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GROWTH OF POLYNOMIALS WITH PRESCRIBED ZEROS

M. S. Pukhta

Abstract. In this paper we study the growth of polynomials of degree n having all their
zeros on |z| = k, k ≤ 1. Using the notation M(p, t) = max|z|=t |p(z)|, we measure the growth of

p by estimating
{

M(p,t)
M(p,1)

}s
from above for any t ≥ 1, s being an arbitrary positive integer. Also

in this paper we improve the results recently proved by K. K. Dewan and Arty Ahuja [Growth of
polynomials with prescribed zeros, J. Math. Ineq. 5 (2011), 355–361].

1. Introduction and statement of results

For an arbitrary entire function f(z), let M(f, r) = max|z|=r |f(z)| and
m(f, k) = min|z|=k |f(z)|. Then for a polynomial p(z) of degree n, it is a sim-
ple consequence of maximum modulus principle (for reference see [4, Vol. I, p. 137,
Problem III, 269]) that

M(p,R) ≤ RnM(p, 1), for R ≥ 1. (1.1)

The result is best possible and equality holds for p(z) = λzn, where |λ| = 1.
If we restrict ourselves to the class of polynomials having no zeros in |z| < 1,

then inequality (1.1) can be sharpened. In fact it was shown by Ankeny and Rivlin
[1] that if p(z) 6= 0 in |z| < 1, then (1.1) can be replaced by

M(p,R) ≤
(Rn + 1

2

)
M(p, 1), R ≥ 1. (1.2)

The result is sharp and equality holds for p(z) = α + βzn, where |α| = |β|.
For the class of polynomials not vanishing in the disk |z| < k, k ≥ 1, Shah [6]

proved that if p(z) is a polynomial of degree n having no zeros in |z| < k, k ≥ 1,
then for every real number R > K,

M(p,R) ≤
(Rn + k

1 + k

)
M(p, 1)−

(Rn − 1
1 + k

)
m(p, k).

The result is best possible in case k = 1 and equality holds for the polynomial
p(z) = zn + 1.
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Recently Dewan and Arty [3] proved that if p(z) is a polynomial of degree n
having all its zeros on |z| = k, k ≤ 1 then for every positive integer s

{M(p,R)}s ≤
(kn−1(1 + k) + (Rns − 1)

kn−1 + kn

)
{M(p, 1)}s, R ≥ 1 .

While trying to obtain inequality analogous to (1.2) for polynomials not van-
ishing in |z| < k, k ≤ 1, we have been able to prove the following results.

Theorem 1. If p(z) = cnzn +
∑n

v=µ cn−vzn−v, 1 ≤ µ < n is a polynomial of
degree n having all its zeros on |z| = k, k ≤ 1, then for every positive integer s

{M(p,R)}s ≤
(kn−µ(k1−µ + k) + (Rns − 1)

kn−2µ+1 + kn−µ+1

)
{M(p, 1)}s, R ≥ 1. (1.3)

If we take k = 1 in Theorem 1, we get the following result.

Corollary 1. If p(z) =
∑n

v=0 cvzv is a polynomial of degree n having all its
zeros on |z| = k, k ≤ 1, then for every positive integer s

{M(p,R)}s ≤
(kn−1(1 + k) + (Rns − 1)

kn−1 + kn

)
{M(p, 1)}s, R ≥ 1.

The following corollary immediately follows from inequality (1.6) by taking
s = 1.

Corollary 2. If p(z) =
∑n

v=0 cvzv is a polynomial of degree n having all its
zeros on |z| = k, k ≤ 1, then

M(p,R) ≤
(kn−1(1 + k) + (Rn − 1)

kn−1 + kn

)
M(p, 1), R ≥ 1.

If we take µ = 1 in inequality (1.3), we get the following corollary

Corollary 3. If p(z) =
∑n

v=0 cvzv is a polynomial of degree n having all its
zeros on |z| = 1, then

M(p,R) ≤
(Rn + 1

2

)
M(p, 1), R ≥ 1.

If we involve the coefficients of p(z) also, then we are able to obtain a bound
which is better than the bound obtained in Theorem 1. More precisely, we prove

Theorem 2. If p(z) = cnzn +
∑n

v=µ cn−vzn−v, 1 ≤ µ < n is a polynomial of
degree n having all its zeros on |z| = k, k ≤ 1, then for every positive integer s

{M(p,R)}s ≤ 1
kn−µ+1

×
[
n|cn|{kn(1 + kµ+1) + k2µ(Rns − 1)}+ µ|cn−µ|{kn(1 + k1−µ) + kµ−1(Rns − 1)}

µ|cn−µ|(1 + kµ−1) + n|cn|kµ−1(1 + kµ+1)

]

