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FINITE DIMENSIONS DEFINED BY MEANS OF m-COVERINGS

Vitaly V. Fedorchuk

Abstract. We introduce and investigate finite dimensions (m, n)-dim defined by means of
m-coverings. These dimensions generalize the Lebesgue dimension: dim = (2, 1)-dim. If n < m
and (m, n)-dimX < ∞, then X is weakly infinite-dimensional in the sense of Smirnov.

Introduction

In [7] there were introduced classes of G-C-spaces and m-G-C-space, where G
is a class of simplicial complexes and m ≥ 2 is an integer. Partial cases of these
classes were considered in [8], where (m,n)-C-spaces were defined (m ≥ n ≥ 1).
Let (m,n)-C be the class of all (m,n)-C-spaces. Then all classes (m,n)-C are
intermediate between the class wid = (2, 1)-C = (n + 1, n)-C of all weakly infinite-
dimensional spaces in the sense of Smirnov and the class C of all C-spaces in the
sense of Haver [9], Addis and Gresham [1]. For example,

wid = (2, 1)-C ⊃ (3, 1)-C ⊃ · · · ⊃ (m, 1)-C ⊃ · · · ⊃ C.

Here we define new dimension functions: (m,n)-dim (Definition 2.8). From defini-
tions it follows that

(m,n)-dimX < ∞⇒ X ∈ (m,n)-C. (0.1)

For every normal space X we have

(2, 1)-dimX = dimX (0.2)

in view of the partition theorem.
For every metrizable space we have (Theorem 3.7)

(m,n)-dimX ≤ dimX (0.3)
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and (Theorem 3.9)
(m, 1)-dimX = dimX. (0.4)

One of the main results is
Theorem 3.4. If n < m, then for every space X we have

(m,n)-dimX ≤ 0 ⇐⇒ dimX ≤ n− 1.

This theorem gives us a lot of spaces X with (m,n)-dimX < dimX.
In § 2 we study general properties of dimension (m,n)-dim. This dimension

satisfies the addition property for hereditarily normal spaces (Theorem 2.17):

X = X1 ∪X2 ⇒ (m,n)-dimX ≤ (m,n)-dimX1 + (m, n)-dimX2 + 1. (0.5)

Theorem 2.21 states that if X is the limit of an inverse system
{
Xα, πα

β , A
}

of
compact spaces, then

(m,n)-dimX ≤ sup
{
(m,n)-dimXα : α ∈ A

}
. (0.6)

§ 1 has an auxiliary character. It contains necessary definitions and facts. One
can find an additional information on dimension theory in [3] and [6].

§ 1. Preliminaries

All spaces are assumed to be normal T1. All mappings are continuous. The
symbol |A| stands for the cardinality of a set A. If A is a subset of a space X, then
Cl(A) = ClX(A) denotes the closure of A in X.

By a cover we mean an open cover of a space. By cov(X) we denote the set
of all covers of X. The set of all finite covers of X is denoted by cov∞(X) and
covm(X) stands for the set of all covers of X consisting of ≤ m members.

Let u and v be families of subsets of a set X. They say that v refines u
(v is a refinement of u) if each V ∈ v is contained in some U ∈ u. A family v
combinatorially refines u (v is a combinatorially refinement of u) if there exists an
injection i : v → u such that V ⊂ i(V ) for each V ∈ v. If v refines u we write
u ≺ v.

For a simplicial complex K by v(K) we denote the set of all its vertices. By
FinS we denote the set of all non-empty finite subsets of S. Let u be a family of
arbitrary sets and let u0 = {U ∈ u : U 6= ∅}. The nerve N(u) of the family u is a
simplicial complex such that v

(
N(u)

)
= {aU : U ∈ u0} and a set 4 ∈ Finv

(
N(u)

)
is a simplex of N(u) if and only if

⋂{U : aU ∈ 4} 6= ∅.
By the order of a family u of sets we mean the largest n such that u contains

n sets with a non-empty intersection. If no such integer exist, we say that u has
order ∞. The order of u is denoted by ordu. Clearly,

ordu ≤ ⇐⇒ dimN(u) ≤ n− 1;
ordu ≤ 1 ⇐⇒ u is a disjoint family.
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By N we denote the set of all positive integers.
Let u be a family of subsets of a set X and let M ⊂ X. Then

u|M = {U ∩M : U ∈ u}.

