,...,n, that is interpolatory on the points z, ;,n € N,j €

{0,...,n}.

Firstly, we need the following auxiliary result.

THEOREM 3.1. For all bounded f : [-1,1] - R4, n € N and h > 0, we have
M
wi(Hip 1 (£):h) < On*| £,
where || f|| = sup{|f(z)|;x € [-1,1]} and C > 0 is independent of n and h.
Proof. Since Y p_o hni(z) = Lforallz € [—1,1], it follows that \/}_ hun,x(z) >
1/(n+1) > 1/(2n), for all x € [-1,1]. Then, we have

(HOD () (@) — HSD () ()]

k\i/ohn,ku)f(xn,k) V k() (20 k)

_ k=0
V hp k(@) V hak(y)
k=0 k=0
1
= n n X
\/ hn,k(z) \/ hn,k(y)
k=0 k=0
X \/ hn,k(y) \/ hn,k(x)f(xn,k) - \/ hn,k(x) \/ hn,k(y)f(xn,k)
k=0 k=0 k=0 k=0
<40® [\ B (@) \ oo (@) f @) =\ Pp(@) \ T () f (1)
k=0 k=0 k=0 =0

k
Without loss of generality, let us suppose that Hz(%r)1(f)($) > gM) (f)(y). Let
k1,ko € {0,1,...,n} be such that

\/ hn,k(y) = hn,kl (y)a
k=0

n

V B (@) f (@) = P (2) f (20,15)-

=0

=

n n

= 42 <hn,k1 D)o () F k) — \J () \/ hn,k@)f(a:n,k))

k=0 k=0
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<A (B ey (W) P () f (T k5) = P ey () Py (0) f ()
= 40® f (€ k) [ ey (9) P () = Py ey (2) Py 1y ()]
= 4n2f($n,k2)[(hn,k1 (W) ks (%) = R ey (2) B i, (7))
+ (hn,kl (I)hn,kz (1') —hp iy (I)hn,kz (y))]
=402 [ (@, k) [P ey (2) (o ey () = P ey (2)) 4 Py (2) (P (2) = gy (9))]
Taking into account that hy i, () <1 and hy i, (x) < 1, we get
[H s (£)(@) = Hyp' )y (£)()]
< 4n® || f1| (o () = Bgey ()] + [ gy (2) = B iy (9)])

< 4 |1 ([ 12— 01 + (| | 12— )
But by [10] (see also [8], first inequality on page 6) we have Hh;uH < Cn?, for all
n € N and j € {0,1,...,n}, where C > 0 is an absolute constant independent of n
and j, which implies that
HEL () @) = BED (D) < ent 17z =y
Passing to supremum with |z — y| < h, the theorem is proved. m
The main result of this section is the following.
THEOREM 3.2. Let f : [-1,1] = Ry. If f € Lipya with 0 < a < 1, then for
alln € N and 0 < h <1 we have
wi(Hyl)y (1) h) < eh/45),
where ¢ > 0 is independent of n and h (but depends on f).
Proof. By Theorem 3.1 we get
wi(HE () h) < Cn*h, for all h € (0,1),
where C' > 0 is independent of n and h.
On the other hand, for | — y| < h, by [4, Theorem 3.1], we get

[HO (F) () — HiND () (@) < [HSE () (@) = F@)] + £ (@) — £(y)]

1) - BRI < AR ) - 11+ Che < ez,

where ¢ > 0 is independent of n and h. Passing to supremum with |z — y| < h it
follows

aHS (1w < 0| 2],
Therefore, for alln € Nand 0 < h < 1 we get

1
wl(Hénﬁl(f) h) < ¢min {n4h, v + h"‘} .

The optimal choice here is obtained when n*h = n%, that is if h = # Indeed,

if h < —= then the minimum is the first term, and when h > —i= then is the

second term. This therefore implies n = W and replacing above we obtain
Wi (HE (s h) < ch®/8+) for all n € N,k € (0,1),

which proves the theorem. m
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REMARKS. 1) Theorem 3.2 shows that the images of the class Lip a, o € (0, 1],

through all the max-product Hermite-Féjer operators Héﬁ?l, n € N, belong to the
same class LipQ, with § = 2.

2) It is an open question if the exponent a;/(4+ «) in the statement of Theorem
3.2 is the best possible.

4. Max-product Lagrange operator

In this section we find global smoothness preservation properties for the max-
product Lagrange interpolation operator based on the Chebyshev nodes of second
kind, plus the endpoints.