× {M(p, 1)}s, R ≥ 1.
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To prove that the bound obtained in the above theorem is, in general, better
than the bound obtained in Theorem 1, we show that

1
kn−µ+1

×
[
n|cn|{kn(1 + kµ+1) + k2µ(Rns − 1)}+ µ|cn−µ|{kn(1 + k1−µ) + kµ−1(Rns − 1)}

µ|cn−µ|(1 + kµ−1) + n|cn|kµ−1(1 + kµ+1)

]

≤
(

kn−µ(k1−µ + k) + (Rns − 1)
kn−2µ+1 + kn−µ+1

)

which is equivalent to

n|cn|{kn(1 + kµ+1)(k−µ + 1) + k2µ(k−µ + 1)(Rns − 1)}
+ µ|cn−µ|{kn(1 + k1−µ)(k−µ + 1) + kµ−1(k−µ + 1)(Rns − 1)}

≤ n|cn|kµ−1(kµ+1 + 1){kn−2µ+1 + kn−µ+1 + Rns − 1}
+ µ|cn−µ|(1 + kµ−1){kn−2µ+1 + kn−µ+1 + Rns − 1}

and therefore

n|cn|{−kµ + kµRns}+ µ|cn−µ|{kn − k−1 + k−1Rns}
≤ n|cn|{−kµ−1 + kµ−1Rns}+ µ|cn−µ|{kn − 1 + Rns}

or

n|cn|{kµ(Rns − 1)}+ µ|cn−µ|{k−1(Rns − 1)}
≤ n|cn|{kµ−1(Rns − 1)}+ µ|cn−µ|{(Rns − 1)}

µ|cn−µ|(k−1 − 1) ≤ n|cn|(k−1 − 1)kµ

µ

n

|cn−µ|
|cn| ≤ kµ,

which is always true (see Lemma 4).
Example 1. Let p(z) = z4 − 1

50z2 + ( 1
100 )2 and k = 1

10 , R = 1.5, µ = 1 and
s = 2.

Then by Theorem 1, we have {M(p, R)}s ≤ 22390.909{M(p, 1)}s, while by
Theorem 2, we get {M(p,R)}s ≤ 2439.505{M(p, 1)}s.

If we take µ = 1 in Theorem 2, we get the following corollary.

Corollary 4. If p(z) =
∑n

v=0 cvzv is a polynomial of degree n having all its
zeros on |z| = k, k ≤ 1, then for every positive integer s

{M(p,R)}s ≤ 1
kn

[
n|cn|{kn(1 + k2) + k2(Rns − 1)}+ |cn−1|{2kn + (Rns − 1)}

2|cn−1|+ cn|(1 + k2)

]

× {M(p, 1)}s, R ≥ 1.
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In the above inequality, if we take s = 1, we get the following result.

Corollary 5. If p(z) =
∑n

v=0 cvzv is a polynomial of degree n having all its
zeros on |z| = k, k ≤ 1, then

M(p,R) ≤ 1
kn

[
n|cn|{kn(1 + k2) + k2(Rn − 1)}+ |cn−1|{2kn + (Rn − 1)}

2|cn−1|+ cn|(1 + k2)

]

×M(p, 1), R ≥ 1 .

2. Lemmas

For the proof of these theorems, we need the following lemmas.

Lemma 1. [7] If p(z) = cnzn +
∑n

v=µ cn−vzn−v, 1 ≤ µ < n is a polynomial of
degree n having all its zeros on |z| = k, k ≤ 1, then

max
|z|=1

|p′(z)| ≤ n

kn−2µ+1 + kn−µ+1
max
|z|=1

|p(z)|.

Lemma 2. [2] If p(z) = cnzn +
∑n

v=µ cn−vzn−v, 1 ≤ µ < n is a polynomial of
degree n having all its zeros on |z| = k, k ≤ 1, then

max
|z|=1

|p′(z)| ≤ n

kn−µ+1

[
n|cn|k2µ + µ|cn−µ|kµ−1

n|cn|(k2µ + kµ−1) + µ|cn−µ|(kµ−1 + 1)

]
max
|z|=1

|p(z)|.

Lmma 3. [5, Remark 1] If p(z) = c0 +
∑n

v=µ cvzv, 1 ≤ µ ≤ n is a polynomial
of degree n having no zeros in the disk |z| < k, k ≥ 1, then for |z| = 1,

µ

n

∣∣∣∣
cµ

c0

∣∣∣∣kµ ≤ 1.

Lemma 4. If p(z) = cnzn +
∑n

v=µ cn−vzn−v, 1 ≤ µ < n is a polynomial of
degree n having all its zeros on |z| = k, k ≤ 1, then

µ

n

∣∣∣∣
cn−µ

cn

∣∣∣∣ ≤ kµ.

