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ON CONVERGENCE OF ¢g-CHLODOVSKY-TYPE
MKZD OPERATORS

Harun Karsli and Vijay Gupta

Abstract. In the present paper, we define a new kind of MKZD operators for functions
defined on [0,b,], named g-Chlodovsky-type MKZD operators, and give some approximation
properties.

1. Introduction

For a function defined on the interval [0, 1], the Meyer-Konig and Zeller oper-
ators M, (f,z) [10] are defined as

(oo}
k
M(fia) = Ym0 () (1)
k=0
where my, = ("Jr,l:*l)a:k(l —z)™. In 1989 Guo [2] introduced the integrated
Meyer-Konig and Zeller operators M,, by the means of the operators (1.1), to
approximate Lebesgue integrable functions on the interval [0,1]. Such operators
have been defined as

(o)
My (f;2) = imnk(z) [ f(t)dt (1.2)
k=0 T
where I, = [-£- L] and i, i (z) = (n+ 1) (" )2k (1 — 2)". Similar results

may be also found in the papers [3, 4].

Recently, Karsli [8] defined the following MKZD operators for functions defined
on [0,b,], named Chlodovsky-type MKZD operators as

> k bn ¢
Lu(fiz) =3 ", (;)/0 F(Obu <b> dt, 0<z, t<b, (13)

k=0

2010 AMS Subject Classification: 41A25, 41A36
Keywords and phrases: g-Chlodovsky-type MKZD operators; modulus of continuity; Peetre-
K functional; Lipschitz space.

187



188 H. Karsli, V. Gupta
where (b,,) is a positive increasing sequence with the properties
b
lim b, =00 and lim — =0
n—o00 n—oo N

and by, x(t) = n("zk)tk(l —t)"~1. We now deal with the g-analogue of Chlodovsky-
type MKZD operators L,, ,, defined as

> n+k 2\ [ .
L q(f;2) Z k.q <b> /0 q kf(t)bn,k,q <g> dgt, 0 <z <b,,

= (1.4)

where .
n+k—1 b s
minate) = "3 H IO
q 5=0
and
n+k =
boaa® =y | " 3] #T[0-) 0 ta <),
q s=0
provided the ¢-integral and the infinite series on the r.h.s. of (1.4) are well-defined.

It can be easily verified that in the case ¢ = 1 the operators defined by (1.4) reduce
to the Chlodovsky-type MKZD operators defined by (1.3).

Actually the g-analogue of the linear positive operators was started in the last
decade when Phillips [11] first introduced g-Bernstein polynomials, and later their
Durrmeyer variants were studied and discussed in [5, 6]. Very recently Govil and
Gupta [1] studied the approximation properties of ¢-MKZD operators. Here our
aim is to study the g-analogue of summation-integral-type CMKZD operators. We
shall prove that the operators L, f being defined in (1.4) converge to the limit f.

Before getting onto the main subject, we first give definitions of g-integer,
g-binomial coefficient and g¢-integral, which are required in this paper. For any
fixed real number ¢ > 0 and non-negative integer r the g-integer of the number r

is defined by
[ (A=¢)/(1—q), ¢#1
[rlg = _
T, q=1.
The g¢-factorial is defined by

[r],! :{ [17’]11[7"*1]61"'[1](17 :z(l)jl?),...

and g-binomial coefficient is defined as

for integers n > r > 0. The g¢-integral is defined as (see [9])

/Oaf(x)dqw=(1—q)a2f(aq”)q
n=0
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provided the sum converges absolutely. Note that the series on the right-hand side
is guaranteed to be absolutely convergent as the function f is such that, for some
M >0,a>-1, |f(x)] < Mx® in a right neighbourhood of x = 0.

DEFINITION 1.1. A function f is g-integrable on [0, c0) if the series
| t@de=a-0X rae
0 neEZ

converges absolutely. We use the notation

n—1

(a=b); = [Jla— ).

Jj=0

The g-analogue of Beta function (see [7]) is defined as
1
By(m,n) = / tm (1 — qt)gfldqt, m,n > 0.
0

Also
[m — 1]![n —1]!

Bq(m,n) = [m+n—1)!

2. Auxiliary results

In this section we give certain results, which are necessary to prove our main
theorem.