Let f:[-1,1] — R and x, % = COS(Z—:’fﬂ') € [-1,1], k € {1,...,n} be the
Chebyshev knots of second kind in [—1, 1], plus the endpoints. More exactly, it is
known that x,, ; are the roots of wy,(z) = sin[(n — 1)t]sint, x = cost (which repre-
sents in fact the Chebyshev polynomial of second kind of degree n — 2, multiplied
by 1 — 2?) and that in this case for the fundamental Lagrange polynomials we can

write (see [11, p. 377])
(=D twn(x)
1461+ k) (n — 1)(z — xn,k)’
where w,(z) = II}_,(z — z,, %) and J; ; denotes the Kronecker’s symbol, that is
0;;=1ifi=jand §; =0if i # 5.
Then, the max-product Lagrange interpolation operator is given by the formula
(see [4])

ln,k(l') = (

V Lok (@) f (20 k)
k=1

\T} ln,k(x)
k=1

where \/}_; lnx(2) = maxg—(1,...n}{lnk(z)}

REMARK. As it was proved in [5], L%M)( f)(z) is a nonlinear (more exactly

sublinear on the space of positive functions) operator, well-defined for all z € R
and a continuous, piecewise rational function on R. Also, L%M)(f) (@n,j) = f(zny)
foralln € Nand j =1,...,n, that is interpolatory on the points =, j,n € N,j €

{0,...,n}.

Firstly, we need the following result.

LM (f)(x) =

) T e [7171}7

THEOREM 4.1. For all bounded f : [-1,1] - Ry, n € N and h > 0, we have
wi(LED(f):h) < On'| £Ih,

where C' is an absolute constant independent of f, h and n.

Proof. Since Y p_, I, x(x) = 1 for all x € [—1,1], it follows that \/}_, I, x(x) >
1/n for all z € [—1,1]. Then, we have

LD () (@) = LM () ()



Global smoothness preservation by max-product operators 313

V bk @) f@ng) Vb ®)f(@ng)
k=1 k=1

V k(@) V L)
k=1 k=1
1

V 1i(@) V bus()
n,k(y) \/ ln,k(x mn k \/ ln k \/ ln k xn k
=1 k=1
\/ ln,k(y) \/ ln,k(x $n k \/ ln k
k=1 k=1 k=1

Without loss of generality let us suppose that M ( f)(x)
k1,ke € {1,2,...,n} be such that

\/lnk: —lnkl()

X

< 'fl2 xnk

WV, H <:

L% "(N)y). Let

\/lnk xnk —lnkz( )f(xn,kz)'
Then
L0 (@) = L0 () ()|

Sn(\/lnk \/lnk mnk \/lnk \/lnk: xnk)
k=1 k=1
:n2(nk1 lez ‘/'E’ﬂkz \/lnk \/lnk mnk)

k=1

<02 (L oy (W) ey (2) f (T 1y) — ln,kl( Mo ez (Y) f (T k)
=12 f (@ o )l ey (D) () = Ly (), ()]
=12 (@, 100) (I oy () s (%) = Ly (2) D 1y ()

+ (Un ks (2)ln kn () — Lty (%)l ke (9)]

= 1 f (@ ka) [l ks (2) (g (4) = Ly (2)) + Ly (2) (s (2) = Lz (9)))-
Consequently, we get

LM () (@) = LM () ()]
< Con® | F1l by () = by (2)] + Nl ier () = Lo (9)])
< Con? || f| (127 5 H |z —y| + Hln kQH lz —yl).
By [8, the proof of Theorem 1.2.3, p. 13], we have

l;k(x)‘ < Con?, for all © €

[-1,1], n € Nand k € {1,2,...,n}, where Cj is an absolute constant independent
of f and n.
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Replacing this above and passing to supremum with |z — y| < h, the theorem
is proved. m

The main result of this section is the following.

THEOREM 4.2. Let f : [-1,1] = Ry. If f € Lipya with 0 < a < 1, then for
alln € N and 0 < h <1 we have

Wi (LM (f):h) < cho/ (),
where ¢ > 0 is independent of n and h (but depends on f).

Proof. By Theorem 4.1 we get
w1 (LM (f);h) < Cnh, for all h € [0,1],

where C' > 0 is independent of n and h.
On the other hand, for | — y| < h, by [5, Theorem 3.3], we get

LM (F)(@) — LMD (f)(@)] < [La(£) (@) = F@)] + (@) = )]+ £ @) — La(£) )]
<2/ Ln(f) = fll+Ch* < c [nla + ha] ,

where ¢ > 0 is independent of n and h. Reasoning in continuation exactly as in the
proof of Theorem 3.2 we get the desired conclusion. m

REMARKS. 1) Theorem 4.2 shows that the images of the class Lip o, o € (0, 1],
through all the max-product Lagrange operators L%M), n € N, belong to the same
class Lip 8, with 0 = 4_%&.

2) It is an open question if the exponent «/(44 «) in the statement of Theorem
4.2 is the best possible.

3) Let us note that although they have better approximation properties (of
Jackson type wi(f;1/n), pointed out in [4] and [5]) than their linear counterpart
polynomials, the above max-product Hermite-Féjer and max-product Lagrange op-
erators satisfy weaker global smoothness preservation properties that their linear
counterpart polynomials (compare above Theorem 3.2 with Corollary 1.2.1, pp.
7-8 in [8] and above Theorem 4.2 with Corollary 1.2.2, p. 15 in [8]). These are
consequences of the fact that each max-product Hermite-Féjer operator, HQ(nj\Ql( ),

and each max-product Lagrange interpolation operator L%M)( f), obviously has a
finite number of points where it is not differentiable.
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