1.1. Open swelling lemma. If Φ = {F1, . . . , Fm} is a sequence of closed
subsets of a space X, then there exists a family v = (V1, . . . , Vm) of open subsets of
X such that

Fj ⊂ Vj , j = 1, . . . , m;

N(v) = N(Φ).

The Urysohn lemma and Lemma 1.1 yield

1.2. Lemma. Let u = (U1, . . . , Um) be a sequence of open subsets of a space
X and let Φ = (F1, . . . , Fm) be a sequence of closed subsets of X such that

Fj ⊂ Uj , j = 1, . . . ,m.

Then there exists a sequence v = (V1, . . . , Vm) of open subsets of X such that

Fj ⊂ Vj ⊂ Cl(Vj) ⊂ Uj , j = 1, . . . ,m;

N(v) = N(Φ).

1.3. Lemma [5]. Let X be a hereditarily normal space and let M ⊂ X. Then
for every sequence v = (V1, . . . , Vm) of open subsets of M there exists a sequence
w = (W1, . . . ,Wm) of open subsets of X such that w|M = v and N(w) = N(v).

1.4. Definition. Let u = (U1, . . . , Um) be a cover of a space X. A sequence
ϕ of functions fj : X → [0; 1], j = 1, . . . ,m, is said to be a partition of unity
subordinated to the cover u if

f1(x) + · · ·+ fm(x) = 1 for every x ∈ X;

f−1
j (0; 1] ⊂ Uj , j = 1, . . . , m.

1.5. Closed shrinking lemma. Let u = (U1, . . . , Um) ∈ covm(X). Then
there exists a family Φ = (F1, . . . , Fm) of closed subsets of X such that

Fj ⊂ Uj , j = 1, . . . ,m;
F1 ∪ · · · ∪ Fm = X.

The Urysohn lemma and Lemma 1.5 imply

1.6. Partition of unity lemma. For every finite cover u of a space X there
exists a partition of unity subordinated to u.
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1.7. Theorem on partitions [10]. A space X satisfies the inequality
dimX ≤ n ≥ 0 if and only if for every sequence (Ai, Bi), i = 1, . . . , n + 1, of
pairs of disjoint closed subsets of X there exist partitions P1, . . . , Pn+1 between Ai

and Bi such that P1 ∩ · · · ∩ Pn+1 = ∅.
1.8. Definition. A mapping f : X → ∆n to the n-dimensional simplex ∆n

is said to be inessential, if the mapping g = f |f−1Sn−1 : f−1Sn−1 → Sn−1, where
Sn−1 is the combinatorial boundary of ∆n, can be extended over X.

1.9. Theorem [2]. A space X satisfies the inequality dimX ≤ n ≥ 0 if and
only if each mapping f : X → ∆n+1 is inessential.

1.10. Theorem [11]. Let X be a metrizable space with dimX ≤ n ≥ 0. Then
X can be represented as the union of n + 1 its subspaces Xi, i = 1, . . . , n, so that
dimXi ≤ 0.

1.11. Borsuk’s theorem on extension of homotopy [12, 13]. If F is
a closed subspace of X, then each mapping f : (X × {0}) ∪ (F × I) → R into
ANR-compactum R extends over X × I.

1.12. Theorem [4]. Let f : X → K and g : X → K be mappings to a
simplicial complex K satisfying the following condition:

if f(x) ∈ Oaj , then g(x) ∈ Oaj ,

where Oaj is the star of a vertex aj ∈ K in K.
Then f and g are homotopically equivalent.

1.13. Definition. Let u = (U1, . . . , Um) be a finite sequence of sets and let
u ≺ v. An integration of the family v with respect to u is the following sequence

I(v, u) = (W1, . . . , Wm) :
W1 =

⋃{V ∈ v : V ⊂ U1}, Wj =
⋃{V ∈ v : V ⊂ Uj ; V 6⊂ Uk, k < j}.