LEMMA 2.1. For s € N,

R 2\ [In+kl,! [k+s],!
(Lmqt)(x)—bn’;mn,k,q (bn> Wl Terstall (2.1)

Proof. We have

AN R AN "
(Lot @) = s () [ b (1) dy

k=0

e () [ [ () -2,
=S g () [ o) (-8
k=0 bn b/ Jo & \bn bn /g

Setting u = t/b,,, we get

s > [+ K] T\ n+k—1 ! s ne
(Ln,gt’) (z) = b qmn,k,q (b ) bn+1 { k } /0 utt (1- qu)q 1dqu
n n q

> [n+k _
:Z[ }qmn,;ﬁq (bx) bett {n+Z 1} By(k+s+1,n)
n q
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Zn—i—k mnkq<

o)

-

k=0

For s =0,1 and 2 in (2.1
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) [n+k— l]q! Ly(k+s+1)Ty(n)
[

U, [k, Tyk+stn+l)

), we get respectively

by, ) [n—
[n+k],! [k+s],)!
[Klg! [k+s+n]!

oS @) £ () T (-0)
2:2)

S

e o e () BB

=l (1) S e (o)

:bnﬁ(l—ffn)i[n[”ﬁkf 1, (b)k [n[ﬁﬂqu M[Z}Q_l]q

:"”ﬁ:(“qsi)i[n[nlﬁk[kmu <b> [mq]q {Ziiﬂ

Zb”n_: (“qsbi)g[n[n;k[kz}u (b) [mq]q {ZHL

S IO St ()

e (o) S ()

e () W)

“fre [ ) )

1, 2.3
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and
(a0 = Zm"“(n) [n+k!k] [k[i;ri]i]q!
o = <1 i) im (i) e
] () S () R
: b’i: <1 _qsli) [n—ll]qlx
in:o[n+:]q!3]q' (Z;)k(1+q+q[k] +2¢% [k], +q [k]Z)
S _ (-5 o ,?_Oi R (i)
+(¢+2¢%) binl:[1 (1—qs;) [n_ll]q li [[ij];[i]ﬁ!! (bl;>k+1
+q3b2H(1_q . ) . ki n—l-k;—3 (Z)nqu
(1+Q)bim_1]ql[n_2]q+(q+2q )bQﬁ
+q3bij_:(1_q ) qkinﬂc 3] v(bxn> 1+q )
B T T

+q* bi

00 k+1
372 B n+l<;—2' T
+qb”H(1 qb>n—1 Z b
2

:[nfﬁ) g, *q)

z + ¢'a? (2.4)

From (2.2), (2.3) and (2.4), an easy computation gives

(1+q)b2 (9424 + ") bn_

(Lng(t —2)*) (2) < [ 1],
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[n — 1]q
[n+1],

It is observed here that for 0 < ¢ < 1, one has [n] — ﬁ as n — oo. This implies

that (Ly,qt*)(2) and (Ly,q(t — 2)?) (z) does not converge to z* and 0 respectively,
as n — o0o. To obtain some convergence results for ¢-CMKZD operators defined
n (1.4), we will consider a sequence (g,) of real numbers such that 0 < ¢, < 1,
lim, .o q, =1, and

+ +1] 22

-2 = A, q(2). (2.5)

. by
lim
n—oo [n] qn

=0. = (2.6)

3. Main results
Now we are ready to obtain some convergence results on ¢-CMKZD operators.

THEOREM 3.1. Let (q,) be a sequence of real numbers such that 0 < ¢, < 1
and limy, o0 ¢, = 1. If f € C[0,00), we have

[(Ln g, F)(@) = f(2)] < 20(f, |/ Ang, (2)), (3.1)

where w(f,-) is the usual modulus of continuity of f in the space of continuous
functions.

Proof. Using (1.4) for ¢ = ¢,,, we have
|(Lnq, f)(@) = f()]

> [n+ k] z\ [ nt
. mnyk7Q”n, / dyn kf(t)bnvk7qn g dQnt - f(x)
Z bn, bn ) Jo bn

k=0

0 [n+k‘} T bn _ dn
S Z anmn7k7qn (bn) /0 q’ﬂk |f(t) - f(x)‘ bn,k,qn ( ) dQnt

k=0 bn

[n+ K] T bn t—x nt
- Z qn mn7k7Q7t (b) A an (| 5 | + 1) w(f’ 6)bn,k,Qn <qb) dQnt
e n + k €T bn nt
O (2) [ ()

k=
w(f,0) = [+ K, z\ [ gnt
K by, =M kg, a o qn F |t - fE| bn,k‘,,qn E dqnt

k=0
<w(f0)+ Q2D (1,00 - 2) @)}
<w(f,0)+ “({{ 2 g,

Now, if we choose §% = A, 4. (z), we get

‘(Ln,qnf)(x) = f(@)] < 2w(f, Angn (z)),

and the proof of Theorem 3.1 is thus complete. m
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It is easy to see that, the right-hand side of formula (3.1) can diverge. Indeed,
for x = %“ we cannot guarantee § — 0 as n — oo .

From Lemma 2.1 and Theorem 3.1, we can immediately give the following
Bohman-Korovkin-type theorem.