Proof. If p(z) has all its zeros on |z| = k, k ≤ 1, then q(z) = znp(1/z) has all
its zeros on |z| ≥ 1/k, 1/k ≤ 1. Now apply Lemma 3 to the polynomial q(z), and
Lemma 4 follows.

3. Proof of the theorems

Proof of Theorem 1. Let M(p, 1) = max|z|=1 |p(z)|. Since p(z) is a polynomial
of degree n having all its zeros |z| = k, k ≤ 1, therefore, by Lemma 1, we have

max
|z|=1

|p′(z)| ≤ n

kn−2µ+1 + kn−µ+1
M(p, 1) for |z| = 1. (3.1)
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Now applying inequality (1.1) to the polynomial p′(z) which is of degree n− 1 and
noting (3.1), it follows that for all r ≥ 1 and 0 ≤ θ < 2π

|p′(reiθ)| ≤ nrn−1

kn−2µ+1 + kn−µ+1
M(p, 1). (3.2)

Also for each θ, 0 ≤ θ < 2π and R ≥ 1, we obtain

{p(Reiθ)}s − {p(eiθ)}s =
∫ R

1

d

dt
{p(teiθ)}s dt =

∫ R

1

s{p(teiθ)}s−1p′(teiθ)eiθ dt.

This implies

|{p(Reiθ)}s − {p(eiθ)}s| ≤ s

∫ R

1

|p(teiθ)|s−1|p′(teiθ)| dt

which on combining with inequality (3.2) and (1.1), gives

|{p(Reiθ)}s − {p(eiθ)}s| ≤ ns

kn−2µ+1 + kn−µ+1
{M(p, 1)}s

∫ R

1

tns−1 dt

=
(

Rns − 1
kn−2µ+1 + kn−µ+1

)
{M(p, 1)}s

and therefore,

|p(Reiθ)|s ≤ |p(eiθ)|s +
(

Rns − 1
kn−2µ+1 + kn−µ+1

)
{M(p, 1)}s

≤ {M(p, 1)}s +
(

Rns − 1
kn−2µ+1 + kn−µ+1

)
{M(p, 1)}s. (3.3)

Hence from (3.3) we conclude that

{M(p,R)}s ≤
(

kn−µ(k1−µ + k) + (Rns − 1)
kn−2µ+1 + kn−µ+1

)
{M(p, 1)}s.

This completes the proof of Theorem 1.

Proof of Theorem 2. The proof of Theorem 2 follows on the same lines as
that of Theorem 1 by using Lemma 2 instead of Lemma 1. But for the sake of
completeness we give a brief outline of the proof. Since p(z) is a polynomial of
degree n having all its zeros on |z| = k, k ≤ 1, therefore, by Lemma 2, we have

|p′(z) ≤ n

kn−µ+1

(
n|cn|k2µ + µ|cn−µ|kµ−1

µ|cn−µ|(1 + kµ−1) + n|cn|kµ−1(1 + kµ+1)

)
M(p, 1) for |z| = 1.

Now p′(z) is a polynomial of degree n− 1, therefore, it follows by (1.1) that for all
r ≥ 1 and 0 ≤ θ < 2π

|p′(reiθ)| ≤ nrn−1

kn−µ+1

(
n|cn|k2µ + µ|cn−µ|kµ−1

µ|cn−µ|(1 + kµ−1) + n|cn|kµ−1(1 + kµ+1)

)
M(p, 1). (3.4)

Also for each θ, 0 ≤ θ < 2π and R ≥ 1 we obtain

|{p(Reiθ)}s − {p(eiθ)}s| ≤ s

∫ R

1

|p(teiθ)|s−1|p′(teiθ)| dt
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which on combining with inequalities (1.1) and (3.4), gives

|{p(Reiθ)}s − {p(eiθ)}s|

≤
(

Rns − 1
kn−µ+1

)(
n|cn|k2µ + µ|cn−µ|kµ−1

µ|cn−µ|(1 + kµ−1) + n|cn|kµ−1(1 + kµ+1)

)
{M(p, 1)}s

and therefore

|p(Reiθ)s ≤ {M(p, 1)}s +
(

Rns − 1
kn−µ+1

)

×
(

n|cn|k2µ + µ|cn−µ|kµ−1

µ|cn−µ|(1 + kµ−1) + n|cn|kµ−1(1 + kµ+1)

)
{M(p, 1)}s.

(3.5)

Hence, from (3.5), we conclude that

{M(p,R)}s ≤ 1
kn−µ+1

×
(

n|cn|{kn(1+kµ+1)+k2µ(Rns−1)}+µ|cn−µ|{kn(1+k1−µ)+kµ−1(Rns−1)}
µ|cn−µ|(1 + kµ−1)+n|cn|kµ−1(1 + kµ+1)

)

× {M, (p, 1)}s

This completes the proof of Theorem 2.
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