1.14. Proposition. 1) ∪I(v, u) = ∪v, 2) u ≺ I(v, u), 3) ordI(v, u) ≤ ordv.

1.15. Lemma. Let α = (A1, . . . , Am) and β = (B1. . . . , Bm) be sequences of
sets and let α ∨ β = (A1 ∪B1, . . . , Am ∪Bm). Assume that

1) ordβ ≤ 1;
2) Bj ∩Ak = ∅ for all k 6= j.

Then N(α ∨ β) = N(α).

Proof. We have to show that for every family j1, . . . , jk,⋂{Aj1 ∪Bj1 : i = 1, . . . , k} = ∅ ⇐⇒ ⋂{Aji : i = 1, . . . , k} = ∅.
Implication ⇒ is obvious. Now let Aj1 ∩ · · · ∩ Ajk

= ∅. Then by virtue of Newton
binom we have(

Aj1 ∪Bj1

) ∩ (
Aj2 ∪Bj2

) ∩ · · · ∩ (
Ajk

∪Bjk

)
=

∑
µ⊂{1,...,k} Cµ

where ν = {1, . . . , k} \ µ and Cµ =
(⋂{

Aji : i ∈ µ
})
∩

(⋂{
Bji : i ∈ ν

})
.
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If |µ| = k, then Cµ = Ai1 ∩ · · · ∩ Aik
= ∅ according to our assumption. If

|µ| = k−1, then Cµ = ∅ in view of condition 2). At last, if |µ| ≤ k−2, then Cµ = ∅
by virtue of 1).

§ 2. Basic properties of finite (m, n)-dimensions

2.1. Definition. Let u = (U1, . . . , Um) ∈ covm(X) and let Φ = (F1, . . . , Fm)
be a family of closed subsets of X such that

Fj ⊂ Uj , j = 1, . . . ,m;
ordΦ ≤ 1.

Then (u, Φ) is said to be an m-pair in X. The set of all m-pairs in X is denoted
by m(X).

2.2. Definition. Let m,n ∈ N, n ≤ m, (u,Φ) be an m-pair in X and let
v = (V1, . . . , Vm) be a family of open subsets of X such that

Fj ⊂ Vj ⊂ Uj , j = 1, . . . , m;
ordv ≤ n.

Then (u, v, Φ) is called an (m,n)-triple in X.

2.3. Lemma. Let n1 ≤ n2 and let (u, v, Φ) be an (m,n1)-triple in X. Then
(u, v, Φ) is an (m,n2)-triple in X.

Lemma 1.2 yields

2.4. Lemma. Every m-pair (u, Φ) in X can be included in (m, 1)-triple
(u, v, Φ) in X.

2.5. Definition. Let (u, Φ) ∈ m(X). A closed set P ⊂ X is said to be an
n-partition of (u,Φ) (notation: P ∈ Part(u,Φ, n)) if there exists an (m,n)-triple
(u, v, Φ) in X such that P = X \⋃

v.

Lemma 2.4 yields

2.6. Proposition. Every m-pair (u, Φ) in X has an n-partition P .

2.7. Definition. Let (ui,Φi) ∈ m(X), i = 1, . . . , r. The sequence(
(u1,Φ1), . . . , (ur,Φr)

)
is called n-inessential in X if there exist partitions Pi ∈

Part(ui,Φi, n) such that P1 ∩ · · · ∩ Pr = ∅.
2.8. Definition. Let m,n ∈ N, n ≤ m. To every space X one assigns the

dimension (m, n)-dimX, which is an integer ≥ −1 or ∞. The dimension function
(m,n)-dim is defined in the following way:

(1) (m,n)-dimX = −1 if and only if X = ∅;
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(2) (m,n)-dimX ≤ k, where k = 0, 1, . . . , if every sequence(
(u1,Φ1), . . . , (uk+1, Φk+1)

)
, (ui, Φi) ∈ m(X), is n-inessential in X;

(3) (m,n)-dimX = ∞, if (m, n)-dimX > k for each k ∈ N.

2.9. Theorem. For every space X we have

(2, 1)-dimX = dimX.

Proof. We start with inequality (2, 1)-dimX ≤ dimX. Let dimX = n and let
(ui, Φi) ∈ 2(X), i = 1, . . . , n + 1. Let ui = (U i

1, U
i
2) and Φi = (F i

1, F
i
2). Put

Gi
1 = F i

1 ∪ (X \ U i
2), Gi

2 = F i
2 ∪ (X \ U i

1).