THEOREM 3.2. Let (g,) be a sequence of real numbers such that 0 < ¢, < 1
and lim, o g, = 1. Then, for f € C[0,00), the sequence L, 4, (f,x) converges
uniformly to f(x) on any closed finite subinterval [0, A], where A > 0 being a
constant.

DEFINITION 3.3. For f € Cla,b] and ¢t > 0, the Peetre-K Functional are
defined by

K(7.6)= it {17~ gllogus +tI9llcages |-
THEOREM 3.4. If g € C?[0, A], then

(Lng9)(@) = 9(2)] < A g(e) 9l cmon,
where A > 0 is a constant.

Proof. By Taylor formula with integral reminder term, we write

o(t) = g(a) + (t — 2)g'(z) + /Otx(t — o — 02" (@ + ) du. (3.2)
If we apply the operator (1.4) to (3.2), we get
|(Ln,q9)(z) — g(@)|
_ ‘g'(x)(Lmq(t — ) (@) + (Lny (/Ot_x(t 2 —w)¢" (@ +u) du)) (@)

< lg'llco.al(Lng(t — 2))(2)]

(Ln,q ( /O PRI du))(a:)

+ 119" o, ]

Since

one gets from (2.5)

(Lna9) (@) — 9@)] < 119 leroay {Ana(@) Y2 + 119" o0,y Ana ().
Now noting that

90l 2108y = 9l cpa) + 119 o + 19" oy -

we get
[(Ln,q9) () = g(2)] < Ang(2) lgll o210, »
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and this completes the proof of Theorem 3.4. m

Now, we are ready to prove the following theorem.

THEOREM 3.5. Let (qn,) be a sequence of real numbers such that 0 < ¢, < 1
and lim,,_, g, = 1. If f € C[0,00), then

1L )~ Flleon < 2K (. Bug,).

where By, g4, 15 the mazimum value of A, 4. (z) on [0,A], A > 0 is a constant;
namely,

(1+q)b? (4+24°+¢%)0
[n—l]q[n—2]q [n—l}q

Bng = “A S+

Proof. By the linearity property of (L, 4, ), we get

|(Lnq, f)(2) = f(2)|
< (g )(@) = (L g 9)(@)] + [(Lin,g, 9) () = g(2)| + [9(x) — f ()]
< |f = 9llego.a) [(Eng, D@+ 1 = glleo,a) + [(Lng, 9) () = g(x)] -

From Theorem 3.4, one has
(Engn D)@ = )] < 211 = gllegon + Angn (@) Ilcoro a1
and hence
1L ) = Floon < 215 = ollcon + Boa oz - (33)
If we take the infimum on the right-hand side of (3.3) over all g € C2[0, A], we get
1L ) = Fllogo ) < 2K(f: Bug,):

This completes the proof. m

THEOREM 3.6. Let (g,) be a sequence of real numbers such that 0 < ¢, < 1
and limy, 00 g, = 1. If f € Lipy[0,00), then for any A > 0 and x € [0, A] the
inequality

‘(Ln,qnf) () = f@)| <M {Bn,qn}%

holds with the constant M, which is independent of n and By, 4, s as defined in
Theorem 3.5.

Proof. For convenience we write L,, 4 (f;x) instead of (L, 4, f)(z). Note that

| Lnq, (f:2) = f(2)] < Lng, (If(t) = f(z)];2)
i_o: A, —— "M kg, (;;) /Obn 4" |f(t) = [ (@) bn kg, <qb”:> dg,t

k=0
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bn o o= [+ K] T nt
< M/O g [t =" Y " g, (b> bk gn (%) dy, t.

k=0 n

If we choose p; = % and py =

| Ln.q, (f;2) = f(2)]

n—i—k‘ €T nt ﬁ
o [ et £ (2 ()]

n + k €T qnt %
{ —k Z m,n k‘ <bn> bnvkyqn <bn> } dqnt.

By Holder inequality, we have
|Lyq, (f;2) = f(2)]

bn e [TL + k] €T nt ﬁ
S M{/() q’l’:k ‘t - x‘Q Z biqnmnak;‘bz (b) bnykﬂn (qb) dq”t} X

k=0

> [n+ k] 3
{/ Z q” 3 Mnk,gn (x> bnan (qn ) dlZnt} "
0 n ), bn ey bn
k=
b o [n+ K] x :
= M{/ q’;k ‘t - x‘Z Z b o Mn,k,qn (b) bnakﬂn <QL > dQnt}
0 n n n

k=0

then = —|— p% = 1. Therefore

2a’

R

From (2.5) we obtain

|Lng (F30) = F(@)] < M {An g, (2)}7 .
This implies that for = € [0, A]

|(Lng, f)(z) = f(z)] < M {Bn,qn}%

which in view of (2.5) and (2.6) tends to zero as n — co. m
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