Then the family Γi = (Gi
1, G

i
2) is disjoint, i = 1, . . . , n + 1. Since dimX ≤ n,

from Theorem 1.7 it follows that there exist partitions Pi in X between Gi
1 and

Gi
2 such that P1 ∩ · · · ∩ Pn+1 = ∅. From definitions of the sets Gi

j we get Pi ∈
Part(ui,Φi,1). Hence the sequence

(
(u1, Φ1), . . . , (un+1,Φn+1)

)
is 1-inessential in

X and, consequently, (2,1)-dimX ≤ n.
Now let (2,1)-dimX ≤ n. Let Φi = (F i

1, F
i
2), i = 1, . . . , n + 1, be pairs of

disjoint closed subsets of X. Put

U i
1 = X \ F i

2, U i
2 = X \ F i

1, i = 1, . . . , n + 1.

Then
ui = (U i

1, U
i
2) ∈ cov2(X), i = 1, . . . , n + 1.

Moreover, (ui, Φi) ∈ 2(X), i = 1, . . . , n+1. Since (2, 1)-dimX ≤ n, there exist par-
titions Pi ∈ Part(ui, Φi, 1) such that P1∩· · ·∩Pn+1 = ∅. Since Pi ∈ Part(ui,Φi, 1),
there exist pairs vi = (V i

1 , V i
2 ) of disjoint open subsets of X such that

F i
j ⊂ V i

j ⊂ U i
j , j = 1, 2; i = 1, . . . , n + 1;

Pi = X \ V i
1 ∪ V i

2 .

Hence Pi are partitions of pairs Φi. By virtue of Theorem 1.7 we have dimX ≤ n.

2.10. Proposition. Let M be a closed subset of X. Then

(m,n)-dimM ≤ (m, n)-dimX.

Proof. The theorem is obvious if (m,n)-dimX = −1 or (m,n)-dimX = ∞, so
that we can assume that (m,n)-dimX = k, 0 ≤ k < ∞. Let

(ui, Φi) ∈ m(M), i = 1, . . . , k + 1;

ui = (U i
1, . . . , U

i
m), Φi = (F i

1, . . . , F
i
m).

Put W i
j = U i

j ∪ (X \M) and wi = (W i
1, . . . , W

i
m). Then (wi, Φi) ∈ m(X). Since

(m,n)-dimX = k, the sequence (w1, Φ1), . . . , (wk+1,Φk+1) is n-inessential in X.
Clearly, the sequence (w1|M, Φ1), . . . , (wk+1|M, Φk+1) is n-inessential in M . But
wi|M = ui.
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2.11. Proposition. If a space X can be represented as the union of a discrete
family Xα, α ∈ A, of closed subspaces such that (m,n)-dimXα ≤ k for α ∈ A, then
(m,n)-dimX ≤ k.

2.12. Lemma. Let X be a hereditarily normal space and let Y be its subspace.
Let F, F1, F2, . . . , Fk be a disjoint family of closed subsets of X, V be a an open
subset of Y , OF be a neighbourhood of F in X such that

Y ∩ Cl(OF ) ⊂ V ; (2.1)

(V ∪OF ) ∩ Fj = ∅, j = 1, . . . , m. (2.2)

Then V ∪ F is open in Y1 = Y ∪ F ∪ F1 ∪ · · · ∪ Fk.

Proof. From (2.1) it follows that (Y \ V ) ∩ Cl(OF ) = ∅ and, consequently,
Cl(Y \ V ) ∩OF = ∅. Hence

OF ⊂ X \ Cl(Y \ V ) = W. (2.3)

On the other hand,
V ⊂ W. (2.4)

In fact, since V is open in Y , we have

V ∩ Cl(Y \ V ) = V ∩ ClY (Y \ V ) = ∅. (2.5)

Then y ∈ V ⇒ (2.5) ⇒ y /∈ Cl(Y \ V ) ⇒ y ∈ X \ Cl(Y \ V ) = W.

Conditions (2.3) and (2.4) yield V ∪OF ⊂ W . Consequently, V ∪F ⊂ W and,
in accordance with (2.2), we have

V ∪ F ⊂ W \
⋃
{Fj : j = 1, . . . ,m}. (2.6)

To prove our lemma it suffices to check that

V ∩ F = Y1 ∩
(
W \

⋃
{Fj : j = 1, . . . , m}).

By virtue of (2.6) it remains to show that

Y1 ∩
(
W \

⋃
{Fj : j = 1, . . . , m}) ⊂ V ∪ F. (2.7)

Since Y1 \
⋃{Fj : j = 1, . . . ,m} = Y ∪ F , we have

Y1 ∩
(
W \

⋃
{Fj : j = 1, . . . , m}) = W ∩ (Y ∪ F ).

Consequently, to prove (2.7), it suffices to check that W ∩ Y ⊂ V . But W ∩ Y =
Y \ Cl(Y \ V ) according to (2.3). Let y ∈ Y \ Cl(Y \ V ). Then there exists a
neighbourhood Oy such that Oy ∩ (Y \ V ) = ∅. Consequently, Y ∩Oy ⊂ V .

2.13. Definition. For a subspace M of a space X, the relative (m,n)-
dimension of M is defined by the formula

r-(m,n)-dXM = sup { (m,n)-dimF : F ⊂ M and F is closed in X }.
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Proposition 2.10 implies

2.14. Proposition. For every normal subspace M of a space X we have

r-(m,n)-dXM ≤ (m,n)-dimM.

2.15. Lemma. Let (u,Φ) ∈ m(X), where u = (U1, . . . , Um), Φ = (F1, . . . , Fm).
Then there exist a cover u1 = (U1

1 , . . . , U1
m) ∈ covm(X) and neighbourhoods OFj

such that

OFj ⊂ Cl(OFj) ⊂ Uj , j = 1, . . . ,m; (2.8)

ord
(
Cl(OF1), . . . , Cl(OFm)

) ≤ 1; (2.9)

Cl(OFj) ⊂ U1
j ⊂ Uj , j = 1, . . . , m; (2.10)

j1 6= j2 ⇒ Cl
(
OFj1

) ∩ U1
j2 = ∅. (2.11)

Proof. By virtue of Lemma 1.2 there exist neighbourhoods OFj satisfying
conditions (2.8) and (2.9). Put

U1
j = Uj \

⋃
{Cl(OFk) : k 6= j}. (2.12)

Then (2.9) and (2.12) yield (2.10) and (2.11). It remains to show that u1 =
(U1

1 , . . . , U1
m) ∈ cov(X).

Let x ∈ Uj \U1
j . Then x ∈ Cl(OFk) for some k 6= j. Consequently, from (2.10)

it follows that x ∈ U1
k .

2.16. Proposition. If a hereditarily normal space X can be represented as
the union of two subspaces Y and Z such that

(m,n)-dimY ≤ k, r-(m,n)-dXZ ≤ l,

then
(m,n)-dimX ≤ k + l + 1. (2.13)

Proof. We can assume that 0 ≤ k < ∞, 0 ≤ l < ∞. To prove (2.13), we have
to show that every sequence (ui, Φi) ∈ m(X), i = 1, . . . , k + l + 2, is n-inessential
in X (see Definition 2.8). Let

ui = (U i
1, . . . , U

i
m), Φ1 =

(
F i

1, . . . , F
i
m

)
, i = 1, . . . , k + l + 2.

By virtue of Lemma 2.15 we may assume that there exist neighbourhoods OF i
j such

that

F i
j ⊂ OF i

j ⊂ Cl(OF i
j ) ⊂ U i

j ; (2.14)

l 6= j =⇒ U i
l ∩ Cl(OΦi

j) = ∅, i = 1, . . . , k + 1. (2.15)

From (2.14) and (2.15) it follows that

(ui, Ωi) ∈ m(X), where Ωi = (Cl(OΦi
1), . . . , Cl(OΦi

k+1)).
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Since (m, n)-dimY ≤ k, the sequence (ui|Y, Ωi|Y ), i = 1, . . . , k + 1, is n-
inessential in Y . Hence there exist sequences vi = (V i

1 , . . . , V i
m), i = 1, . . . , k + 1,

of open subsets of Y such that

Y ∩ Cl
(
OF i

j

) ⊂ V i
j ⊂ U i

j , i = 1, . . . , k + 1; j = 1, . . . , m;
ordvi ≤ n, i = 1, . . . , k + 1;

v1 ∪ · · · ∪ vk+1 ∈ cov(Y ).

Put Y i
1 = Y ∪ F i

1 ∪ · · · ∪ F i
m and ϕi =

(
V i

1 ∪ F i
1, . . . , V

i
m ∪ F i

m

)
, i = 1, . . . , k + 1.

By virtue of (2.15) and Lemma 1.15 we have

ordϕi = ordvi ≤ n. (2.16)

The pair
(
V i

j , F i
j

)
satisfies conditions of Lemma 2.12. Hence members of ϕi

are open in Y i
1 . Since X is hereditarily normal, according to Lemma 1.3 there exist

families
wi =

(
W i

1, . . . , W
i
m

)
, i = 1, . . . , k + 1,

of open subsets of X such that

V i
j ∪ F i

j ⊂ W i
j ⊂ U i

j , j = 1, . . . ,m; (2.17)

ordwi ≤ n. (2.18)

Put Wi = W i
1 ∪ · · · ∪W i

m and W = W1 ∪ · · · ∪Wk+1. By definition we have

w1 ∪ · · · ∪ wk+1 ∈ cov(W ). (2.19)

Let F = X \W . By virtue of (2.17) we have F ⊂ Z. Since r-(m,n)-dXZ ≤ l, we
have (m,n)-dimF ≤ l. Hence the sequence (ui|F, Φi|F ), i = k + 2, . . . , k + l + 2,
is n-inessential in F . Following to the first part of the proof we can find families

wi =
(
W i

1, . . . , W
i
m

)
, i = k + 2, . . . , k + l + 2,

of open subsets of X such that ordwi ≤ n,

F i
j ⊂ W i

j ⊂ U i
j , i = k + 2, . . . , k + l + 2; j = 1, . . . , m;

and
F ⊂

⋃
{W i

j : i = k + 2, . . . , k + l + 2; j = 1, . . . , m}.
Thus the sequence w1, . . . , wk+l+2 realizes the conditions of an n-inessentialitness
of the sequence (ui,Φi), i = 1, . . . , k + l + 2.

Proposition 2.16 implies

2.17. The addition theorem for (m,n)-dim. If a hereditarily normal
space X is represented as the union of two subspaces X1 and X2, then

(m,n)-dimX ≤ (m, n)-dimX1 + (m, n)-dimX2 + 1.
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Theorem 2.17 yields

2.18. Corollary. If a hereditarily normal space X can be represented as
the union of k + 1 subspaces X0, X1, . . . , Xk such that (m,n)-dimXi ≤ 0 for i =
0, 1, . . . , k, then (m,n)-dimX ≤ k.

2.19. Proposition. Let f : X → Y be a mapping and let a sequence (ui,Φi) ∈
m(Y ) be n-inessential in Y . Then the sequence (f−1ui, f−1Φi) is n-inessential in
X.

2.20. Proposition. Let
(
ul

i,Φ
l
i

) ∈ m(X), ul
i =

(
lU i

1, . . . ,
lU i

m

)
, Φl

i =(
lF i

1, . . . ,
lF i

m

)
, i = 1, . . . , r; l = 1, 2. Assume that

1F i
j ⊂ 2F i

j ⊂ 2U i
j ⊂ 1U i

j , i = 1, . . . , r; j = 1, . . . , m.

Let the sequence (u2
i ,Φ

2
i ), i = 1, . . . , r, be n-inessential in X. Then the sequence

(u1
i , Φ

1
i ), i = 1, . . . , r, is n-inessential in X.

2.21. Theorem. Let S = {Xα, πα
β , A} be an inverse system of compact spaces

Xα with (m,n)-dimXα ≤ k, and let X = limS. Then (m,n)-dimX ≤ k.

Proof. We have to verify that an arbitrary sequence (ui, Φi) ∈ m(X), i =
1, . . . , k + 1, is n-inessential in X. Let ui = (U i

1, . . . , U
i
m), Φi = (F i

1, . . . , F
i
m).

Since X is a compact space, by definition of the inverse limit topology, for each
i = 1, . . . , k + 1 there exists αi ∈ A and

ui
i =

(
iU i

1, . . . ,
iU i

m

) ∈ covm(Xαi) (2.20)

such that

π−1
αi

(
iU i

j

) ⊂ U i
j , j = 1, . . . ,m; (2.21)

ord
(
παi(Φi)

) ≤ 1, (2.22)

where πα : X → Xα are the limit projections of the system S and πα(Φi) =(
πα

(
F i

1

)
, . . . , πα

(
F i

m

))
. Since A is a directed set, there exists α0 ∈ A such that

αi ≤ αo, i = 1, . . . , k + 1.

Put

0U i
j =

(
πα0

αi

)−1(iU i
j

)
, j = 1, . . . ,m; (2.23)

0F i
j =

(
πα0

αi

)−1(
πα(F i

j )
)
, j = 1, . . . , m; (2.24)

u0
i =

(
0U i

1, . . . ,
0U i

m

)
, i = 1, . . . , k + 1; (2.25)

Φ0
i =

(
0F i

1, . . . , . . . ,
0F i

m

)
, i = 1, . . . , k + 1. (2.26)

By virtue of (2.20)–(2.22) we have
(
u0

i ,Φ
0
i

) ∈ m
(
Xα0

)
, i = 1, . . . , k + 1. (2.27)
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Since (m,n)-dimXα0 ≤ k, the sequence (2.27) is n-inessential in Xα0 . Then the
sequence (

π−1
α0

(
u0

i

)
, π−1

α0

(
Φ0

i

))
, i = 1, . . . , k + 1,

is n-inessential in X according to Proposition 2.19. On the other hand, from (2.21),
(2.23)–(2.25) it follows that

Φi refines π−1
α0

(
Φ0

i

)
and π−1

α (u0
i ) refines ui, i = 1, . . . , k + 1.

Consequently, Proposition 2.20 implies that the sequence (ui, Φi), i = 1, . . . , k+1,
is n-inessential in X.

§ 3. Comparison of dimensions

3.1. Proposition. If n ≥ m, then (m,n)-dimX ≤ 0 for every space X.
The condition

n1 ≤ n2 ⇒ Part(u,Φ, n2) ⊂ Part(u, Φ, n1) (3.1)

implies

3.2. Proposition. If n1 ≤ n2, then

(m,n1)-dimX ≥ (m, n2)-dimX

for every space X.

The condition
m1 ≤ m2 ⇒ covm1(X) ⊂ covm2(X) (3.2)

yields

3.3. Proposition. If m1 ≤ m2, then

(m1, n)-dimX ≤ (m2, n)-dimX

for every space X.

3.4. Theorem. If n < m, then for every space X we have

(m,n)-dimX ≤ 0 ⇐⇒ dimX ≤ n− 1.

Proof. Let (m,n)-dimX ≤ 0. We have to show that

dimX ≤ n− 1. (3.3)

According to Theorem 1.9 condition (3.3) is equivalent to the condition

every mapping f : X → ∆n is inessential. (3.4)

Let aj , j = 1, . . . , n + 1, be the vertices of the simplex ∆n and let Oj be the stars
of ∆n with respect to aj . Put

Uj = f−1Oj , j = 1, . . . , n + 1. (3.5)
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Since n < m, we have u = (U1, . . . , Un+1) ∈ covm(X). Consider a pair (u, Φ),
where Φ = (F1, . . . , Fn+1) and Fj = ∅, j = 1, . . . , n + 1. Then (u, Φ) ∈ m(X). In
view of (m,n)-dimX ≤ 0 there exists a cover v = (V1, . . . , Vn+1) of X such that

Vj ⊂ Uj , j = 1, . . . , n + 1; (3.6)

ordv ≤ n. (3.7)

Consider a partition of unity (ϕ1, . . . , ϕn+1) subordinated to the cover v. Let

ϕ = ϕ14 . . .4ϕn+1 → ∆n

be the barycentric mapping defined by (ϕ1, . . . , ϕn+1), that is

ϕ(x) =
(
ϕ1(x), . . . , ϕn+1(x)

)
,

where ϕj(x) is the barycentric coordinate of the point ϕ(x) corresponding to the
vertex aj ∈ ∆n. We have

ϕ−1Oj = {x ∈ X : ϕj(x) > 0} ⊂ Vj ⊂ Uj . (3.8)

From (3.7) it follows that

ϕ(X) ⊂ ∆n−1
n = Sn−1, (3.9)

where ∆n−1
n = Sn−1 is the (n − 1)-dimensional skeleton of the simplex ∆n. Let

F = f−1Sn−1. Conditions (3.5) and (3.8) imply that

ϕ(x) ∈ Oj ⇒ f(x) ∈ Oj .

Hence the mappings ϕ : F → Sn−1 and f0 = f |F : F → Sn−1 are homo-
topically equivalent by Theorem 1.12. Consequently, from (3.9) it follows that the
mapping f0 is extended over X by virtue of Theorem 1.11. Thus f is inessential.
Inequality (3.3) is proved.

Now let dimX ≤ n− 1. We have to check that

(m,n)-dimX ≤ 0. (3.10)

If m = n, then (3.10) is a corollary of Proposition 3.1, so that we assume that
m − n ≥ 1. Let (u, Φ), u = (U1, . . . , Um), Φ = (F1, . . . , Fm), be an m-pair in X.
To prove (3.10), we have to find a cover v = (V1, . . . , Vm) ∈ covm(X) such that

Fj ⊂ Vj ⊂ Uj , j = 1, . . . , m; (3.11)

ordv ≤ n. (3.12)

Let us take a cover u1 = (U1
1 , . . . , U1

m) and neighbourhoods OFj from Lemma 2.15.
Since dimX ≤ n− 1, there exist a cover w1 ∈ cov(X) such that w1 refines u1 and
ordw1 ≤ n. Let w = (W1, . . . ,Wm) be an integration of w1 with respect to u1. In
accordance with Definition 1.13 and Proposition 1.14 w is a cover of order ≤ n such
that

Wj ⊂ U1
j , j = 1, . . . ,m. (3.13)
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Put Vj = Wj ∪ OFj and v = (V1, . . . , Vm). From Lemma 1.15 (for Aj = Wj and
Bj = OFj), (2.10), and (3.13) it follows that v is a cover satisfying conditions (2.11)
and (2,12).

Theorem 3.4 implies

3.5. Theorem. Let m ≥ n + 2. Then dimX ≤ n if and only if for every
cover u = (U1, . . . , Um) ∈ covm(X) and for every disjoint family Φ = (F1, . . . , Fm)
of closed subsets of X such that Fj ⊂ Uj there exists a cover v = (V1, . . . , Vm) ∈
covm(X) such that

Fj ⊂ Vj ⊂ Uj , j = 1, . . . , m;
ordv ≤ n + 1.

Another corollary of Theorem 3.4 is

3.6. Theorem. For every space X we have

dimX ≤ 0 ⇒ (m,n)-dimX ≤ 0.

Proof. Theorem 3.4 implies that (m, 1)-dimX ≤ 0. Applying Proposition 3.2
we get the required property.

3.7. Theorem. For every metrizable space X we have

(m,n)-dimX ≤ dimX. (3.14)

Proof. The assertion is obvious if dimX = −1 or dimX = ∞. Assume that
dimX = k, 0 ≤ k < ∞. By virtue of Katetov theorem (Theorem 1.10) there exist
subspaces Xi ⊂ X, 0 ≤ i ≤ k, such that dimXi ≤ 0 and X = X0 ∪X1 ∪ · · · ∪Xk.
According to Theorem 3.6 we have (m,n)-dimX ≤ 0. It remains to apply Corollary
2.18.

3.8. Question. Does equality (3.14) hold for an arbitrary space X?

3.9. Theorem. If m ≥ 2, then

(m, 1)-dimX = dimX (3.15)

for every metrizable space X.

Proof. By virtue of Theorem 2.9

(2, 1)-dimX = dimX. (3.16)

From (3.16) and Proposition 3.3 it follows that (m, 1)-dimX ≤ dimX. At last,
Theorem 3.7 yields

(m, 1)-dimX ≥ dimX.

3.10. Question. Does equality (3.15) hold for an arbitrary space X?
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